World Health Organization, World Heart Day. https://www.who.int/cardiovascular_diseases/world-heart-day/en/. Accessed 7 May 2019.
The Guardian. UK heart disease fatalities on the rise for first time in 50 years. https://www.theguardian.com/society/2019/may/13/heart-circulatory-disease-fatalities-on-rise-in-uk. Accessed 25 Oct 2019.
National Heart Lung and Blood Institute (NHLBI). Heart failure. https://www.nhlbi.nih.gov/health-topics/heart-failure. Accessed 20 June 2019.
Meng F, Zhang Z, Hou X, Qian Z, Wang Y, Chen Y, Wang Y, Zhou Y, Chen Z, Zhang X, Yang J, Zhang J, Guo J, Li K, Chen L, Zhuang R, Jiang H, Zhou W, Tang S, Wei Y, Zou J. Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China. Br Med J (BMJ) Open. 2019; 9(5):023724.
Google Scholar
Nauta JF, Jin X, Hummel YM, Voors AA. Markers of left ventricular systolic dysfunction when left ventricular ejection fraction is normal. Eur J Heart Fail. 2018; 20:1636–8.
Article
PubMed
Google Scholar
Pfeffer MA, Braunwald E. Treatment of heart failure with preserved ejection fraction. reflections on its treatment with an aldosterone antagonist. J Am Med Assoc (JAMA) Cardiol. 2016; 1(1):7–8.
Google Scholar
Mesquita ET, Grion DC, Kubrusly MC, Silva BBFF, Santos ÉAR. Phenotype mapping of heart failure with preserved ejection fraction. Int J Cardiovasc Sci. 2018; 31(6):652–61.
Google Scholar
Nanayakkara S, Kaye DM. Targets for heart failure with preserved ejection fraction. Clin Pharmacol Ther. 2017; 102:228–37.
Article
CAS
PubMed
Google Scholar
Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink-Nelson L, Kim K-YA, Peng J, Irvin MR, Tiwari H, Rao DC, Arnett DK, Shah SJ. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res. 2017; 10(3):275–84.
Article
PubMed
Google Scholar
Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017; 70(17):2186–200.
Article
PubMed
Google Scholar
Raphael C, Briscoe C, Justin Davies ZIW, Manisty C, Sutton R, Mayet J, Francis DP. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart. 2007; 93(4):476–82.
Article
PubMed
Google Scholar
Buchan TA, Ross HJ, McDonald M, Billia F, Delgado D, Duero Posada JG, Luk A, Guyatt GH, Alba AC. Physician prediction versus model predicted prognosis in ambulatory patients with heart failure. J Heart Lung Transplant. 2019; 38(4):381.
Article
Google Scholar
Chapman B, DeVore AD, Mentz RJ, Metra M. Clinical profiles in acute heart failure: an urgent need for a new approach. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):464–74.
Google Scholar
Poffo MR, Assis AVd, Fracasso M, Londero Filho OM, Alves SMdM, Bald AP, Schmitt CB, Alves Filho NR. Profile of patients hospitalized for heart failure in tertiary care hospital. Int J Cardiovasc Sci. 2017; 30:189–98.
Google Scholar
Pandey AC, Topol EJ. Dispense with supplements for improving heart outcomes. Ann Intern Med. 2019; 171:216–7.
Article
PubMed
PubMed Central
Google Scholar
Khan SU, Khan MU, Riaz H, Valavoor S, Zhao D, Vaughan L, Okunrintemi V, Riaz IB, Khan MS, Kaluski E, Murad MH, Blaha MJ, Guallar E, Michos ED. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann Intern Med. 2019; 171:190–8.
Article
PubMed
PubMed Central
Google Scholar
Chiodo L, Casula M, Tragni E, Baragetti A, Norata D, Catapano AL, on behalf of PLIC group. Profilo cardiometabolico in una coorte lombarda: lo studio PLIC. Cardio-metabolic profile in a cohort from Lombardy region: the PLIC study. Giornale Italiano di Farmacoeconomia e Farmacoutilizzazione. 2017; 9(2):35–53.
Google Scholar
Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang H-J, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2018; 40(24):1975–86.
Article
Google Scholar
Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, Pandey M, Lee BC, Wang J, Xu Z, Zhang Y, Min JK, Wong SC, Minutello RM. Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach. J Am Heart Assoc. 2019; 8(5):011160.
Google Scholar
Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neysesc L. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics. 2007; 3(4):413–26.
Article
CAS
Google Scholar
Gallagher J, McCormack D, Zhou S, Ryan F, Watson C, McDonald K, Ledwidge MT. A systematic review of clinical prediction rules for the diagnosis of chronic heart failure. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):499–508.
Google Scholar
Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley GW, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017; 121(9):1092–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data?PLoS ONE. 2017; 12(4):0174944.
Article
CAS
Google Scholar
Shilaskar S, Ghatol A. Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl. 2013; 40(10):4146–53.
Article
Google Scholar
Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using EHRs and machine learning for heart failure survival analysis. Stud Health Technol Informat. 2015; 216:40.
Google Scholar
Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2017; 15:26–47.
Article
PubMed
Google Scholar
Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018; 7(8):008081.
Article
CAS
Google Scholar
Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, Williams BA, Haggerty CM, Fornwalt BK. J Am Coll Cardiol (JACC) Cardiovasc Interv. 2019; 12:2641.
Sengupta PP, Kulkarni H, Narula J. Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol. 2018; 71(15):1650–60.
Article
PubMed
Google Scholar
Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, Min JK, Tang WHW, Halperin JL, Narayan SM. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019; 40:2058–73.
Article
PubMed
PubMed Central
Google Scholar
Poolsawad N, Moore L, Kambhampati C, Cleland JGF. Issues in the mining of heart failure datasets. Int J Autom Comput. 2015; 11(2):162–79.
Article
Google Scholar
Buzaev IV, Plechev VV, Nikolaeva IE, Galimova RM. Artificial intelligence: neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chron Dis Transl Med. 2016; 2(3):166–72.
Google Scholar
Benjamins J-W, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P. A primer in artificial intelligence in cardiovascular medicine. Neth Heart J. 2019; 27:392–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, Gibbs JSR, Wilkins MR, Cook SA, Rueckert D, O’Regan DP. Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell. 2019; 1(2):95–104.
Article
PubMed
PubMed Central
Google Scholar
Smith DH, Johnson ES, Thorp ML, Yang X, Petrik A, Platt RW, Crispell K. Predicting poor outcomes in heart failure. Permanente J. 2011; 15(4):4–11.
Article
Google Scholar
Dokainish H, Teo K, Zhu J, Roy A, AlHabib KF, ElSayed A, Palileo-Villaneuva L, Lopez-Jaramillo P, Karaye K, Yusoff K, Orlandini A, Sliwa K, Mondo C, Lanas F, Prabhakaran D, Badr A, Elmaghawry M, Damasceno A, Tibazarwa K, Belley-Cote E, Balasubramanian K, Islam S, Yacoub MH, Huffman MD, Harkness K, Grinvalds A, McKelvie R, Bangdiwala SI, Yusuf S, Campos R, Chacón C, Cursack G, Diez F, Escobar C, Garcia C, Vilamajo OG, Hominal M, Ingaramo A, Kucharczuk G, Pelliza M, Rojas A, Villani A, Zapata G, Bourke P, Lanas F, Nahuelpan L, Olivares C, Riquelme R, Ai F, Bai X, Chen X, Chen Y, Gao M, Ge C, He Y, Huang W, Jiang H, Liang T, Liang X, Liao Y, Liu S, Luo Y, Lu L, Qin S, Tan G, Tan H, Wang T, Wang X, Wei F, Xiao F, Zhang B, Zheng T, Mendoza JLA, Anaya MB, Gomez E, de Salazar DIM, Quiroz F, Rodríguez MJ, Sotomayor MS, Navas AT, León MB, Montalvo LAF, Jaramillo ML, Patiño EP, Perugachi C, Trujillo Cruz F, Elmaghawry M, Wagdy K, Bhardwaj AK, Chaturvedi V, Gokhale GK, Gupta R, Honnutagi R, Joshi P, Ladhani S, Negi PC, Roy A, Reddy N, Abdullah A, Hassan MRA, Balasinga M, Kasim S, Tan WY, Yusoff K, Damasceno A, Banze R, Calua E, Novela C, Chemane J, Akintunde AA, Ansa V, Gbadamosi H, Karaye KM, Mbakwem A, Mohammed S, Nwafor E, Ojji D, Olunuga T, Sa’idu BOH, Umuerri E, Alcaraz J, Palileo-Villanueva L, Palomares E, Timonera MR, Badr A, Alghamdi S, Alhabib K, Almasood A, Alsaif S, Elasfar A, Ghabashi A, Mimish L, Bester F, Kelbe D, Klug E, Sliwa K, Tibarzawa K, Abdalla OE, Dimitri ME, Mustafa H, Osman O, Saad A, Mondo C. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health. 2017; 5:665–72.
Article
Google Scholar
Voors AA, Ouwerkerk W, Zannad F, van Veldhuisen DJ, Samani NJ, Ponikowski P, Ng LL, Metra M, ter Maaten JM, Lang CC, Hillege HL, van der Harst P, Filippatos G, Dickstein K, Cleland JG, Anker SD, Zwinderman AH. Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. Eur J Heart Fail. 2017; 19:627–34.
Article
CAS
PubMed
Google Scholar
Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni AP, Burton P, Sullivan MD, Pitt B, Poole-wilson PA, Mann DL, Packer M. The Seattle heart failure model: prediction of survival in heart failure. Circulation. 2006; 113(11):1424–33.
Article
PubMed
Google Scholar
Sakamoto M, Fukuda H, Kim J, Ide T, Kinugawa S, Fukushima A, Tsutsui H, Ishii A, Ito S, Asanuma H, Asakura M, Washio T, Kitakaze M. The impact of creating mathematical formula to predict cardiovascular events in patients with heart failure. Sci Rep. 2018; 8(1):3986.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD, Guyatt GH, Ross HJ. Risk prediction models for mortality in ambulatory patients with heart failure: a systematic review. Circ Heart Fail. 2013; 6:881–89.
Article
PubMed
Google Scholar
Yap J, Chia SY, Lim FY, Allen JC, Teo L, Sim D, Go YY, Jaufeerally FR, Seow M, Kwok B, Liew R, Lam CS, Ching CK. The Singapore heart failure risk score: prediction of survival in Southeast Asian patients. Ann Acad Med Singap. 2019; 48:86–94.
PubMed
Google Scholar
Yap J, Lim FY, Chia SY, Allen Jr. JC, Jaufeerally FR, Macdonald MR, Chai P, Loh SY, Lim P, Zaw MWW, Teo L, Sim D, Lam CSP. Prediction of survival in Asian patients hospitalized with heart failure: validation of the OPTIMIZE-HF risk score. J Card Fail. 2019; 25(7):571–5.
Article
PubMed
Google Scholar
Kasahara S, Sakata Y, Sakata Y, Nochioka K, Tay WT, Claggett BL, Abe R, Oikawa T, Sato M, Aoyanagi H, Miura M, Shiroto T, Takahashi J, Sugimura K, Teng T-HK, Miyata S, Shimokawa H. The 3A3B score: the simple risk score for heart failure with preserved ejection fraction – A report from the CHART-2 Study. Int J Cardiol. 2019; 284:42–9.
Article
PubMed
Google Scholar
Miyagawa S, Pak K, Hikoso S, Ohtani T, Amiya E, Sakata Y, Ueda S, Takeuchi M, Komuro I, Sawa Y. Japan heart failure model – Derivation and accuracy of survival prediction in Japanese heart failure patients. Circ Rep. 2019; 1(1):29–34.
Article
Google Scholar
Boralkar KA, Kobayashi Y, Moneghetti KJ, Pargaonkar VS, Tuzovic M, Krishnan G, Wheeler MT, Banerjee D, Kuznetsova T, Horne BD, Knowlton KU, Heidenreich PA, Haddad F. Improving risk stratification in heart failure with preserved ejection fraction by combining two validated risk scores. Open Heart. 2019; 6(1):e000961.
Article
PubMed
PubMed Central
Google Scholar
Kouwert IJM, Bakker EA, Cramer MJ, Snoek JA, Eijsvogels TMH. Comparison of MAGGIC and MECKI risk scores to predict mortality after cardiac rehabilitation among Dutch heart failure patients. Eur J Prev Cardiol. 2019; First published online:26.
Google Scholar
Canepa M, Fonseca C, Chioncel O, Laroche C, Crespo-Leiro MG, Coats AJS, Mebazaa A, Piepoli MF, Tavazzi L, Maggioni AP, Crespo-Leiro M, Anker S, Mebazaa A, Coats A, Filippatos G, Ferrari R, Maggioni AP, Piepoli MF, Amir O, Chioncel O, Dahlström U, Delgado Jimenez JF, Drozdz J, et al.Performance of prognostic risk scores in chronic heart failure patients enrolled in the European society of cardiology heart failure long-term registry. J Am Coll Cardiol (JACC) Heart Fail. 2018; 6(6):452–62.
Google Scholar
Straw S, Byrom R, Gierula J, Paton MF, Koshy A, Cubbon R, Drozd M, Kearney M, Witte KK. Predicting one-year mortality in heart failure using the ’surprise question’: a prospective pilot study. Eur J Heart Fail. 2019; 21(2):227–34.
PubMed
Google Scholar
Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, Targher G. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care. 2017; 40(11):1597–605.
Article
PubMed
Google Scholar
Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care. 2019; 42(12):2298–306.
Article
PubMed
PubMed Central
Google Scholar
Son MK, Lim N-K, Park H-Y. Predicting stroke and death in patients with heart failure using CHA2DS2-VASc score in Asia. BMC Cardiovasc Disord. 2019; 19(1):193.
Article
PubMed
PubMed Central
Google Scholar
Ahmad T, Munir A, Bhatti SH, Aftab M, Raza MA. Survival analysis of heart failure patients: a case study. PLoS ONE. 2017; 12(7):0181001.
Article
CAS
Google Scholar
Fitrianto A, Jiin RLT. Several types of residuals in Cox regression model: an empirical study. Int J Math Anal. 2013; 7:2645–54.
Article
Google Scholar
Kleinbaum DG, Klein M. Kaplan–Meier survival curves and the log-rank test. Heidelberg, Germany: Springer; 2012, pp. 55–96.
Book
Google Scholar
Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A, Blomberg N, Boiten J, da Silva Santos L, Bourne P, Bouwman J, Brookes A, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo C, Finkers R, Gonzalez-Beltran A, Gray A, Groth P, Goble C, Grethe J, Heringa J, ’t Hoen P, Hooft R, Kuhn T, Kok R, Kok J, Lusher S, Martone M, Mons A, Packer A, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S, Schultes E, Sengstag T, Slater T, Strawn G, Swertz M, Thompson M, van Der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018.
Article
PubMed
PubMed Central
Google Scholar
Zahid FM, Ramzan S, Faisal S, Hussain I. Gender based survival prediction models for heart failure patients: a case study in Pakistan. PLoS ONE. 2019; 14(2):0210602.
Google Scholar
Núñez J, Garcia S, Núñez E, Bonanad C, Bodí V, Miñana G, Santas E, Escribano D, Bayes-Genis A, Pascual-Figal D, Chorro FJ, Sanchis J. Early serum creatinine changes and outcomes in patients admitted for acute heart failure: the cardio-renal syndrome revisited. Eur Heart J Acute Cardiovasc Care. 2017; 6(5):430–40.
Article
PubMed
Google Scholar
Akhter MW, Aronson D, Bitar F, Khan S, Singh H, Singh RP, Burger AJ, Elkayam U. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004; 94:957–60.
Article
CAS
PubMed
Google Scholar
Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, Tang WHW, Testani JM. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail. 2016; 22(10):753–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vistarini N, Deschamps A, Cartier R. Preoperative creatinine clearance affects long-term survival after off-pump coronary artery bypass surgery. Can J Cardiol. 2014; 30:238–9.
Article
Google Scholar
Tomaselli Muensterman E, Tisdale JE. Predictive analytics for identification of patients at risk for QT interval prolongation: a systematic review. Pharmacotherapy. 2018; 38(8):813–21.
Article
PubMed
Google Scholar
Kosztin AA, Tokodi M, Toser Z, Schwertner W, Boros A, Kovacs A, Perge P, Szeplaki G, Geller L, Merkely B. Utilization of machine learning to identify gender-specific patterns in short-and long-term mortality after cardiac resynchronization therapy. In: Proceedings of the Heart Failure 2019 Congress, vol. 1: 2019. p. 834.
Stasiak MM, Rozentryt P, Jankowska E, Retwinski A, Straburzynska-Migaj E, Nowalany-Kozielska E, Ponikowski P, Mirek-Bryniarska E, Polonski L, Drozdz J. Renal failure in patients with heart failure – analysis based on ESC-HF Pilot survey. Eur Heart J. 2013; 34(Suppl 1):645.
Article
Google Scholar
Sutherland SM, Chawla LS, Kane-Gill S, Hsu RK, Kramer AA, Goldstein SA, Kellum JA, Ronco C, Bagshaw SM, the 15 ADQI Consensus Group. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Health Dis. 2016; 3:11.
Article
PubMed
PubMed Central
Google Scholar
Lee H-C, Yoon H-K, Nam K, Cho YJ, Kim TK, Kim WH, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018; 7:322.
Article
PubMed Central
Google Scholar
Ahmad T, Munir A, Bhatti SH, Aftab M, Ali Raza M. Survival analysis of heart failure patients: a case study. Dataset. https://plos.figshare.com/articles/Survival_analysis_of_heart_failure_patients_A_case_study/5227684/1. Accessed 25 Jan 2019.
Bredy C, Ministeri M, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Diller G-P, Gatzoulis MA, Dimopoulos K. New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J – Qual Care Clin Outcomes. 2017; 4(1):51–8.
Article
Google Scholar
Johns Hopkins Rheumatology. Creatine Phosphokinase (CPK). https://www.hopkinslupus.org/lupus-tests/clinical-tests/creatine-phosphokinase-cpk/. Accessed 25 Jan 2019.
Stephens C. What is a creatinine blood test?https://www.healthline.com/health/creatinine-blood. Accessed 25 Jan 2019.
Case-Lo C. What is a sodium blood test?https://www.healthline.com/health/sodium-blood. Accessed 25 Jan 2019.
Seber GA, Lee AJ. Linear Regression Analysis, Wiley Series in Probability and Statistics. vol. 329. Hoboken: John Wiley and Sons; 2012.
Google Scholar
Breiman L. Random forests. Mach Learn. 2001; 45:5–32.
Article
Google Scholar
Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993; 11(1):63–90.
Article
Google Scholar
Loh W-Y. Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Disc. 2011; 1(1):14–23.
Article
Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436.
Article
CAS
PubMed
Google Scholar
Amari S-I, Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999; 12(6):783–9.
Article
CAS
PubMed
Google Scholar
Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967; 13(1):21–7.
Article
Google Scholar
Rish I. An empirical study of the naive Bayes classifier. In: Proceedings of IJCAI 2001 – the 17th International Joint Conferences on Artificial Intelligence Workshop on Empirical Methods in Artificial Intelligence, vol. 3. Menlo Park: American Association for Artificial Intelligence: 2001. p. 41–46.
Google Scholar
Chen T, Guestrin C. XgBoost: a scalable tree boosting system. In: Proceedings of KDD 2016 – the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York City: Association for Computing Machinery (ACM): 2016. p. 785–794.
Google Scholar
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) – Protein Struct. 1975; 405(2):442–51.
Article
CAS
Google Scholar
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015; 10(3):0118432.
Article
CAS
Google Scholar
Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE. 2012; 7(8):41882.
Article
CAS
Google Scholar
Chicco D. Ten quick tips for machine learning in computational biology. BioData Min. 2017; 10(35):1–17.
Google Scholar
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1):6.
Article
PubMed
PubMed Central
Google Scholar
Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945; 1(6):80–3.
Article
Google Scholar
Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Heidelberg: Springer: 2009. p. 1–4.
Google Scholar
McHugh ML. The chi-square test of independence. Biochemia Medica. 2013; 23(2):143–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965; 52(3/4):591–611.
Article
Google Scholar
Light C. Tutorial: Pearson’s Chi-square test for independence. https://www.ling.upenn.edu/~clight/chisquared.htm. Accessed 7 May 2019.
Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F. Using resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. 2018; 18(1):29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Breiman L, Cutler A. Random forests – Gini importance. https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#giniimp. Accessed 10 Apr 2019.
Chicco D, Rovelli C. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS ONE. 2019; 14(1):0208737.
Article
CAS
Google Scholar
Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of ECML 1994 – the 7th European Conference on Machine Learning. Heidelberg: Springer: 1994. p. 171–82.
Google Scholar
Robnik-Sikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In: Proceedings of ICML 1997 – the 14th International Conference on Machine Learning. Burlington: Morgan Kaufmann Publishers: 1997. p. 296–304.
Google Scholar
Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JR. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform. 2018; 85:168–88.
Article
PubMed
PubMed Central
Google Scholar
Brown LE, Tsamardinos I, Aliferis CF. A novel algorithm for scalable and accurate Bayesian network learning. In: Proceedings of MEDINFO 2004 – the 11th World Congress on Medical Informatics. Amsterdam: IOS Press: 2004. p. 711–5.
Google Scholar
Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I. Feature selection with the R package MXM: discovering statistically equivalent feature subsets. J Stat Softw Artic. 2017; 80(7):1–25.
Google Scholar
Borboudakis G, Tsamardinos I. Forward-backward selection with early dropping. J Mach Learn Res. 2019; 20(1):276–314.
Google Scholar
Breiman L, Friedman JH, Ohlsen RA, Stone CJ. Classification and Regression Trees. The Wadsworth Statistics Probability Series. Boston: Wadsworth Publishing; 1984, p. 358.
Google Scholar
Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 1995; 20(3):273–97.
Google Scholar
Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat. 2000; 28(2):337–407.
Article
Google Scholar
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29(5):1189–232.
Article
Google Scholar
de Borda J-C. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences. 1784; Jg. 1781:657–65.
Google Scholar
Barla A, Galea A, Furlanello C, Jurman G, Paoli S, Merler S. Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics. 2007; 24(2):258–64.
PubMed
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002; 46(1-3):389–422.
Article
Google Scholar
Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. In: Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. Bellingham: International Society for Optics and Photonics (SPIE): 2017. p. 1013428.
Google Scholar
Mehta CR, Patel NR. Exact logistic regression: theory and examples. Stat Med. 1995; 14(19):2143–60.
Article
CAS
PubMed
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002; 2(3):18–22.
Google Scholar
Chicco D, Ciceri E, Masseroli M. Extended Spearman and Kendall coefficients for gene annotation list correlation. In: Proceedings of the International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014). Springer: 2014. p. 19–32.
Sculley D. Rank aggregation for similar items. In: Proceedings of the 2007 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics: 2007. p. 587–592.
Google Scholar
Yunus I, Fasih A, Wang Y. The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS ONE. 2018; 13(11):0206527.
Article
CAS
Google Scholar
Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L, Bonafide CP, Balamuth F, Schmatz M, Grundmeier RW. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE. 2019; 14(2):0212665.
Article
CAS
Google Scholar
Aushev A, Ripoll VR, Vellido A, Aletti F, Pinto BB, Herpain A, Post EH, Medina ER, Ferrer R, Baselli G. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS ONE. 2018; 13(11):0199089.
Article
CAS
Google Scholar
Fernandes K, Chicco D, Cardoso JS, Fernandes J. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Comput Sci. 2018; 4:154.
Article
Google Scholar
Maggio V, Chierici M, Jurman G, Furlanello C. Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk neuroblastoma. PLoS ONE. 2018; 13(12):0208924.
Article
CAS
Google Scholar
Kueffner R, Zach N, Bronfeld M, Norel R, Atassi N, Balagurusamy V, Camillo BD, Chio A, Cudkowicz M, Dillenberger D, Garcia-Garcia J, Hardiman O, Hoff B, Knight J, Leitner ML, Li G, Mangravite L, Norman T, Wang L, the ALS Stratification Consortium, Xiao J, Fang W-C, Peng J, Yang C, Chang H-J, Stolovitzky G. Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach. Sci Rep. 2019; 9(1):690.
Article
PubMed
PubMed Central
CAS
Google Scholar