Kahlenberg CA, Richardson SS, Gruskay JA, Cross MB. Trends in utilization of total and unicompartmental knee arthroplasty in the United States. J Knee Surg. 2020. https://doi.org/10.1055/s-0040-1702189.
Article
PubMed
Google Scholar
Fontana MA, Lyman S, Sarker GK, Padgett DE, MacLean CH. Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clin Orthop Relat Res. 2019;477:1267–79. https://doi.org/10.1097/CORR.0000000000000687.
Article
PubMed
PubMed Central
Google Scholar
Organisation for Economic Co-operation and Development. Health at a glance 2015: OECD indicators. Paris: OECD Publishing; 2015.
Google Scholar
Pabinger C, Lothaller H, Portner N, Geissler A. Projections of hip arthroplasty in OECD countries up to 2050. Hip Int. 2018;28:498–506. https://doi.org/10.1177/1120700018757940.
Article
PubMed
Google Scholar
Pabinger C, Lothaller H, Geissler A. Utilization rates of knee-arthroplasty in OECD countries. Osteoarthritis Cartil. 2015;23:1664–73. https://doi.org/10.1016/j.joca.2015.05.008.
Article
CAS
Google Scholar
Culliford D, Maskell J, Judge A, Cooper C, Prieto-Alhambra D, Arden NK. Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthritis Cartil. 2015;23:594–600. https://doi.org/10.1016/j.joca.2014.12.022.
Article
CAS
Google Scholar
Pilz V, Hanstein T, Skripitz R. Projections of primary hip arthroplasty in Germany until 2040. Acta Orthop. 2018;89:308–13. https://doi.org/10.1080/17453674.2018.1446463.
Article
PubMed
PubMed Central
Google Scholar
Rupp M, Lau E, Kurtz SM, Alt V. Projections of primary TKA and THA in Germany from 2016 through 2040. Clin Orthop Relat Res. 2020;478:1622–33. https://doi.org/10.1097/CORR.0000000000001214.
Article
PubMed
PubMed Central
Google Scholar
Hooper G, Lee AJJ, Rothwell A, Frampton C. Current trends and projections in the utilisation rates of hip and knee replacement in New Zealand from 2001 to 2026. N Z Med J. 2014;127:82–93.
PubMed
Google Scholar
Nemes S, Gordon M, Rogmark C, Rolfson O. Projections of total hip replacement in Sweden from 2013 to 2030. Acta Orthop. 2014;85:238–43. https://doi.org/10.3109/17453674.2014.913224.
Article
PubMed
PubMed Central
Google Scholar
Nemes S, Rolfson O, W-Dahl A, Garellick G, Sundberg M, Kärrholm J, Robertsson O. Historical view and future demand for knee arthroplasty in Sweden. Acta Orthop. 2015;86:426–31. https://doi.org/10.3109/17453674.2015.1034608.
Article
PubMed
PubMed Central
Google Scholar
Patel A, Pavlou G, Mújica-Mota RE, Toms AD. The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J. 2015;97-B:1076–81. https://doi.org/10.1302/0301-620X.97B8.35170.
Article
CAS
PubMed
Google Scholar
Sloan M, Premkumar A, Sheth NP. Projected volume of primary total joint arthroplasty in the U.S. 2014 to 2030. J Bone Joint Surg Am. 2018;100:1455–60. https://doi.org/10.2106/JBJS.17.01617.
Article
PubMed
Google Scholar
Singh JA, Yu S, Chen L, Cleveland JD. Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample. J Rheumatol. 2019;46:1134–40. https://doi.org/10.3899/jrheum.170990.
Article
PubMed
Google Scholar
Inacio MCS, Graves SE, Pratt NL, Roughead EE, Nemes S. Increase in total joint arthroplasty projected from 2014 to 2046 in australia: a conservative local model with international implications. Clin Orthop Relat Res. 2017;475:2130–7. https://doi.org/10.1007/s11999-017-5377-7.
Article
PubMed
PubMed Central
Google Scholar
Kumar A, Tsai W-C, Tan T-S, Kung P-T, Chiu L-T, Ku M-C. Temporal trends in primary and revision total knee and hip replacement in Taiwan. J Chin Med Assoc. 2015;78:538–44. https://doi.org/10.1016/j.jcma.2015.06.005.
Article
PubMed
PubMed Central
Google Scholar
Gandhi R, Davey JR, Mahomed NN. Predicting patient dissatisfaction following joint replacement surgery. J Rheumatol. 2008;35:2415–8. https://doi.org/10.3899/jrheum.080295.
Article
PubMed
Google Scholar
Nelson EC, Eftimovska E, Lind C, Hager A, Wasson JH, Lindblad S. Patient reported outcome measures in practice. BMJ (Clinical Research ed). 2015;350:g7818. https://doi.org/10.1136/bmj.g7818.
Article
Google Scholar
Ramkumar PN, Harris JD, Noble PC. Patient-reported outcome measures after total knee arthroplasty: a systematic review. Bone Joint Res. 2015;4:120–7. https://doi.org/10.1302/2046-3758.47.2000380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gagnier JJ, Huang H, Mullins M, Marinac-Dabić D, Ghambaryan A, Eloff B, et al. Measurement properties of patient-reported outcome measures used in patients undergoing total hip arthroplasty: a systematic review. JBJS Rev. 2018;6:e2. https://doi.org/10.2106/JBJS.RVW.17.00038.
Article
PubMed
Google Scholar
Harris K, Dawson J, Gibbons E, Lim CR, Beard DJ, Fitzpatrick R, Price AJ. Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcome Meas. 2016;7:101–8. https://doi.org/10.2147/PROM.S97774.
Article
PubMed
PubMed Central
Google Scholar
Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Control Clin Trials. 1989;10:407–15. https://doi.org/10.1016/0197-2456(89)90005-6.
Article
CAS
PubMed
Google Scholar
McGlothlin AE, Lewis RJ. Minimal clinically important difference: defining what really matters to patients. JAMA. 2014;312:1342–3. https://doi.org/10.1001/jama.2014.13128.
Article
CAS
PubMed
Google Scholar
Escobar A, Quintana JM, Bilbao A, Aróstegui I, Lafuente I, Vidaurreta I. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartil. 2007;15:273–80. https://doi.org/10.1016/j.joca.2006.09.001.
Article
CAS
Google Scholar
Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41:582–92. https://doi.org/10.1097/01.MLR.0000062554.74615.4C.
Article
PubMed
Google Scholar
Berliner JL, Brodke DJ, Chan V, SooHoo NF, Bozic KJ. Can preoperative patient-reported outcome measures be used to predict meaningful improvement in function after TKA? Clin Orthop Relat Res. 2017;475:149–57. https://doi.org/10.1007/s11999-016-4770-y.
Article
PubMed
Google Scholar
Harris AHS, Kuo AC, Bowe TR, Manfredi L, Lalani NF, Giori NJ. Can machine learning methods produce accurate and easy-to-use preoperative prediction models of one-year improvements in pain and functioning after knee arthroplasty? J Arthroplasty. 2021;36:112-117.e6. https://doi.org/10.1016/j.arth.2020.07.026.
Article
PubMed
Google Scholar
Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19:3. https://doi.org/10.1186/s12911-018-0731-6.
Article
PubMed
PubMed Central
Google Scholar
Kunze KN, Karhade AV, Sadauskas AJ, Schwab JH, Levine BR. Development of machine learning algorithms to predict clinically meaningful improvement for the patient-reported health state after total hip arthroplasty. J Arthroplasty. 2020;35:2119–23. https://doi.org/10.1016/j.arth.2020.03.019.
Article
PubMed
Google Scholar
Russell SJ, Norvig P, Davis E, Edwards D. Artificial intelligence: a modern approach. Boston, Columbus, Indianapolis, New York, San Francisco, Upper Saddle River, Amsterdam, Cape Town, Dubai, London, Madrid, Milan, Munich, Paris, Montreal, Toronto, Delhi, Mexico City, Sao Paulo, Sydney, Hong Kong, Seoul, Singapore, Taipei, Tokyo: Pearson; 2016.
Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 2018;83:181–92. https://doi.org/10.1093/neuros/nyx384.
Article
PubMed
Google Scholar
Azimi P, Mohammadi HR, Benzel EC, Shahzadi S, Azhari S, Montazeri A. Artificial neural networks in neurosurgery. J Neurol Neurosurg Psychiatry. 2015;86:251–6. https://doi.org/10.1136/jnnp-2014-307807.
Article
PubMed
Google Scholar
Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR. The prediction of successful surgery outcome in lumbar disc herniation based on artificial neural networks. J Neurosurg Sci. 2016;60:173–7.
PubMed
Google Scholar
Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 2018;109:476-486.e1. https://doi.org/10.1016/j.wneu.2017.09.149.
Article
PubMed
Google Scholar
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York: Springer; 2009.
Book
Google Scholar
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. https://doi.org/10.1136/svn-2017-000101.
Article
PubMed
PubMed Central
Google Scholar
Boulesteix AL, Schmid M. Machine learning versus statistical modeling. Biom J. 2014. https://doi.org/10.1002/bimj.201300226.
Article
PubMed
Google Scholar
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2008;21:1263–84.
Google Scholar
Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319:1317–8. https://doi.org/10.1001/jama.2017.18391.
Article
PubMed
Google Scholar
Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16:199–231.
Article
Google Scholar
Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry. 2021;26:70–9. https://doi.org/10.1038/s41380-020-0825-2.
Article
PubMed
Google Scholar
Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019. https://doi.org/10.1016/j.jclinepi.2019.02.004.
Article
PubMed
Google Scholar
Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020;46:383–400. https://doi.org/10.1007/s00134-019-05872-y.
Article
PubMed
PubMed Central
Google Scholar
Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32. https://doi.org/10.1016/j.jad.2018.08.073.
Article
PubMed
Google Scholar
Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170:W1–33. https://doi.org/10.7326/M18-1377.
Article
PubMed
Google Scholar
Valderas JM, Kotzeva A, Espallargues M, Guyatt G, Ferrans CE, Halyard MY, et al. The impact of measuring patient-reported outcomes in clinical practice: a systematic review of the literature. Qual Life Res. 2008;17:179–93. https://doi.org/10.1007/s11136-007-9295-0.
Article
CAS
PubMed
Google Scholar
Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51–8. https://doi.org/10.7326/M18-1376.
Article
PubMed
Google Scholar
Kunze KN, Polce EM, Rasio J, Nho SJ. Machine learning algorithms predict clinically significant improvements in satisfaction after hip arthroscopy. Arthroscopy. 2021;37:1143–51. https://doi.org/10.1016/j.arthro.2020.11.027.
Article
PubMed
Google Scholar
Ramkumar PN, Karnuta JM, Haeberle HS, Owusu-Akyaw KA, Warner TS, Rodeo SA, et al. Association between preoperative mental health and clinically meaningful outcomes after osteochondral allograft for cartilage defects of the knee: a machine learning analysis. Am J Sports Med. 2021;49:948–57. https://doi.org/10.1177/0363546520988021.
Article
PubMed
Google Scholar
Bloomfield RA, Broberg JS, Williams HA, Lanting BA, McIsaac KA, Teeter MG. Machine learning and wearable sensors at preoperative assessments: functional recovery prediction to set realistic expectations for knee replacements. Med Eng Phys. 2021;89:14–21. https://doi.org/10.1016/j.medengphy.2020.12.007.
Article
PubMed
Google Scholar
Felix J, Becker C, Vogl M, Buschner P, Plötz W, Leidl R. Patient characteristics and valuation changes impact quality of life and satisfaction in total knee arthroplasty—results from a German prospective cohort study. Health Qual Life Outcomes. 2019;17:180. https://doi.org/10.1186/s12955-019-1237-3.
Article
PubMed
PubMed Central
Google Scholar
Jayakumar P, Bozic KJ. Advanced decision-making using patient-reported outcome measures in total joint replacement. J Orthop Res. 2020;38:1414–22. https://doi.org/10.1002/jor.24614.
Article
PubMed
Google Scholar
Pua YH, Poon CLL, Seah FJT, Thumboo J, Clark RA, Tan MH, et al. Predicting individual knee range of motion, knee pain, and walking limitation outcomes following total knee arthroplasty. Acta Orthop. 2019;90:179–86. https://doi.org/10.1080/17453674.2018.1560647.
Article
PubMed
PubMed Central
Google Scholar
Twiggs J, Miles B, Roe J, Fritsch B, Liu D, Parker D, et al. Can TKA outcomes be predicted with computational simulation? Generation of a patient specific planning tool. Knee. 2021;33:38–48. https://doi.org/10.1016/j.knee.2021.08.029.
Article
PubMed
Google Scholar
Hart AJ, Sabah SA, Sampson B, Skinner JA, Powell JJ, Palla L, et al. Surveillance of patients with metal-on-metal hip resurfacing and total hip prostheses: a prospective cohort study to investigate the relationship between blood metal ion levels and implant failure. J Bone Joint Surg Am. 2014;96:1091–9. https://doi.org/10.2106/JBJS.M.00957.
Article
CAS
PubMed
Google Scholar
Stiegel KR, Lash JG, Peace AJ, Coleman MM, Harrington MA, Cahill CW. Early experience and results using patient-reported outcomes measurement information system scores in primary total hip and knee arthroplasty. J Arthroplasty. 2019;34:2313–8. https://doi.org/10.1016/j.arth.2019.05.044.
Article
PubMed
Google Scholar
Weber M, Zeman F, Craiovan B, Thieme M, Kaiser M, Woerner M, et al. Predicting outcome after total hip arthroplasty: the role of preoperative patient-reported measures. Biomed Res Int. 2019;2019:4909561. https://doi.org/10.1155/2019/4909561.
Article
PubMed
PubMed Central
Google Scholar
Yeo MGH, Goh GS, Chen JY, Lo N-N, Yeo S-J, Liow MHL. Are Oxford hip score and western ontario and McMaster universities osteoarthritis index useful predictors of clinical meaningful improvement and satisfaction after total hip arthroplasty? J Arthroplasty. 2020;35:2458–64. https://doi.org/10.1016/j.arth.2020.04.034.
Article
PubMed
Google Scholar
Katakam A, Karhade AV, Collins A, Shin D, Bragdon C, Chen AF, et al. Development of machine learning algorithms to predict achievement of minimal clinically important difference for the KOOS-PS following total knee arthroplasty. J Orthop Res. 2021. https://doi.org/10.1002/jor.25125.
Article
PubMed
Google Scholar
Zhang S, Lau BPH, Ng YH, Wang X, Chua W. Machine learning algorithms do not outperform preoperative thresholds in predicting clinically meaningful improvements after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2021. https://doi.org/10.1007/s00167-021-06642-4.
Article
PubMed
PubMed Central
Google Scholar
Pepe MS. Receiver operating characteristic methodology. J Am Stat Assoc. 2000;95:308–11. https://doi.org/10.1080/01621459.2000.10473930.
Article
Google Scholar
Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: Wiley; 2010.
Google Scholar
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5. https://doi.org/10.1002/1097-0142(1950)3:1%3c32::aid-cncr2820030106%3e3.0.co;2-3.
Article
CAS
PubMed
Google Scholar
Jenkinson C, Stewart-Brown S, Petersen S, Paice C. Assessment of the SF-36 version 2 in the United Kingdom. J Epidemiol Commun Health. 1999;53:46–50. https://doi.org/10.1136/jech.53.1.46.
Article
CAS
Google Scholar
Hung M, Saltzman CL, Greene T, Voss MW, Bounsanga J, Gu Y, et al. Evaluating instrument responsiveness in joint function: the HOOS JR, the KOOS JR, and the PROMIS PF CAT. J Orthop Res. 2018;36:1178–84. https://doi.org/10.1002/jor.23739.
Article
PubMed
Google Scholar
Hays RD, Schalet BD, Spritzer KL, Cella D. Two-item PROMIS® global physical and mental health scales. J Patient Rep Outcomes. 2017;1:2. https://doi.org/10.1186/s41687-017-0003-8.
Article
PubMed
PubMed Central
Google Scholar
Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61:102–9. https://doi.org/10.1016/j.jclinepi.2007.03.012.
Article
PubMed
Google Scholar
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14:137. https://doi.org/10.1186/1471-2288-14-137.
Article
PubMed
PubMed Central
Google Scholar
NHS England. The national patient reported outcome measures (PROMS) programme 2018.
Jeni LA, Cohn JF, La Torre F. Facing imbalanced data recommendations for the use of performance metrics. Int Conf Affect Comput Intell Interact Workshops. 2013;2013:245–51. https://doi.org/10.1109/ACII.2013.47.
Article
PubMed
PubMed Central
Google Scholar
Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. Eur Radiol. 2015;25:932–9. https://doi.org/10.1007/s00330-014-3487-0.
Article
PubMed
PubMed Central
Google Scholar
Tew M, Dalziel K, Clarke P, Smith A, Choong PF, Dowsey M. Patient-reported outcome measures (PROMs): can they be used to guide patient-centered care and optimize outcomes in total knee replacement? Qual Life Res. 2020;29:3273–83. https://doi.org/10.1007/s11136-020-02577-4.
Article
PubMed
Google Scholar
Maredupaka S, Meshram P, Chatte M, Kim WH, Kim TK. Minimal clinically important difference of commonly used patient-reported outcome measures in total knee arthroplasty: review of terminologies, methods and proposed values. Knee Surg Relat Res. 2020;32:19. https://doi.org/10.1186/s43019-020-00038-3.
Article
PubMed
PubMed Central
Google Scholar
Clement ND, Bardgett M, Weir D, Holland J, Gerrand C, Deehan DJ. What is the minimum clinically important difference for the WOMAC index after TKA? Clin Orthop Relat Res. 2018;476:2005–14. https://doi.org/10.1097/CORR.0000000000000444.
Article
PubMed
PubMed Central
Google Scholar
Cabitza F, Campagner A. The need to separate the wheat from the chaff in medical informatics: introducing a comprehensive checklist for the (self)-assessment of medical AI studies. Int J Med Inform. 2021;153:104510. https://doi.org/10.1016/j.ijmedinf.2021.104510.
Article
PubMed
Google Scholar
Shung D, Simonov M, Gentry M, Au B, Laine L. Machine learning to predict outcomes in patients with acute gastrointestinal bleeding: a systematic review. Dig Dis Sci. 2019;64:2078–87. https://doi.org/10.1007/s10620-019-05645-z.
Article
PubMed
Google Scholar
Bramer WM, Giustini D, Kramer B, Anderson P. The comparative recall of Google Scholar versus PubMed in identical searches for biomedical systematic reviews: a review of searches used in systematic reviews. Syst Rev. 2013;2:115. https://doi.org/10.1186/2046-4053-2-115.
Article
PubMed
PubMed Central
Google Scholar
Gehanno J-F, Rollin L, Darmoni S. Is the coverage of Google Scholar enough to be used alone for systematic reviews. BMC Med Inform Decis Mak. 2013;13:7. https://doi.org/10.1186/1472-6947-13-7.
Article
PubMed
PubMed Central
Google Scholar