Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akinyemi RO, Alabed S, Al-Raddadi R, Alvis-Guzman N, Amare AT, Ansari H, Anwari P, Ärnlöv J, Asayesh H, Asgedom SW, Atey TM, Avila-Burgos L, Frinel E, Avokpaho GA, Azarpazhooh MR, Barac A, Barboza M, Barker-Collo SL, Bärnighausen T, Bedi N, Beghi E, Bennett DA, Bensenor IM, Berhane A, Betsu BD, Bhaumik S, Birlik SM, Biryukov S, Boneya DJ, Bulto LNB, Carabin H, Casey D, Castañeda-Orjuela CA, Catalá-López F, Chen H, Chitheer AA, Chowdhury R, Christensen H, Dandona L, Dandona R, de Veber GA, Dharmaratne SD, Do HP, Dokova K, Dorsey ER, Ellenbogen RG, Eskandarieh S, Farvid MS, Fereshtehnejad S-M, Fischer F, Foreman KJ, Geleijnse JM, Gillum RF, Giussani G, Goldberg EM, Gona PN, Goulart AC, Gugnani HC, Gupta R, Hachinski V, Gupta R, Hamadeh RR, Hambisa M, Hankey GJ, Hareri HA, Havmoeller R, Hay SI, Heydarpour P, Hotez PJ, Jakovljevic MMB, Javanbakht M, Jeemon P, Jonas JB, Kalkonde Y, Kandel A, Karch A, Kasaeian A, Kastor A, Keiyoro PN, Khader YS, Khalil IA, Khan EA, Khang Y. -H., Tawfih A, Khoja A, Khubchandani J, Kulkarni C, Kim D, Kim YJ, Kivimaki M, Kokubo Y, Kosen S, Kravchenko M, Krishnamurthi RV, Defo BK, Kumar GA, Kumar R, Kyu HH, Larsson A, Lavados PM, Li Y, Liang X, Liben ML, Lo WD, Logroscino G, Lotufo PA, Loy CT, Mackay MT, Razek HMAE, Razek MMAE, Majeed A, Malekzadeh R, Manhertz T, Mantovani LG, Massano J, Mazidi M, McAlinden C, Mehata S, Mehndiratta MM, Memish ZA, Mendoza W, Mengistie MA, Mensah GA, Meretoja A, Mezgebe HB, Miller TR, Mishra SR, Ibrahim NM, Mohammadi A, Mohammed KE, Mohammed S, Mokdad AH, Moradi-Lakeh M, Velasquez IM, Musa KI, Naghavi M, Ngunjiri JW, Nguyen CT, Nguyen G, Nguyen QL, Nguyen TH, Nichols E, Ningrum DNA, Nong VM, Norrving B, Noubiap JJN, Ogbo FA, Owolabi MO, Pandian JD, Parmar PG, Pereira DM, Petzold M, Phillips MR, Piradov MA, Poulton RG, Pourmalek F, Qorbani M, Rafay A, Rahman M, Rahman MH, Rai RK, Rajsic S, Ranta A, Rawaf S, Renzaho AMN, Rezai MS, Roth GA, Roshandel G, Rubagotti E, Sachdev P, Safiri S, Sahathevan R, Sahraian MA, Samy AM, Santalucia P, Santos IS, Sartorius B, Satpathy M, Sawhney M, Saylan MI, Sepanlou SG, Shaikh MA, Shakir R, Shamsizadeh M, Sheth KN, Shigematsu M, Shoman H, Silva DAS, Smith M, Sobngwi E, Sposato LA, Stanaway JD, Stein DJ, Steiner TJ, Stovner LJ, Abdulkader RS, Szoeke CE, Tabarés-Seisdedos R, Tanne D, Theadom AM, Thrift AG, Tirschwell DL, Topor-Madry R, Tran BX, Truelsen T, Tuem KB, Ukwaja KN, Uthman OA. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. The Lancet Neurol. 2017; 16(11):877–97. https://doi.org/10.1016/S1474-4422(17)30299-5.
Article
Google Scholar
Dorsey ER, Bloem BR. The Parkinson Pandemic—A Call to ActionThe Parkinson PandemicThe Parkinson Pandemic. JAMA Neurol. 2018; 75(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299.
Article
PubMed
Google Scholar
Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2003; 18(1):19–31.
Article
Google Scholar
Horváth K, Aschermann Z, Ács P, Deli G, Janszky J, Komoly S, Balázs É, Takács K, Karádi K, Kovács N. Minimal clinically important difference on the motor examination part of mds-updrs. Parkinsonism Relat Disord. 2015; 21(12):1421–6.
Article
PubMed
Google Scholar
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, et al. Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (mds-updrs): scale presentation and clinimetric testing results. Mov Disord Off J Mov Disord Soc. 2008; 23(15):2129–70.
Article
Google Scholar
Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 1967; 17(5):427.
Article
CAS
PubMed
Google Scholar
Morris M, Iansek R, McGinley J, Matyas T, Huxham F. Three-dimensional gait biomechanics in parkinson’s disease: Evidence for a centrally mediated amplitude regulation disorder. Mov Disord Off J Mov Disord Soc. 2005; 20(1):40–50.
Article
Google Scholar
Bortone I, Argentiero A, Agnello N, Santo Sabato S, Bucciero A. A two-stage approach to bring the postural assessment to masses: the kiss-health project. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference On. IEEE: 2014. p. 371–4. https://doi.org/10.1109/bhi.2014.6864380.
Rovini E, Maremmani C, Cavallo F. How wearable sensors can support parkinson’s disease diagnosis and treatment: A systematic review. Front Neurosci. 2017; 11:555. https://doi.org/10.3389/fnins.2017.00555.
Cavallo F, Moschetti A, Esposito D, Maremmani C, Rovini E. Upper limb motor pre-clinical assessment in parkinson’s disease using machine learning. Parkinsonism Relat Disord. 2019. https://doi.org/10.1016/j.parkreldis.2019.02.028.
Article
Google Scholar
Benmalek E, Elmhamdi J, Jilbab A. Multiclass classification of parkinson’s disease using different classifiers and llbfs feature selection algorithm. Int J Speech Technol. 2017; 20(1):179–84. https://doi.org/10.1007/s10772-017-9401-9.
Article
Google Scholar
Djurić-Jovičić M, Bobić VN, Ječmenica-Lukić M, Petrović IN, Radovanović SM, Jovičić NS, Kostić VS, Popović MB. Implementation of continuous wavelet transformation in repetitive finger tapping analysis for patients with pd. In: 2014 22nd Telecommunications Forum Telfor (TELFOR): 2014. p. 541–4. https://doi.org/10.1109/TELFOR.2014.7034466.
Yokoe M, Okuno R, Hamasaki T, Kurachi Y, Akazawa K, Sakoda S. Opening velocity, a novel parameter, for finger tapping test in patients with parkinson’s disease. Parkinsonism Relat Disord. 2009; 15(6):440–4. https://doi.org/10.1016/j.parkreldis.2008.11.003.
Article
CAS
Google Scholar
Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S. Assessment of tremor activity in the parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed. 2012; 16(3):478–87. https://doi.org/10.1109/TITB.2011.2182616.
Article
PubMed
Google Scholar
Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C. A smartphone-based tool for assessing parkinsonian hand tremor. IEEE J Biomed Health Inform. 2015; 19(6):1835–42. https://doi.org/10.1109/JBHI.2015.2471093.
Article
CAS
PubMed
Google Scholar
Djurić-Jovičić MD, Jovičić NS, Radovanović SM, Stanković ID, Popović MB, Kostić VS. Automatic identification and classification of freezing of gait episodes in parkinson’s disease patients. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(3):685–94. https://doi.org/10.1109/TNSRE.2013.2287241.
Article
PubMed
Google Scholar
Tripoliti EE, Tzallas AT, Tsipouras MG, Rigas G, Bougia P, Leontiou M, Konitsiotis S, Chondrogiorgi M, Tsouli S, Fotiadis DI. Automatic detection of freezing of gait events in patients with parkinson’s disease. Comput Methods Programs Biomed. 2013; 110(1):12–26. https://doi.org/10.1016/j.cmpb.2012.10.016.
Article
PubMed
Google Scholar
Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng. 2010; 57(4):884–93. https://doi.org/10.1109/TBME.2009.2036000.
Article
PubMed
Google Scholar
Mellone S, Palmerini L, Cappello A, Chiari L. Hilbert–huang-based tremor removal to assess postural properties from accelerometers. IEEE Trans Biomed Eng. 2011; 58(6):1752–61. https://doi.org/10.1109/TBME.2011.2116017.
Article
PubMed
Google Scholar
Heldman DA, Espay AJ, LeWitt PA, Giuffrida JP. Clinician versus machine: reliability and responsiveness of motor endpoints in parkinson’s disease. Parkinsonism Relat Disord. 2014; 20(6):590–5. https://doi.org/10.1016/j.parkreldis.2014.02.022.
Article
Google Scholar
Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJG, Aminian K. Quantification of tremor and bradykinesia in parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng. 2007; 54(2):313–22. https://doi.org/10.1109/TBME.2006.886670.
Article
PubMed
Google Scholar
Dai H, Lin H, Lueth TC. Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. BioMed Eng OnLine. 2015; 14(1):68. https://doi.org/10.1186/s12938-015-0067-8.
Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J, Evans A, Kempster P, Raghav S, Horne MK. Automated assessment of bradykinesia and dyskinesia in parkinson’s disease. J Parkinson’s Dis. 2012; 2(1):47–55. https://doi.org/10.3233/JPD-2012-11071.
Article
PubMed
Google Scholar
Buongiorno D, Trotta GF, Bortone I, Di Gioia N, Avitto F, Losavio G, Bevilacqua V. Assessment and rating of movement impairment in parkinson’s disease using a low-cost vision-based system In: Huang D-S, Gromiha MM, Han K, Hussain A, editors. Intelligent Computing Methodologies. Cham: Springer: 2018. p. 777–88.
Google Scholar
Carnimeo L, Trotta GF, Brunetti A, Cascarano GD, Buongiorno D, Loconsole C, Di Sciascio E, Bevilacqua V. Proposal of a health care network based on big data analytics for pds. The J Eng. 2019. https://doi.org/10.1049/joe.2018.5141.
Article
Google Scholar
Keijsers NL, Horstink MW, Gielen SC. Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov Disord Off J Mov Disord Soc. 2003; 18(1):70–80. https://doi.org/10.1002/mds.10310.
Lopane G, Mellone S, Chiari L, Cortelli P, Calandra-Buonaura G, Contin M. Dyskinesia detection and monitoring by a single sensor in patients with parkinson’s disease. Mov Disord. 2015; 30(9):1267–71. https://doi.org/10.1002/mds.26313.
Article
PubMed
Google Scholar
Saunders-Pullman R, Derby C, Stanley K, Floyd A, Bressman S, Lipton RB, Deligtisch A, Severt L, Yu Q, Kurtis M, et al. Validity of spiral analysis in early parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2008; 23(4):531–7. https://doi.org/10.1002/mds.21874.
Article
PubMed
Google Scholar
Westin J, Ghiamati S, Memedi M, Nyholm D, Johansson A, Dougherty M, Groth T. A new computer method for assessing drawing impairment in parkinson’s disease. J Neurosci Methods. 2010; 190(1):143–8. https://doi.org/10.1016/j.jneumeth.2010.04.027.
Article
PubMed
Google Scholar
Bortone I, Quercia MG, Ieva N, Cascarano GD, Trotta GF, Tatò SI, Bevilacqua V. Recognition and severity rating of parkinson’s disease from postural and kinematic features during gait analysis with microsoft kinect. In: International Conference on Intelligent Computing. Springer: 2018. p. 613–8. https://doi.org/10.1007/978-3-319-95933-7_70.
Chapter
Google Scholar
Loconsole C, Cascarano GD, Lattarulo A, Brunetti A, Trotta GF, Buongiorno D, Bortone I, De Feudis I, Losavio G, Bevilacqua V, Di Sciascio E. A comparison between ann and svm classifiers for parkinson’s disease by using a model-free computer-assisted handwriting analysis based on biometric signals. In: 2018 International Joint Conference on Neural Networks (IJCNN): 2018. p. 1–8. https://doi.org/10.1109/IJCNN.2018.8489293.
Bortone I, Buongiorno D, Lelli G, Di Candia A, Cascarano GD, Trotta GF, Fiore P, Bevilacqua V. Gait analysis and parkinson’s disease: Recent trends on main applications in healthcare In: Masia L, Micera S, Akay M, Pons JL, editors. Converging Clinical and Engineering Research on Neurorehabilitation III. Cham: Springer: 2019. p. 1121–5.
Google Scholar
Bortone I, Trotta GF, Brunetti A, Cascarano GD, Loconsole C, Agnello N, Argentiero A, Nicolardi G, Frisoli A, Bevilacqua V. A novel approach in combination of 3d gait analysis data for aiding clinical decision-making in patients with parkinson’s disease. In: International Conference on Intelligent Computing. Springer: 2017. p. 504–14. https://doi.org/10.1007/978-3-319-63312-1_44.
Chapter
Google Scholar
Muro-De-La-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014; 14(2):3362–94.
Article
PubMed
PubMed Central
Google Scholar
Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors. 2012; 12(2):2255–83.
Article
PubMed
PubMed Central
Google Scholar
Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft kinect can distinguish differences in over-ground gait between older persons with and without parkinson’s disease. Med Eng Phys. 2017; 44:1–7.
Article
PubMed
Google Scholar
Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: a focused review. Sensors. 2016; 16(2):194.
Article
PubMed
PubMed Central
Google Scholar
Ťupa O, Procházka A, Vyšata O, Schätz M, Mareš J, Vališ M, Mařík V. Motion tracking and gait feature estimation for recognising parkinson’s disease using ms kinect. Biomed Eng Online. 2015; 14(1):97.
Article
PubMed
PubMed Central
Google Scholar
Xu X, McGorry RW, Chou L-S, Lin J-h, Chang C-c. Accuracy of the microsoft kinect™ for measuring gait parameters during treadmill walking. Gait Posture. 2015; 42(2):145–51.
Article
PubMed
Google Scholar
Bao W, Jiang Z, Huang D-S. Novel human microbe-disease association prediction using network consistency projection. BMC Bioinformatics. 2017; 18(16):543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen Z, Bao W, Huang D-S. Recurrent neural network for predicting transcription factor binding sites. Sci Rep. 2018; 8(1):15270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng C, Zou L, Huang D. Discovery of relationships between long non-coding rnas and genes in human diseases based on tensor completion. IEEE Access. 2018; 6:59152–62. https://doi.org/10.1109/ACCESS.2018.2873013.
Article
Google Scholar
Bevilacqua V, Salatino AA, Leo CD, Tattoli G, Buongiorno D, Signorile D, Babiloni C, Percio CD, Triggiani AI, Gesualdo L. Advanced classification of alzheimer’s disease and healthy subjects based on eeg markers. In: 2015 International Joint Conference on Neural Networks (IJCNN): 2015. p. 1–5. https://doi.org/10.1109/IJCNN.2015.7280463.
Bevilacqua V, Buongiorno D, Carlucci P, Giglio F, Tattoli G, Guarini A, Sgherza N, Tullio GD, Minoia C, Scattone A, Simone G, Girardi F, Zito A, Gesualdo L. A supervised cad to support telemedicine in hematology. In: 2015 International Joint Conference on Neural Networks (IJCNN): 2015. p. 1–7. https://doi.org/10.1109/IJCNN.2015.7280464.
Bevilacqua V, Brunetti A, Trotta GF, De Marco D, Quercia MG, Buongiorno D, D’Introno A, Girardi F, Guarini A. A novel deep learning approach in haematology for classification of leucocytes. Smart Innovation, Systems and Technologies. 2019; 103:265–74. https://doi.org/10.1007/978-3-319-95095-2-25. cited By 0.
Bortone I, Trotta GF, Cascarano GD, Regina P, Brunetti A, De Feudis I, Buongiorno D, Loconsole C, Bevilacqua V. A supervised approach to classify the status of bone mineral density in post-menopausal women through static and dynamic baropodometry. In: 2018 International Joint Conference on Neural Networks (IJCNN): 2018. p. 1–7. https://doi.org/10.1109/IJCNN.2018.8489205.
Bevilacqua V, Trotta GF, Loconsole C, Brunetti A, Caporusso N, Bellantuono GM, De Feudis I, Patruno D, De Marco D, Venneri A, et al. A rgb-d sensor based tool for assessment and rating of movement disorders. In: International Conference on Applied Human Factors and Ergonomics. Springer: 2017. p. 110–8. https://doi.org/10.1007/978-3-319-60483-1_12.
Google Scholar
Zhao J, Bunn FE, Perron JM, Shen E, Allison RS. Gait assessment using the kinect rgb-d sensor. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE: 2015. p. 6679–83. https://doi.org/10.1109/embc.2015.7319925.
Stöckel T, Jacksteit R, Behrens M, Skripitz R, Bader R, Mau-Moeller A. The mental representation of the human gait in young and older adults. Front Psychol. 2015; 6:943. https://doi.org/10.3389/fpsyg.2015.00943.
Seah SHH, Briggs AM, O’Sullivan PB, Smith AJ, Burnett AF, Straker LM. An exploration of familial associations in spinal posture defined using a clinical grouping method. Man Ther. 2011; 16(5):501–9. https://doi.org/10.1016/j.math.2011.05.002.
Article
PubMed
Google Scholar
Barone P, Santangelo G, Amboni M, Pellecchia MT, Vitale C. Pisa syndrome in parkinson’s disease and parkinsonism: clinical features, pathophysiology, and treatment. The Lancet Neurol. 2016; 15(10):1063–74.
Article
PubMed
Google Scholar
Kanjilal PP, Palit S, Saha G. Fetal ecg extraction from single-channel maternal ecg using singular value decomposition. IEEE Trans Biomed Eng. 1997; 44(1):51–59. https://doi.org/10.1109/10.553712.
Article
CAS
PubMed
Google Scholar
Huang D-S. Systematic theory of neural networks for pattern recognition. Publ House Electron Ind China Beijing. 1996; 201.
Huang D-s. Radial basis probabilistic neural networks: Model and application. Int J Patt Recogn Artif Intell. 1999; 13(07):1083–101. https://doi.org/10.1142/S0218001499000604.
Article
Google Scholar
Bevilacqua V, Tattoli G, Buongiorno D, Loconsole C, Leonardis D, Barsotti M, Frisoli A, Bergamasco M. A novel bci-ssvep based approach for control of walking in virtual environment using a convolutional neural network. In: 2014 International Joint Conference on Neural Networks (IJCNN): 2014. p. 4121–8. https://doi.org/10.1109/IJCNN.2014.6889955.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20(3):273–97.
Google Scholar
Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999; 9(3):293–300.
Article
Google Scholar
Bevilacqua V, Pannarale P, Abbrescia M, Cava C, Paradiso A, Tommasi S. Comparison of data-merging methods with svm attribute selection and classification in breast cancer gene expression. In: BMC Bioinformatics: 2012. p. 9. BioMed Central.
Bevilacqua V, Costantino N, Dotoli M, Falagario M, Sciancalepore F. Strategic design and multi-objective optimisation of distribution networks based on genetic algorithms. Int J Comput Integr Manuf. 2012; 25(12):1139–50. https://doi.org/10.1080/0951192X.2012.684719.
Article
Google Scholar
Bevilacqua V, Pacelli V, Saladino S. A novel multi objective genetic algorithm for the portfolio optimization In: Huang D-S, Gan Y, Bevilacqua V, Figueroa JC, editors. Advanced Intelligent Computing. Berlin: Springer: 2012. p. 186–93.
Google Scholar
Huang D, Du J. A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans Neural Netw. 2008; 19(12):2099–115. https://doi.org/10.1109/TNN.2008.2004370.
Article
PubMed
Google Scholar
De Stefano C, Fontanella F, Marrocco C, di Freca AS. A hybrid evolutionary algorithm for bayesian networks learning: An application to classifier combination. In: European Conference on the Applications of Evolutionary Computation. Springer: 2010. p. 221–30.
Cordella LP, De Stefano C, Fontanella F, di Freca AS. A weighted majority vote strategy using bayesian networks. In: International Conference on Image Analysis and Processing. Springer: 2013. p. 219–28. https://doi.org/10.1007/978-3-642-41184-7_23.
Chapter
Google Scholar
Bevilacqua V, Mastronardi G, Piscopo G. Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis Comput. 2007; 25(2):196–203. https://doi.org/10.1016/j.imavis.2006.01.027. Soft Computing in Image Analysis.
Article
Google Scholar
Bevilacqua V, Brunetti A, Triggiani M, Magaletti D, Telegrafo M, Moschetta M. An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. GECCO ’16 Companion. New York: ACM: 2016. p. 1385–92. https://doi.org/10.1145/2908961.2931733.
Yi H-C, You Z-H, Huang D-S, Li X, Jiang T-H, Li L-P. A deep learning framework for robust and accurate prediction of ncrna-protein interactions using evolutionary information. Mol Ther-Nucleic Acids. 2018; 11:337–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q. Deepcrispr: optimized crispr guide rna design by deep learning. Genome Biol. 2018; 19(1):80. https://doi.org/10.1186/s13059-018-1459-4.