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Abstract 

Background:  Neonatal jaundice may cause severe neurological damage if poorly evaluated and diagnosed when 
high bilirubin occurs. The study explored how to effectively integrate high-dimensional genetic features into predict-
ing neonatal jaundice.

Methods:  This study recruited 984 neonates from the Suzhou Municipal Central Hospital in China, and applied an 
ensemble learning approach to enhance the prediction of high-dimensional genetic features and clinical risk factors 
(CRF) for physiological neonatal jaundice of full-term newborns within 1-week after birth. Further, sigmoid recalibra-
tion was applied for validating the reliability of our methods.

Results:  The maximum accuracy of prediction reached 79.5% Area Under Curve (AUC) by CRF and could be margin-
ally improved by 3.5% by including genetic variant (GV). Feature importance illustrated that 36 GVs contributed 55.5% 
in predicting neonatal jaundice in terms of gain from splits. Further analysis revealed that the main contribution of GV 
was to reduce the false-positive rate, i.e., to increase the specificity in the prediction.

Conclusions:  Our study shed light on the theoretical and practical value of GV in the prediction of neonatal jaundice.
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Introduction
Neonatal jaundice is present in approximately 60% of 
term and 80% of preterm newborns [1]. Although most 
jaundice is benign, unexpected high bilirubin may occur 
and even cause permanent neural damage in newborns, 
i.e., “chronic bilirubin encephalopathy” or kernicterus. 
During the first week of life, an increase in bilirubin pro-
duction and a decrease in bilirubin elimination cause 
total serum bilirubin (TsB) to rise rapidly [2, 3]. There-
fore, jaundice, which may be preventable, is the leading 
cause of readmission during that period [4]. Pediatri-
cians and scientists have been working on the prediction 
method of neonatal hyperbilirubinemia for decades. 
Most studies predicted neonatal jaundice through logistic 

regression [3, 5–9]. Other new methodologies included 
machine learning techniques to improve diagnosis in 
neonatal jaundice [10, 11].

Other studies also showed the association between 
functional variants and neonatal jaundice or bilirubin 
levels [12–18]. For instance, Uridine Diphosphate Glu-
curonosyl Transferase 1A1 (UGT1A1) has been identi-
fied as the key enzyme for bilirubin conjugation, while 
unconjugated bilirubin is the main cause of hyperbiliru-
binemia. Heme Oxygenase-1 (HMOX1) is another key 
enzyme in the bilirubin metabolism pathway for heme 
degradation [19]. Variants of UGT1A1 and HMOX1 were 
extensively studied, including (TA)n repeats in promoter 
and rs4148323 (G211A, Gly71Arg) in exon 1 in UGT1A1, 
and (GT)n repeats in promoter in HMOX1. However, few 
studies effectively utilized high-dimensional genetic fea-
tures for neonatal jaundice prediction. One plausible rea-
son could be the high discretion of GV that leads to large 
deviations in prediction. The challenges become more 
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serious as genes are high-dimensional. As traditional 
methods require transferring multi-dimensional nominal 
variables into binary variables (i.e., one-hot encoding), 
they lose partial information to deal with a mass of GV 
and thus are inefficient. However, the association studies 
may estimate the prevalence in the general gene but lack 
the effectiveness to predict individual jaundice through 
integrating gene and clinical data.

This study applied an ensemble learning approach in 
machine learning to enhance the predictability of high-
dimensional genetic features and CRF for physiological 
neonatal jaundice of full-term newborns within 1-week 
after birth. Using a data set from a municipal hospital in 
China, clinical predictors alone, genetic predictors alone, 
and clinical plus genetic predictors were tested separately 
by various machine learning (ML) techniques. We sought 
to create an ensemble learning approach to predict neo-
natal hyperbilirubinemia development so that pedia-
tricians and parents may have more robust reference 
information before making decisions. The workflow of 
this study was summarized in Fig. 1.

Method
Study cohort
This study retrospectively enrolled 3743 infants born 
between February and October in 2008 at ≥ 37  weeks’ 
gestational age in Suzhou, China. Among them, 984 
infants were randomly chosen from 3743 samples by 
matching gender, delivery mode and birth season for 

genotyping. Blood samples for genotyping were obtained 
from surplus filter papers, which were kept at 4 °C after 
routine newborn screening. Details of the genotyping 
procedure are in Additional file  1: Appendix  1. F-test 
showed there were no significant differences between 
the genotyped and un-genotyped samples in other major 
clinical characteristics, gestational age (F-value = 0.941, 
p = 0.238), and birth weight (F-value = 1.041, p = 0.455).

Eligible infants had no major abnormalities, except for 
neonatal jaundice without pathological causes, such as 
hemolytic disease of the newborn, glucose-6-phosphate 
dehydrogenase (G6PD) deficiency, and infection. Each 
neonate’s gender, birthday, delivery mode, gestational age 
at birth, birth weight, birth month, and feeding type were 
recorded. Transcutaneous bilirubin (TcB) was measured 
every morning on each neonate’s forehead during birth 
hospitalization stay, resulting in a total of 4,048 records 
at the individual-day level (Table 1). Details of the meas-
urement have been previously described [17]. Accord-
ing to Chinese guidelines in Practical Neonatology [20] 
and Practical Pediatrics [21], neonates were diagnosed as 
hyperbilirubinemia when their TcB exceeded 12.9  mg/
dL (220.5 μmol/L) on day three or later days before they 
were discharged (namely CN220 in the study). Hyper-
bilirubinemic neonates would receive phototherapy. 
Bilirubin measurements within 24  h after phototherapy 
were excluded. Once the infants developed a high con-
centration of bilirubin before day three or the patho-
logical cause of hyperbilirubinemia was diagnosed, such 
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as hemolytic disease of the newborn, G6PD deficiency 
and infection, et  al., infants would be transferred to the 
Neonatal Unit and excluded from our study. For internal 
missing measurements of TcB for a newborn, we imputed 
them with the average value of the previous and the next 
TcB levels.

DNA was isolated from surplus filter paper blood spots 
with ethanol. A set of 9 variants of Uridine Diphosphate 
Glucuronosyl Transferase 1A1 (UGT1A1), 4 variants of 
Heme Oxygenase-1 (HMOX1), 6 variants of Biliverdin 
Reductases A (BLVRA) and 17 variants of Solute Car-
rier Organic Anion Transporter family member 1B1 
(SLCO1B1) was selected for genotyping. They were either 
functional SNPs or tagging SNPs in the genes of the 
enzymes in the bilirubin metabolism pathway; we inte-
grated them as GV36 in the main analysis as additional 
predictors given CRF. Details of the genotyping method 
have been previously described [17].

Predictors and outcome variables
Predictors included 6 CRF variants that were mostly 
mentioned in previous studies [10, 11], 4 HMOX1 vari-
ants, 9 UGT1A1 variants, 6 BLVRA variants, and 17 
SLCO1B1 variants. Descriptive statistics of CRF and 
major genetic variants are shown in Additional file  1: 
Appendix 2 Table A1 and Table A2, respectively.

The outcome variables are binary indicators that take 
on one if a newborn is hyperbilirubinemia. For gener-
alizability purposes, this study also referred to other 
guidelines besides CN220, including NICE and P95, to 
evaluate the gene’s predictive power. NICE guidance was 
published by the UK’s National Institute for Health and 
Clinical Excellence in 2010. It recommended thresholds 
to start phototherapy according to hour-specific bilirubin 
level [22]. We took the first risk level of NICE as a com-
parable guideline threshold, denoted as NICE_R1. P95 
refers to bilirubin levels at or greater than the 95th per-
centile of the population on the corresponding age. 95% 
percentile is commonly designated as high-risk zones. 
Such an idea was first suggested in 1999 [23]. It became 
popular after the American Academy of Pediatrics (AAP) 
applied the P95 risk zone in its updated guideline in 2004 
[24]. Except for CN220, the other two guidelines’ bili-
rubin thresholds are age-specific. Daily bilirubin levels 
are descriptively summarized in Table  1. Table  2 sum-
marizes the thresholds of bilirubin levels under different 
guidelines with the number of samples that exceed the 
thresholds.

Ensemble learning
In machine learning, ensemble learning refers to the 
methods that use multiple learning algorithms to 
obtain better predictive performance than could be 

Table 1  Descriptive summary of daily TcB levels (μmol/L)

Ratio denotes the fraction of samples

Age (day) Min 25% Mean Mode 75% Max Std n Ratio (%)

1 0 0 1.2 0 2.1 3.9 1.2 128 13

2 0 44.5 65.2 54.7 85.5 186.4 30.7 941 95.6

3 0 102.6 128.1 119.7 153.9 270.2 37.4 973 98.9

4 20.5 141.9 168.3 205.2 194.9 307.8 42.7 964 98

5 0 157.7 181.7 205.2 206.9 302.7 44.6 730 74.2

6 0 145.4 172.8 205.2 205.2 290.7 48.6 297 30.2

7 0 141.9 166.7 196.6 201.8 256.5 54.1 105 10.7

Table 2  Thresholds to start phototherapy and the number of neonates exceeds the threshold (n +) according to different guidelines

The best method is marked in bold with respect to each metric

Age (day) CN220 NICE P95 Sample size

Thresholds n+ Thresholds n+ Thresholds n+

2 220 0 100 110 119.7 52 943
3 220 4 150 282 186.4 50 979
4 220 65 200 212 239.4 51 969
5 220 107 200 289 256.5 45 747
6 220 35 200 105 248.6 16 305
7 220 10 200 30 186.4 6 105
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obtained from any of the single learning algorithms 
alone [25]. The ensemble learning framework was built 
on the gradient boosting decision tree (GBDT) that has 
a wide range of commercial and academic applications 
[26, 27]. To be specific, gradient boosting (GB) frame-
work constructs additive regression models by sequen-
tially fitting a weak classifier to current residuals [28, 
29], as shown in Fig. 2. Thus, newly trained weak classi-
fiers will correct the previous weak classifiers’ misjudg-
ment, adaptively improving the prediction performance 
with high efficiency [30]. The final model aggregates the 
results from all weak classifiers to achieve a “strong” 
classifier as an ensemble. And GBDT is exactly the GB 
that utilizes decision trees as the weak classifiers, with 
a loss function to detect the residuals, such as mean 
squared error for regression or logarithmic loss for 
classification. By using 71 data sets originating from 
different domains and publicly available at UCI and 
KEEL repositories, GBDT exceeds or matches the pre-
diction performance of other 10 popular algorithms for 
classification, including support vector machines, deep 
neural network, feedforward neural network, random 
forests, naïve Bayes, logistic regression and so on, and 
achieve the best accuracy ranking overall [31].

In the study, we implemented GBDT based on Light-
gbm, a gradient boosting framework originally developed 
by Microsoft, which has shown its power in reducing the 
prediction bias in biology and computer science in recent 
years [32, 33]. To solve the high-dimensionality problem, 
we implemented lightgbm with L1 regularization [34], 
bagging [35] on samples (bootstrapping), and bagging on 
features.

To benchmark the model’s prediction accuracy, we 
applied logistic regression (with L2 regularization), ran-
dom forest, classification and regression tree (CART), 
and naïve Bayes method. All machine learning algorithms 
were implemented in Python, and the code is available in 
online resources.

Evaluation
Following related frontier studies, this study used AUC 
on the test set as the metric of prediction. We took cross 
validation (CV) [36] with 30% samples as validation sets. 
As the incidence of neonatal hyperbilirubinemia is about 
5% in practice, resulting in an unbalance problem that 
positive sample rates might be sensitive to sampling seed. 
Therefore, we controlled the positive sample ratio in each 
(train, validation) couple to be the same during sampling. 
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The external validation was independently repeated 100 
times for eliminating sampling bias in evaluating model 
performance. No hyperparameter tuning was applied 
based on the external cross-validation. For ensemble 
methods, i.e., lightgbm and random forests, internal 
bootstrapping (bagging) was applied for hyperparameter 
tuning and dealing with overfitting.

There is increasing attention to the calibration analysis 
to verify the reliability of risk prediction models to sup-
port medical decision-making [37]. A common defini-
tion of calibration is “having an event rate of R% among 
patients with a predicted risk of R%”. To verify the reli-
ability of models, we calculated brier scores and plot 
calibration curves. Brier score is the estimated calibra-
tion index that builds on a flexible calibration analysis by 
computing the average squared difference between pre-
dicted risk and observed risk and transforming to obtain 
a value between 0 and 1 [38]. The lower the Brier score, 
the more reliable the prediction.

Results
Discrimination analysis
Across all neonatal jaundice guidelines, our ensemble 
learning method (lightgbm) achieved a high level of accu-
racy in terms of AUC based on clinical risk factors and 
genetic variants (CN220: see Table  3, other guidelines: 
see Additional file  1: Appendix  2 Table  A3) superior to 
other non-ensemble methods. Performance metrics 
including accuracy, recall, and specificity were also evalu-
ated in Additional file  1: Appendix  2 Table  A4. Results 
indicated that lightgbm generally outperformed other 

machine learning algorithms in term of prediction. For 
the guideline implemented in our study, i.e., CN220, 
lightgbm classified the newborns with average AUC 0.792 
(95% CI 0.757–0.828) based on only clinical risk factors. 
With the integration of 36 genetic variants (GV36), the 
accuracy retained a stronger performance level, i.e., AUC 
0.82 (95% CI 0.785–0.857). To illustrate, GV36 contrib-
uted marginally AUC 0.028, about 3%, showing the effec-
tiveness of lightgbm in utilizing high-dimensional genetic 
information into neonatal jaundice prediction. The mar-
ginal contribution of GV36 was consistent across guide-
lines and respectively achieved 0.036 for NICE_R1, 0.029 
for P95.

In addition to the strong performance of lightgbm, 
another ensemble learning method, random forest (RF), 
performed comparably well. Notably, RF even surpassed 
lightgbm in NICE_R1 and P95 if only predicting with 
GV36. Although RF didn’t achieve as well as lightgbm 
after additionally including genetic information, it also 
indicated that the marginal contribution of GV was con-
sistent across guidelines, i.e., 0.026 for CN200, 0.036 for 
NICE_R1, and 0.029 for P95, which further validated the 
effectiveness of ensemble learning in integrating genetic 
variants into predicting neonatal jaundice.

While both ensemble tree algorithms (Lightgbm and 
RF) achieved high accuracy and effectively enhanced the 
prediction by integrating clinical risk factors and genetic 
information, a single tree (CART) failed to precisely 
predict neonatal jaundice. For example, CART achieves 
AUC 0.569 (95% CI 0.517–0.621) in CN220 guideline 
with CRF, far from that of lightgbm, i.e. 0.82 (95% CI 

Table 3  Discrimination results of predicting neonatal jaundice with CRF and GV under CN220 guideline

The best performance by algorithms with CRF, GV36 and CRF_GV36 variables are marked in bold

95% CI is shown in parentheses

Variables Method AUC​ F1-score Precision

CRF Lightgbm 0.792 (0.757–0.828) 0.213 (0.171–0.251) 0.136 (0.109–0.161)

Cart 0.553 (0.509–0.592) 0.150 (0.074–0.211) 0.137 (0.074–0.191)

Logistic 0.785 (0.753–0.821) 0.210 (0.178–0.240) 0.122 (0.103–0.141)

Naive Bayes 0.735 (0.673–0.782) 0.165 (0.129–0.188) 0.091 (0.069–0.104)

rf 0.766 (0.711–0.806) 0.206 (0.177–0.245) 0.123 (0.106–0.147)

GV36 Lightgbm 0.603 (0.546–0.662) 0.149 (0.105–0.189) 0.105 (0.074–0.131)

Cart 0.558 (0.522–0.598) 0.149 (0.105–0.191) 0.110 (0.079–0.139)

Logistic 0.569 (0.519–0.614) 0.118 (0.093–0.141) 0.068 (0.053–0.081)

Naive bays 0.562 (0.509–0.622) 0.112 (0.106–0.116) 0.059 (0.057–0.062)

rf 0.587 (0.522–0.652) 0.148 (0.104–0.197) 0.103 (0.074–0.136)

CRF_GV36 Lightgbm 0.820 (0.785–0.857) 0.277 (0.218–0.333) 0.204 (0.160–0.247)

Cart 0.569 (0.517–0.621) 0.184 (0.103–0.269) 0.175 (0.095–0.250)

Logistic 0.781 (0.730–0.816) 0.218 (0.185–0.251) 0.129 (0.110–0.150)

Naive Bayes 0.642 (0.563–0.707) 0.114 (0.105–0.124) 0.061 (0.056–0.067)

rf 0.792 (0.753–0.833) 0.228 (0.193–0.259) 0.139 (0.118–0.158)
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0.785–0.857). It indicated that the ensemble of weak clas-
sifiers could achieve outstanding performance in predict-
ing neonatal jaundice.

Although traditional methods, logistics, and naïve 
Bayes achieved comparable accuracy with clinical risk 
factors, they could not benefit from genetic informa-
tion and might even worsen. For instance, under CN220, 
logistic regression achieved 0.785 (95% CI 0.753–0.821) 
AUC, which decreased to 0.781 (95% CI 0.73–0.816) 
AUC after additionally including GV36 as explaining 
variables. We have implemented L2-regularization into 
the logistic regression as a common method to deal with 
overfitting and high-dimensionality.

To gain insight into how the prediction system utilizes 
clinical risk factors and genetic information, we identi-
fied key clinical features and genetic variants driving the 
ensemble learning. Figure  3 showed the feature impor-
tance of our ensemble method (lightgbm) measured 
by gain from splits under the representative guideline: 
CN220. The overall feature importance of CRF covered 
44.5%, while GV contributed 55.5% in predicting neona-
tal jaundice in terms of gain.

Calibration analysis
Following previous studies [37, 39, 40], we investi-
gated our method’s calibration performance (lightgbm) 
based on calibration curves and brier score. Calibra-
tion curves (Fig. 4) showed the observed proportion of 
events associated with our model’s predicted risk [41], 
under CN220 and NICE_R1 guidelines. The red lines 
referred to the linearly fitted line of original calibra-
tion curves of lightgbm with 95% CI. Since the red lines 
deviated from the diagonal significantly, the model suf-
fered from overfitting. Specifically, our method before 

Table 4  Calibration results of predicting neonatal jaundice with CRF and GV. 95%

95% CI is shown in parentheses

Recali-brated Guideline Variables AUC​ Brier Event rate Average risk

No CN220 CRF 0.792 (0.757–0.828) 0.054 (0.05–0.058) 0.055 0.047

CRF_GV36 0.82 (0.785–0.857) 0.053 (0.05–0.057) 0.055 0.038

NICE_R1 CRF 0.72 (0.695–0.744) 0.172 (0.164–0.179) 0.254 0.250

CRF_GV36 0.756 (0.736–0.78) 0.165 (0.155–0.175) 0.254 0.244

P95 CRF 0.68 (0.623–0.737) 0.053 (0.05–0.056) 0.054 0.048

CRF_GV36 0.709 (0.657–0.773) 0.054 (0.049–0.06) 0.054 0.043

Yes CN220 CRF 0.795 (0.761–0.83) 0.051 (0.049–0.052) 0.055 0.055

CRF_GV36 0.83 (0.802–0.862) 0.049 (0.048–0.051) 0.055 0.055

NICE_R1 CRF 0.724 (0.702–0.752) 0.168 (0.163–0.173) 0.254 0.254

CRF_GV36 0.762 (0.739–0.787) 0.158 (0.152–0.164) 0.254 0.255

P95 CRF 0.683 (0.622–0.733) 0.05 (0.049–0.052) 0.054 0.055

CRF_GV36 0.717 (0.669–0.772) 0.049 (0.047–0.05) 0.054 0.055
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recalibration tended to overestimate high risks and 
underestimate low risk for both guidelines.

To improve the reliability of our method, we imple-
mented the sigmoid recalibration [42]. In particular, 
an additional sigmoid function was trained to map the 
Lightgbm outputs into recalibrated predictions based 
on 10-folder internal cross-validation on train sets. 
Recalibrated curves (green lines in Fig. 4) were signifi-
cantly amended towards the diagonal lines, illustrating 
our method’s moderate calibration level in predicting 
neonatal jaundice.

Further, brier scores gave quantitative measurements 
of calibration performance (Table  4). It indicated that 
sigmoid recalibration improved the calibration per-
formance in terms of brier scores and enhanced the 
discrimination performance in terms of AUC. For 
instance, under CN220 guideline, lightgbm obtained an 
average brier score 0.053 (95% CI 0.05–0.057) and an 
average AUC 0.82 (95% CI 0.785–0.857) with CRF and 
genetic variants. After recalibration, the correspond-
ing brier score was improved to 0.049 (95% CI 0.048–
0.051), while the recalibrated AUC was 0.83 (95% CI 
0.802–0.862). Meanwhile, GV’s additional contribution 
was enhanced to 0.035 for CN220, 0.038 for NICE_R1, 
0.034 for P95. After recalibration, the average event 
rates were matched with the average prediction risks, 
which were not before recalibration. Therefore, recali-
bration could further enhance our method’s reliability 
in individual-level implementation.

Robustness checks
We experimented with the prediction by using a differ-
ent combination of GV, as shown in Table  5. We chose 
4 GV out of 36 according to the popularity and fea-
ture importance, denoted as GV4. In addition to (TA)n 
repeat, rs4148323 (G211A, Gly71Arg) and (GT)n repeat, 
rs887829 (c-364t) in UGT1A1 were shown to be associ-
ated with adults’ bilirubin level [43]. Additionally, we 
chose 7 GVs that were tagging SNPs located within 5 kb 
upstream and 2  kb downstream of each gene, selected 
from the HapMap Han Chinese population based on 
r2 > 0.8 and a minor allele frequency of > 0.1. The 7 GVs 
were integrated into GV4 to obtain GV11. In this way, we 
can compare the change of prediction accuracy with 4, 
11, and 36 GV.

Results of recalibrated lightgbm under CN220 guide-
line with different combinations of GV (Table  5 and 
Fig. 5) showed that the additional improvement by using 
4, 11, 36 GV were respectively 0.011, 0.016, and 0.029 
AUC with the ensemble method. It indicated that a small 
subset of GV (GV4) could achieve about 1/3 additional 
predictive power of GV36, and the marginal contribu-
tion of GV11 covers about a half of that of GV36, which 
facilitated the clinical application of GV by lowering 
requirements of gene quantity for saving costs. The 0.035 
additional enhanced prediction power by GV36 also sug-
gested a mass of reserve force of gene for predicting neo-
natal jaundice and waiting for being discovered in the 
future.
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Extended analysis
To gain a deeper understanding of gene variables’ contri-
bution to predicting neonatal jaundice, we mapped the 
ROC curve of the model with GV and CRF as independ-
ent variables, as shown in Fig.  6. It showed that when 
using CRF alone, true positive rate (TPR, i.e., sensitivity) 
reached 1 when the False positive rate (FPR, i.e., 1-Speci-
ficity) is about 0.5, indicating that the CRF is more con-
ducive to improving the TPR; when incorporating GV to 
CRF, the ROC curve is further extended to the left, indi-
cating that the main contribution of GV is to reduce the 
FPR and increase the specificity. Therefore, it is plausible 
to argue that GV’s clinical contribution on increasing the 
prediction accuracy of physiological neonatal jaundice is 
mainly to avoid misdiagnosis due to false positives.

Discussions
The contribution of this study is the incorporation of 
high-dimensional GV for predicting neonatal jaundice 
effectively. We showed that integrating GV with CRF 
can further improve the discrimination performance by 
3.5% (CN220) AUC and 3.8% (NICE) AUC than using 
CRF alone. Further, we deduced GV’s relative importance 
and explanatory power, which provides quantitative sup-
port for further experimental validation of gene variants’ 
mechanism in neonatal jaundice. Our study’s potential 
clinical application is to estimate the probability of neo-
natal jaundice within one week after birth.

Our results show that our method can effectively 
improve the upper limit of CRF’s prediction by integrat-
ing it with gene features, thus opening up a new way for 
the clinical diagnosis of neonatal jaundice with GV. The 
study further reveals that although more gene informa-
tion can better help clinical diagnosis, the GV contrib-
utes differently to the prediction. In this way, only a small 
amount of genetic information is needed in practice to 
predict neonatal jaundice effectively.

Different from the early bilirubin level, the genetic fea-
tures have been determined since the embryo period. 
Consequently, the study obtains a clinical application 
advantage compared with existing literature that uses 
early bilirubin level into prediction: the model predicts 
the risk of neonatal jaundice for discharged newborns 
before any bilirubin level measurement coming out. Fur-
thermore, its prediction power does not rely on repeated 
bilirubin level measurement, making the prediction more 
convenient and efficient than previous ones.

For newborns within one week, bilirubin measure-
ments are repeated several times. Lightgbm and random 
forests are based on decision tree algorithm, which does 
not assume a functional relationship between the out-
come and features. Thus, our method is flexible towards 
the assumption of Independent and Identically Distrib-
uted (IID) in predicting neonatal jaundice.

The study is not free from limitations. First, all bilirubin 
levels are measured within one week after birth. Thus, 

Table 5  Prediction performance of recalibrated lightgbm under CN220 guideline with different combinations of GV

95% CI is shown in parentheses

Variables AUC​ F1-score Precision Specific GV

CRF 0.795 (0.761–830) 0.217 (0.171–0.261) 0.143 (0.113–0.171) None

CRF + GV4 0.807 (0.779–841) 0.242 (0.195–0.286) 0.165 (0.132–0.194) HMOX1 (1)
 rs2071749
UGT1A1 (3):
rs4148323, rs6717546, rs6719561

CRF + GV11 0.813 (0.781–0.847) 0.251 (0.198–0.298) 0.176 (0.141–0.207) HMOX1 (3)
 (GT)n, rs9607267, rs2071749
UGT1A1 (8)
 rs887829, (TA)n, rs4148323, rs1018124, rs6717546, rs11563250, rs6719561, 
rs4663972

CRF + GV36 0.830 (0.802–0.826) 0.285 (0.229–0.333) 0.217 (0.173–0.252) HMOX1 (4)
 rs2071746, (GT)n, rs9607267, rs2071749
UGT1A1 (9)
 rs4399719, rs887829, (TA)n, rs4148323, rs1018124, rs6717546, rs11563250, 
rs6719561, rs4663972
BLVRA (6)
 rs1181601, rs1181574, rs10486752, rs699512, rs17246016, rs589570
SLCO1B1 (17)
 rs4149013, rs10743408, rs3899743, rs981262, rs7138177, rs4149026, 
rs976754, rs4149034, rs12313639, rs2306283, rs4149044, rs4149056, 
rs4149057, rs4363657, rs4149076, rs12578392, rs4149085
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the scope of the clinical application might be limited. 
Second, although TcB is a good index for a non-invasive 
auxiliary diagnostic system and TcB correlates well with 
TsB, the correlation might not be stable at high-level bili-
rubin concentrations [44], the findings in the study may 
not apply to TsB prediction directly. Future research can 
consider TsB as a prediction target by using GV and CRF 
features together.

Conclusion
In summary, this paper applied an ensemble learn-
ing method (lightgbm) to integrating 36 GVs into pre-
dicting neonatal jaundice, measured by TcB. Results 

demonstrated that our method effectively solved the 
technical difficulties on GV’s high dimensionality. 
Quantitatively, GV contributes an additional 3.5% AUC 
based on prediction with CRF after sigmoid recalibra-
tion. Although the best predictors were CRF, GV was 
exactly complementary no matter which guideline to 
take. The study sheds light on the clinical importance 
and effective approach of how to facilitate predicting 
neonatal jaundice with high-dimensional GV. With the 
popularization of medical big data and the improve-
ment of gene sequencing technology, the risk assess-
ment and research of neonatal diseases with the gene 
will be fully developed.
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Fig. 5  ROC curve of neonatal jaundice prediction with CRF and GV by ensemble learning
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