Pan MM, Hockenberry MS, Kirby EW, Lipshultz LI. Male infertility diagnosis and treatment in the era of in vitro fertilization and intracytoplasmic sperm injection. Med Clin. 2018;102(2):337–47.
Google Scholar
Muthigi A, Jahandideh S, Bishop LA, Naeemi FK, Shipley SK, O’Brien JE, Shin PR, Devine K, Tanrikut C. Clarifying the relationship between total motile sperm counts and intrauterine insemination pregnancy rates. Fertil Steril. 2021;115(6):1454–60.
Article
CAS
PubMed
Google Scholar
Merviel P, Labarre M, James P, Bouée S, Chabaud J-J, Roche S, Cabry R, Scheffler F, Lourdel E, Benkhalifa M. Should intrauterine inseminations still be proposed in cases of unexplained infertility? Retrospective study and literature review. Arch Gynecol Obstet. 2022;66:1–14.
Google Scholar
Nesbit CB, Blanchette-Porter M, Esfandiari N. Ovulation induction and intrauterine insemination in women of advanced reproductive age: a systematic review of the literature. J Assist Reprod Genet. 2022;66:1–47.
Google Scholar
Guzick DS, Carson SA, Coutifaris C, Overstreet JW, Factor-Litvak P, Steinkampf MP, Hill JA, Mastroianni L Jr, Buster JE, Nakajima ST. Efficacy of superovulation and intrauterine insemination in the treatment of infertility. N Engl J Med. 1999;340(3):177–83.
Article
CAS
PubMed
Google Scholar
T Kundnani M, Dalal R, Palshetkar NP, D Pai H: Complications of intrauterine insemination.
Blank C, Wildeboer RR, DeCroo I, Tilleman K, Weyers B, De Sutter P, Mischi M, Schoot BC. Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil Steril. 2019;111(2):318–26.
Article
PubMed
Google Scholar
Zarinara A, Zeraati H, Kamali K, Mohammad K, Shahnazari P, Akhondi MM. Models predicting success of infertility treatment: a systematic review. J Reprod Infertil. 2016;17(2):68.
PubMed
PubMed Central
Google Scholar
Leushuis E, Van der Steeg JW, Steures P, Bossuyt PMM, Eijkemans MJC, Van der Veen F, Mol BWJ, Hompes PGA. Prediction models in reproductive medicine: a critical appraisal. Hum Reprod Update. 2009;15(5):537–52.
Article
PubMed
Google Scholar
Sedehi M, Mehrabi Y, Kazemnejad A, Hadaegh F. Comparison of artificial neural network, logistic regression and discriminant analysis methods in prediction of metabolic syndrome. Iran J Endocrinol Metab. 2010;11(6):66.
Google Scholar
Milewski R, Milewska AJ, Więsak T, Morgan A. Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using the in vitro fertilization treatment. Stud Logic Gramm Rhetor. 2013;35(1):39–48.
Article
Google Scholar
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):1–18.
Article
Google Scholar
Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;26(3):159–90.
Article
Google Scholar
Wasserman L. The role of assumptions in machine learning and statistics: dont drink the koolaid. In.: Technical report, Carnegie Mellon University; 2015. p. 8.
Singh A, Thakur N, Sharma A. A review of supervised machine learning algorithms. In: IEEE; 2016. pp. 1310–5.
Ombelet W, Dhont N, Thijssen A, Bosmans E, Kruger T. Semen quality and prediction of IUI success in male subfertility: a systematic review. Reprod Biomed Online. 2014;28(3):300–9.
Article
PubMed
Google Scholar
Allahbadia GN. Intrauterine insemination: fundamentals revisited. J Obstetr Gynecol India. 2017;67(6):385–92.
Article
Google Scholar
Kvist U, Giwercman A, Haugen TB, Suominen J, Bjorndahl L. Manual on basic semen analysis NAFAESHRE 4th edn. Cambridge; 2001. p. 1–32.
Buderer NMF. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med. 1996;3(9):895–900.
Article
CAS
PubMed
Google Scholar
Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.
Article
PubMed
Google Scholar
Zegers-Hochschild F, Adamson GD, De Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Van der Poel S. The international committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary on ART terminology, 2009. Hum Reprod. 2009;24(11):2683–7.
Article
CAS
PubMed
Google Scholar
Tabong PT-N, Adongo PB. Infertility and childlessness: a qualitative study of the experiences of infertile couples in Northern Ghana. BMC Pregnan Childb. 2013;13(1):1–10.
Article
Google Scholar
Nardo LG, Chouliaras S. Definitions and epidemiology of unexplained female infertility. In: Unexplained infertility. Springer; 2015. p 21–5.
Tang J, Alelyani S, Liu H. Feature selection for classification: a review. Data classification: algorithms and applications; 2014. p. 37.
Masoudi-Sobhanzadeh Y, Motieghader H, Masoudi-Nejad A. FeatureSelect: a software for feature selection based on machine learning approaches. BMC Bioinform. 2019;20(1):1–17.
Article
Google Scholar
Paja W. Generational feature selection using random forest approach. In: IEEE; 2019. p 354–7.
Le T, Hoang Son L, Vo MT, Lee MY, Baik SW. A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry. 2018;10(7):250.
Article
Google Scholar
Abd Elrahman SM, Abraham A. A review of class imbalance problem. J Netw Innov Comput. 2013;2013(1):332–40.
Google Scholar
Liu C, Wu J, Mirador L, Song Y, Hou W. Classifying dna methylation imbalance data in cancer risk prediction using smote and tomek link methods. In: Springer; 2018. P. 1–9.
Sun Y, Wong AKC, Kamel MS. Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell. 2009;23(04):687–719.
Article
Google Scholar
Wang ZHE, Wu C, Zheng K, Niu X, Wang X. SMOTETomek-based resampling for personality recognition. IEEE Access. 2019;7:129678–89.
Article
Google Scholar
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor Newsl. 2004;6(1):20–9.
Article
Google Scholar
Bhavsar H, Ganatra A. A comparative study of training algorithms for supervised machine learning. Int J Soft Comput Eng. 2012;2(4):2231–307.
Google Scholar
Lai K, Twine N. O’brien A, Guo Y, Bauer D: Artificial intelligence and machine learning in bioinformatics. Encycl Bioinform Comput Biol ABC f Bioinform. 2018;1:3.
Google Scholar
Mushtaq MS, Mellouk A. Quality of experience paradigm in multimedia services: application to OTT video streaming and VoIP services. Elsevier; 2017.
Torlay L, Perrone-Bertolotti M, Thomas E, Baciu M. Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017;4(3):159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sesmero MP, Ledezma AI, Sanchis A. Generating ensembles of heterogeneous classifiers using stacked generalization. Wiley Interdiscip Rev Data Min Knowl Discov. 2015;5(1):21–34.
Article
Google Scholar
Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11(2):121–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vuk M, Curk T. ROC curve, lift chart and calibration plot. Adv Methodol Stat. 2006;3(1):89–108.
Google Scholar
Akosa J. Predictive accuracy: a misleading performance measure for highly imbalanced data. In: 2017. p 1–4.
Mahin M, Islam MJ, Debnath BC, Khatun A. Tuning distance metrics and k to find sub-categories of minority class from imbalance data using k nearest neighbours. In: IEEE; 2019. p. 1–6.
Blattenberger G, Lad F. Separating the Brier score into calibration and refinement components: a graphical exposition. Am Stat. 1985;39(1):26–32.
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;66:837–45.
Article
Google Scholar
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J. API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:13090238 2013.
Madhuri MS, Thyagaraju C, Naidu A, Dasari P. The effect of endometrial scratching on pregnancy rate after failed intrauterine insemination: a randomised controlled trail. Eur J Obstet Gynecol Reprod Biol. 2022;268:37–42.
Article
CAS
PubMed
Google Scholar
Qiu J, Li P, Dong M, Xin X, Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method. J Transl Med. 2019;17(1):1–8.
Article
Google Scholar
Hassan MR, Al-Insaif S, Hossain MI, Kamruzzaman J. A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural Comput Appl. 2020;32(7):2283–97.
Article
Google Scholar
Milewski R, Malinowski P, Milewska AJ, Ziniewicz P, Czerniecki J, Pierzyński P, Wołczyński S. Classification issue in the IVF ICSI/ET data analysis. Stud Logic Gramm Rhetor Log Stat Comput Methods Med. 2012;29(42):75–85.
Google Scholar
García V, Sánchez JS, Mollineda RA. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl Based Syst. 2012;25(1):13–21.
Article
Google Scholar
Yang S, Berdine G. The receiver operating characteristic (ROC) curve. Southw Respirat Crit Care Chronicl. 2017;5(19):34–6.
Article
Google Scholar
Kaur H, Pannu HS, Malhi AK. A systematic review on imbalanced data challenges in machine learning: applications and solutions. ACM Comput Surv. 2019;52(4):1–36.
Google Scholar