Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.
Article
Google Scholar
Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.
Article
Google Scholar
Holmes MM, Lewith G, Newell D, Field J, Bishop FL. The impact of patient-reported outcome measures in clinical practice for pain: a systematic review. Qual Life Res. 2017;26(2):245–57.
Article
Google Scholar
Hurwitz EL, Randhawa K, Yu H, Côté P, Haldeman S. The global spine care initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J. 2018;27(6):796–801.
Article
Google Scholar
Nijeweme-d’Hollosy WO, van Velsen L, Poel M, Groothuis-Oudshoorn CG, Soer R, Hermens H. Evaluation of three machine learning models for self-referral decision support on low back pain in primary care. Int J Med Informatics. 2018;110:31–41.
Article
Google Scholar
Fontana MA, Lyman S, Sarker GK, Padgett DE, MacLean CH. Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clin Orthop Relat Res. 2019;477(6):1267–79.
Article
Google Scholar
Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberd M, Straker L, Maher CG, O’Sullivan PP. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med. 2020;54(2):79–86.
Article
Google Scholar
Saragiotto B, Almeida M, Yamato T, Maher C. Multidisciplinary biopsychosocial rehabilitation for nonspecific chronic low back pain. Phys Therapy. 2015. https://doi.org/10.2522/ptj.20150359.
Article
Google Scholar
Machado GC, Pinheiro MB, Lee H, Ahmed OH, Hendrick P, Williams C, Kamper SJ. Smartphone apps for the self-management of low back pain: a systematic review. Best Pract Res Clin Rheumatol. 2016;30(6):1098–109.
Article
Google Scholar
Mork PJ, Bach K. A decision support system to enhance self-management of low back pain: protocol for the selfback project. JMIR Res Protoc. 2018;7(7):167.
Article
Google Scholar
Rahman QA, Janmohamed T, Pirbaglou M, Clarke H, Ritvo P, Heffernan JM, Katz J. Defining and predicting pain volatility in users of the manage my pain app: analysis using data mining and machine learning methods. J Med Internet Res. 2018;20(11):12001.
Article
Google Scholar
Rahman QA, Janmohamed T, Clarke H, Ritvo P, Heffernan J, Katz J. Interpretability and class imbalance in prediction models for pain volatility in manage my pain app users: analysis using feature selection and majority voting methods. JMIR Med Inform. 2019;7(4):15601.
Article
Google Scholar
Harris AH, Kuo AC, Weng Y, Trickey AW, Bowe T, Giori NJ. Can machine learning methods produce accurate and easy-to-use prediction models of 30-day complications and mortality after knee or hip arthroplasty? Clin Orthop Relat Res. 2019;477(2):452.
Article
Google Scholar
Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3.
Article
Google Scholar
Sandal LF, Stochkendahl MJ, Svendsen MJ, Wood K, Øverås CK, Nordstoga AL, Villumsen M, Rasmussen CDN, Nicholl B, Cooper K, Kjaer P, Mair FS, Sjøgaard G, Nilsen TIL, Hartvigsen J, Bach K, Mork PJ, Søgaard K. An app-delivered self-management program for people with low back pain: protocol for the selfback randomized controlled trial. JMIR Res Protoc. 2019;8(12):14720. https://doi.org/10.2196/14720.
Article
Google Scholar
Hartrick CT, Kovan JP, Shapiro S. The numeric rating scale for clinical pain measurement: a ratio measure? Pain Pract. 2003;3(4):310–6. https://doi.org/10.1111/j.1530-7085.2003.03034.x.
Article
Google Scholar
Tuomi K, Ilmarinen J, Jahkola A, Katajarinne L, Tulkki A. Work ability index. Helsinki: Finnish Institute of Occupational Health; 2002.
Google Scholar
Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the hospital anxiety and depression scale: an updated literature review. J Psychosom Res. 2002;52(2):69–77.
Article
Google Scholar
Verra ML, Angst F, Staal JB, Brioschi R, Lehmann S, Aeschlimann A, de Bie RA. Reliability of the multidimensional pain inventory and stability of the MPI classification system in chronic back pain. BMC Musculoskelet Disord. 2012;13(1):155.
Article
Google Scholar
Soer R, Köke AJ, Vroomen PC, Stegeman P, Smeets RJ, Coppes MH, Reneman MF. Extensive validation of the pain disability index in 3 groups of patients with musculoskeletal pain. Spine. 2013;38(9):562–8.
Article
Google Scholar
Trompetter HR, Bohlmeijer ET, Van Baalen B, Kleen M, Köke A, Reneman M, Schreurs KM. The psychological inflexibility in pain scale (pips). Eur J Psychol Assess. 2014;30:289.
Article
Google Scholar
Saimanen I, Kuosmanen V, Rahkola D, Selander T, Kärkkäinen J, Harju J, Aspinen S, Eskelinen M. Rand-36-item health survey: a comprehensive test for long-term outcome and health status following surgery. Anticancer Res. 2019;39(6):2927–33.
Article
Google Scholar
Driver HE, Kroeber AL. Quantitative expression of cultural relationships. Berkeley: University of California Press; 1932. p. 211–56.
Google Scholar
Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. J Mach Learn Res. 2006;7:551–85.
Google Scholar
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58.
Article
CAS
Google Scholar
Robbins H, Monro S. A stochastic approximation method. Ann Math Stat. 1951;22:400–7.
Article
Google Scholar
Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.
Article
Google Scholar
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory. ACM; 1992, p. 144–52
Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2016, p. 785–94
Chen C, Liaw A, Breiman L, et al. Using random forest to learn imbalanced data. University of California, Berkeley. 2004;110(1–12):24.
Google Scholar
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern Part A Syst Humans. 2009;40(1):185–97.
Article
Google Scholar
Loh W-Y. Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov. 2011;1(1):14–23.
Article
Google Scholar
Gross DP, Zhang J, Steenstra I, Barnsley S, Haws C, Amell T, McIntosh G, Cooper J, Zaiane O. Development of a computer-based clinical decision support tool for selecting appropriate rehabilitation interventions for injured workers. J Occup Rehabil. 2013;23(4):597–609.
Article
Google Scholar
Mamprin M, Zelis JM, Tonino PA, Zinger S, de With PH. Gradient boosting on decision trees for mortality prediction in transcatheter aortic valve implantation. 2020. arXiv preprint arXiv:2001.02431
D’Alisa S, Miscio G, Baudo S, Simone A, Tesio L, Mauro A. Depression is the main determinant of quality of life in multiple sclerosis: a classification-regression (cart) study. Disabil Rehabil. 2006;28(5):307–14.
Article
Google Scholar
Raschka S. Model evaluation, model selection, and algorithm selection in machine learning. 2018. arXiv preprint arXiv:1811.12808
Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40(1):16–28.
Article
Google Scholar
Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature extraction: foundations and applications, vol. 207. Berlin: Springer; 2008.
Google Scholar
Santosa F, Symes WW. Linear inversion of band-limited reflection seismograms. SIAM J Sci Stat Comput. 1986;7(4):1307–30.
Article
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol). 1996;58(1):267–88.
Google Scholar
Ross BC. Mutual information between discrete and continuous data sets. PLoS One. 2014;9(2): e87357.
Article
Google Scholar
Wittkowski K. Classification and regression trees-L. Breiman, JH Friedman, RA Olshen and CJ Stone. Metrika. 1986;33:128.
Google Scholar
Fratello M, Tagliaferri R. Decision trees and random forests. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. 2018;374.
Claesen M, De Moor B. Hyperparameter search in machine learning. 2015. arXiv preprint arXiv:1502.02127
Yao Q, Wang M, Chen Y, Dai W, Yi-Qi H, Yu-Feng L, Wei-Wei T, Qiang Y, Yang Y. Taking human out of learning applications: a survey on automated machine learning. 2018. arXiv preprint arXiv:1810.13306
Hutter F, Kotthoff L, Vanschoren J. Automated machine learning. Berlin: Springer; 2019.
Book
Google Scholar
Lévesque J-C. Bayesian hyperparameter optimization: overfitting, ensembles and conditional spaces. 2018.
Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS One. 2017;12(6): e0177678.
Article
Google Scholar
Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and its posterior distribution. In: 2010 20th international conference on pattern recognition. IEEE; 2010, p. 3121–24.
Sammut C, Webb GI. Encyclopedia of machine learning and data mining. Berlin: Springer; 2017.
Book
Google Scholar
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6.
Article
Google Scholar
Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9(3):10–20.
Article
CAS
Google Scholar
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning; 2013, p. 108–122.
Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res. 2017;18(1):559–63.
Google Scholar
Oude Nijeweme - d’Hollosy W, van Velsen L, Poel M, Groothuis-Oudshoorn C, Soer R, Stegeman P, Hermens H. Applying machine learning on patient-reported data to model the selection of appropriate treatments for low back pain: a pilot study. In: Proceedings of the 13th international joint conference on biomedical engineering systems and technologies (BIOSTEC 2020), vol. 5: HEALTHINF; 2020, p. 117–124. https://doi.org/10.5220/0008962101170124.