Weng C, Tu SW, Sim I, Richesson R. Formal representations of eligibility criteria: a literature review. J Biomed Inform. 2011;43(3):451–67.
Article
Google Scholar
Hripcsak G, Ryan PB, Duke JD, Shah NH, Park RW, Huser V, et al. Characterizing treatment pathways at scale using the OHDSI network. Proc Natl Acad Sci. 2016;113(27):7329–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Wang S, Borhanian E, Weng C. Assessing the collective population representativeness of related type 2 diabetes trials by combining public data from Clinical Trials.gov and NHANES. Stud Health Technol Inform. 2015;216:569.
PubMed
PubMed Central
Google Scholar
Kang T, Zhang S, Tang Y, Hruby GW, Rusanov A, Weng C. EliIE: an open-source information extraction system for clinical trial eligibility criteria. J Am Med Inf Assoc. 2017;24(April):1062–71.
Article
Google Scholar
Chen M, Du F, Lan G, Lobanov V. Using pre-trained transformer deep learning models to identify named entities and syntactic relations for clinical protocol analysis. In: AAAI spring symposium: combining machine learning with knowledge engineering. 2020.
Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the conference on NAACL HLT 2019. Association for computational linguistics (ACL); 2019; p. 4171–86.
Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.
CAS
PubMed
Google Scholar
Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets. In: Proceedings of the BioNLP 2019 workshop. 2019; p. 58–65.
Gu Y, Tinn R, Cheng H, Lucas M, Usuyama N, Liu X, Naumann T, Gao J, Poon H. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans Comput Healthc (HEALTH). 2021;3(1):1–23.
CAS
Google Scholar
Beltagy I, Lo K, Cohan A. SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 conference on EMNLP-IJCNLP. 2019; p. 3615–20.
Joshi M, Chen D, Liu Y, Weld DS, Zettlemoyer L, Levy O. SpanBERT: Improving pre-training by representing and predicting spans. Trans Assoc Comput Linguist. 2019;8:64–77.
Article
Google Scholar
Kury F, Butler A, Yuan C, Fu L heng, Sun Y, Liu H, et al. Chia, a large annotated corpus of clinical trial eligibility criteria. Sci Data. 2020;7(1).
Armengol-Estapé J, Soares F, Marimon M, Krallinger M. PharmacoNER tagger: a deep learning-based tool for automatically finding chemicals and drugs in spanish medical texts. Genom Inform. 2019;17(2).
Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2017;2018(77):34–49.
Google Scholar
Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, Xiang Y, Tiryaki F, Wu S, Zhang Y, Tao C. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. J Am Med Inform Assoc. 2020;27(1):13–21.
Article
PubMed
Google Scholar
Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011;18(5):552–6.
Article
PubMed
PubMed Central
Google Scholar
Henry S, Buchan K, Filannino M, Stubbs A, Uzuner O. 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records. J Am Med Inform Assoc. 2020;27(1):3–12.
Article
PubMed
Google Scholar
Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc. 2010;17(5):514–8.
Article
PubMed
PubMed Central
Google Scholar
Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc. 2011;18(5):601–6.
Article
PubMed
PubMed Central
Google Scholar
Tang B, Cao H, Wu Y, Jiang M, Xu H. Clinical entity recognition using structural support vector machines with rich features. In: Proceedings of the ACM sixth international workshop on data and text mining in biomedical informatics 2012; p. 13–20.
Giorgi JM, Bader GD. Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics. 2018;34(23):4087–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Bian J, Hogan WR, Wu Y. Clinical concept extraction using transformers. J Am Med Inform Assoc. 2020;27(12):1935–42.
Article
PubMed
PubMed Central
Google Scholar
Kim Y, Lee JH, Choi S, Lee JM, Kim JH, Seok J, et al. Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records. Sci Rep. 2020;10(1):1–9.
Article
Google Scholar
Tu SW, Peleg M, Carini S, Rubin D, Sim I. ERGO: a template-based expression language for encoding eligibility criteria. Technical report, 2009. (Accessed 03/20/2022 from https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/ontology-of-clinical-research/ERGO_Technical_Documentation.pdf)
Tu SW, Musen MA. The EON model of intervention protocols and guidelines. In: Proceedings of the AMIA annual fall symposium. american medical informatics association; 1996; p. 587.
Zhang K, Demner-Fushman D. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations. J Am Med Inform Assoc. 2017;24(4):781–7.
Article
PubMed
PubMed Central
Google Scholar
Yuan C, Ryan PB, Ta C, Guo Y, Li Z, Hardin J, et al. Criteria2Query: a natural language interface to clinical databases for cohort definition. J Am Med Inform Assoc. 2019;26(4):294–305.
Article
PubMed
PubMed Central
Google Scholar
Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, et al. Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE international conference on computer vision. 2015; p. 19–27.
Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J. Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 2016.
Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al. CLAMP–a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Inform Assoc. 2018;25(3):331–6.
Article
PubMed
Google Scholar
Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. HuggingFace’s transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 EMNLP (Systems Demonstrations), 2020; p. 38–45.
Stubbs A, Kotfila C, Uzuner Ö. Automated systems for the de-identification of longitudinal clinical narratives: overview of 2014 i2b2/UTHealth shared task Track 1. J Biomed Inform. 2015;58:S11–9.
Article
PubMed
PubMed Central
Google Scholar
Hogg RV, Tanis EA, Zimmerman DL. Probability and statistical inference. Upper Saddle River: Pearson/Prentice Hall; 2010.
Google Scholar
Tang B, Chen Q, Wang X, Wu Y, Zhang Y, Jiang M, et al. Recognizing disjoint clinical concepts in clinical text using machine learning-based methods. In: AMIA annual symposium proceedings. American Medical Informatics Association; 2015; p. 1184.
Dahlmeier D, Ng HT. Domain adaptation for semantic role labeling in the biomedical domain. Bioinformatics. 2010;26(8):1098–104.
Article
CAS
PubMed
Google Scholar
Peng N, Dredze M. Multi-task domain adaptation for sequence tagging. In: Proceedings of the 2nd workshop on representation learning for NLP, 2016.
Lin BY, Lu W. Neural adaptation layers for cross-domain named entity recognition. In: Proceedings of the 2018 conference on empirical methods in natural language processing. 2018; p. 2012–22.