Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
PubMed
Google Scholar
Hong, S.; Won, Y.-J.; Lee, J. J.; Jung, K. W.; Kong, H.-J.; Im, J.-S.; Seo, H. G. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2018. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2021;53(2), 301–315. doi:https://doi.org/10.4143/crt.2021.291.
Gandaglia G, Ravi P, Abdollah F, Abd-El-Barr AERM, Becker A, Popa I, Briganti A, Karakiewicz PI, Trinh QD, Jewett MA, Sun M. Contemporary incidence and mortality rates of kidney cancer in the United States. J. Can. Urol. Assoc. 2014, 8(7–8 August), 247–252. Doi:https://doi.org/10.5489/cuaj.1760.
Liu X, Zhang M, Liu X, Sun H, Guo Z, Tang X, Wang Z, Li J, Li H, Sun W, Zhang Y. Urine metabolomics for renal cell carcinoma (RCC) prediction: tryptophan metabolism as an important pathway in RCC. Front Oncol. 2019;9(July):1–9. https://doi.org/10.3389/fonc.2019.00663.
Article
Google Scholar
Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, Patard JJ, Mulders PFA, Sinescu IC. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol. 2010;58(3):398–406. https://doi.org/10.1016/j.eururo.2010.06.032.
Article
PubMed
Google Scholar
Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, Derweesh IH, Faraday MM, Kaouk JH, Leveillee RJ, Matin SF, Russo P, Uzzo RG. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182(4 SUPPL.):1271–9. https://doi.org/10.1016/j.juro.2009.07.004.
Article
PubMed
Google Scholar
Torpy JM, Lynm C, Glass RM. Kidney cancer. J Am Med Assoc. 2004;292(1):134. https://doi.org/10.1001/jama.292.1.134.
Article
Google Scholar
Jang HA, Kim JW, Byun SS, Hong SH, Kim YJ, Park YH, Yang KS, Cho S, Cheon J, Kang SH. Oncologic and functional outcomes after partial nephrectomy versus radical nephrectomy in T1b renal cell carcinoma: a multicenter, matched case-control study in Korean patients. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2016;48(2):612–20. doi:https://doi.org/10.4143/crt.2014.122.
Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis. Cancer. 2007;109(9):1763–8. https://doi.org/10.1002/cncr.22600.
Article
PubMed
Google Scholar
Nguyen MM, Gill IS, Ellison LM. The evolving presentation of renal carcinoma in the United States: trends from the surveillance, epidemiology, and end results program. J Urol. 2006;176(6):2397–400. https://doi.org/10.1016/j.juro.2006.07.144.
Article
PubMed
Google Scholar
Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003;30(4):843–52. https://doi.org/10.1016/S0094-0143(03)00056-9.
Article
PubMed
Google Scholar
Fujii Y, Ikeda M, Kurosawa K, Tabata M, Kamigaito T, Hosoda C, Okaneya T. Different clinicopathological features between patients who developed early and late recurrence following surgery for renal cell carcinoma. Int J Clin Oncol. 2015;20(4):802–7. https://doi.org/10.1007/s10147-014-0775-2.
Article
PubMed
Google Scholar
Ljungberg B, Alamdari FI, Rasmuson T, Roos G. Follow-up guidelines for nonmetastatic renal cell carcinoma based on the occurrence of metastases after radical nephrectomy. BJU Int. 1999;84(4):405–11. https://doi.org/10.1046/j.1464-410x.1999.00202.x.
Article
CAS
PubMed
Google Scholar
Kim SP, Weight CJ, Leibovich BC, Thompson RH, Costello BA, Cheville JC, Lohse CM, Boorjian SA. Outcomes and clinicopathologic variables associated with late recurrence after nephrectomy for localized renal cell carcinoma. Urology. 2011;78(5):1101–6. https://doi.org/10.1016/j.urology.2011.05.012.
Article
PubMed
Google Scholar
Brookman-May S, May M, Shariat SF, Xylinas E, Stief C, Zigeuner R, Chromecki T, Burger M, Wieland WF, Cindolo L, Schips L, De Cobelli O, Rocco B, De Nunzio C, Feciche B, Truss M, Gilfrich C, Pahernik S, Hohenfellner M, Zastrow S, Wirth MP, Novara G, Carini M, Minervini A, Simeone C, Antonelli A, Mirone V, Longo N, Simonato A, Carmignani G, Ficarra V. Features associated with recurrence beyond 5 years after nephrectomy and nephron-sparing surgery for renal cell carcinoma: development and internal validation of a risk model (PRELANE Score) to predict late recurrence based on a large multicenter database. Eur Urol. 2013;64(3):472–7. https://doi.org/10.1016/j.eururo.2012.06.030.
Article
PubMed
Google Scholar
Park YH, Baik KD, Lee YJ, Ku JH, Kim HH, Kwak C. Late recurrence of renal cell carcinoma >5 years after surgery: clinicopathological characteristics and prognosis. BJU Int. 2012;110(11B):553–8. doi:https://doi.org/10.1111/j.1464-410X.2012.11246.x.
Miyao N, Naito S, Ozono S, Shinohara N, Masumori N, Igarashi T, Nakao M, Tsushima T, Senga Y, Horie S, Kanayama HO, Tokuda N, Kobayashi M. Late recurrence of renal cell carcinoma: retrospective and collaborative study of the Japanese Society of Renal Cancer. Urology. 2011;77(2):379–84. https://doi.org/10.1016/j.urology.2010.07.462.
Article
PubMed
Google Scholar
Ha YS, Park YH, Kang SH, Hong SH, Hwang TK, Byun SS, Kim YJ. Predictive factors for late recurrence in patients with stage T1 clear cell renal cell carcinoma: a multiinstitutional study. Clin Genitourin Cancer. 2013;11(1):51–5. https://doi.org/10.1016/j.clgc.2012.08.008.
Article
PubMed
Google Scholar
Mohammed MA, Abd Ghani MK, Hamed RI, Ibrahim DA. Review on Nasopharyngeal carcinoma: concepts, methods of analysis, segmentation, classification, prediction and impact: a review of the research literature. J Comput Sci. 2017;21:283–98. https://doi.org/10.1016/j.jocs.2017.03.021.
Article
Google Scholar
Mohammed MA, Ghani MKA, Hamed RI, Ibrahim DA. Analysis of an electronic methods for nasopharyngeal carcinoma: prevalence, diagnosis, challenges and technologies. J Comput Sci. 2017;21:241–54. https://doi.org/10.1016/j.jocs.2017.04.006.
Article
Google Scholar
Mohammed MA, Abd Ghani MK, Arunkumar N, Mostafa SA, Abdullah MK, Burhanuddin MA. Trainable model for segmenting and identifying nasopharyngeal carcinoma. Comput Electr Eng. 2018;71(March):372–87. https://doi.org/10.1016/j.compeleceng.2018.07.044.
Article
Google Scholar
Mohammed MA, Abd Ghani MK, Hamed RI, Ibrahim DA, Abdullah MK. Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma. J Comput Sci. 2017;21:263–74. https://doi.org/10.1016/j.jocs.2017.03.026.
Article
Google Scholar
Mohammed MA, Abd Ghani MK, Arunkumar N, Hamed RI, Mostafa SA, Abdullah MK, Burhanuddin MA. Decision support system for nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network. J Supercomput. 2020;76(2):1086–104. https://doi.org/10.1007/s11227-018-2587-z.
Article
Google Scholar
Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett. 2020;132:123–31. https://doi.org/10.1016/j.patrec.2018.11.004.
Article
Google Scholar
Chaunzwa TL, Hosny A, Xu Y, Shafer A, Diao N, Lanuti M, Christiani DC, Mak RH, Aerts HJWL. Deep learning classification of lung cancer histology using CT images. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-84630-x.
Article
CAS
Google Scholar
Khan AH, Abbas S, Khan MA, Farooq U, Khan WA, Siddiqui SY, Ahmad A. Intelligent model for brain tumor identification using deep learning. Appl Comput Intell Soft Comput. 2022; 2022. doi:https://doi.org/10.1155/2022/8104054.
Kim HM, Lee SJ, Park SJ, Choi IY, Hong SH. Machine learning approach to predict the probability of recurrence of renal cell carcinoma after surgery: prediction model development study. JMIR Med Inform. 2021;9(3):1–12. https://doi.org/10.2196/25635.
Article
Google Scholar
Mukherjee G, Bhanot G, Raines K, Sastry S, Doniach S, Biehl M. Predicting recurrence in clear cell renal cell carcinoma: analysis of TCGA data using outlier analysis and generalized matrix LVQ. In 2016 IEEE Congress Evolution Computing CEC 2016 2016, 656–661. https://doi.org/10.1109/CEC.2016.7743855.
Byun SS, Hong SK, Lee S, Kook HR, Lee E, Kim HH, Kwak C, Ku JH, Jeong CW, Lee JY, Hong SH, Kim YJ, Hwang EC, Kwon TG, Kim TH, Kang SH, Kim SH, Chung J. The establishment of KORCC (KOrean Renal Cell Carcinoma) database. Investig Clin Urol. 2016;57(1):50–7. https://doi.org/10.4111/icu.2016.57.1.50.
Article
PubMed
PubMed Central
Google Scholar
Li K, Zhang W, Lu Q, Fang X. An improved SMOTE imbalanced data classification method based on support degree. In: Proceedings - 2014 International Conference Identification, Information and Knowledge Internet Things, IIKI 2014 2014, 34–38. Doi:https://doi.org/10.1109/IIKI.2014.14.
Abdel-Hamid NB, ElGhamrawy S, Desouky AEl, Arafat H. A dynamic spark-based classification framework for imbalanced big data. J. Grid Comput. 2018; 16(4):607–26. https://doi.org/10.1007/s10723-018-9465-z.
Wang S, Li Z, Chao W, Cao Q. Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning. In: Proceedings of the International Joint Conference Neural Networks 2012, 10–15. Doi:https://doi.org/10.1109/IJCNN.2012.6252696.
Xu Z, Shen D, Nie T, Kou Y. A hybrid sampling algorithm combining M-SMOTE and ENN based on random forest for medical imbalanced data. J Biomed Inform. 2019;2020(107): 103465. https://doi.org/10.1016/j.jbi.2020.103465.
Article
Google Scholar
Xu Z, Shen D, Nie T, Kou Y, Yin N, Han X. A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data. Inf. Sci. (NY). 2021;572, 574–589. Doi:https://doi.org/10.1016/j.ins.2021.02.056.
Zhang R, Ma J. An improved SVM method P-SVM for classification of remotely sensed data. Int J Remote Sens. 2008;29(20):6029–36. https://doi.org/10.1080/01431160802220151.
Article
Google Scholar
Thabtah F, Abdelhamid N, Peebles D. A machine learning autism classification based on logistic regression analysis. Heal Inf Sci Syst. 2019;7(1):1–11. https://doi.org/10.1007/s13755-019-0073-5.
Article
Google Scholar
Peng NB, Zhang YX, Zhao YH. A SVM-KNN method for quasar-star classification. Sci. China Phys. Mech. Astron. 2013, 56(6):1227–34. doi:https://doi.org/10.1007/s11433-013-5083-8.
Calders T, Verwer S. Three naive bayes approaches for discrimination-free classification. Data Min Knowl Discov. 2010;21(2):277–92. https://doi.org/10.1007/s10618-010-0190-x.
Article
Google Scholar
Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9(3):1–15. doi:https://doi.org/10.1002/widm.1301.
Wang J, Li P, Ran R, Che Y, Zhou Y. A short-term photovoltaic power prediction model based on the gradient boost decision tree. Appl. Sci. 2018;8(5). doi:https://doi.org/10.3390/app8050689.
Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39. https://doi.org/10.1006/jcss.1997.1504.
Article
Google Scholar
Sahin EK. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl Sci. 2020;2(7):1–17. https://doi.org/10.1007/s42452-020-3060-1.
Article
CAS
Google Scholar
Sun Y, Ding S, Zhang Z, Jia W. An improved grid search algorithm to optimize SVR for prediction. Soft Comput. 2021;25(7):5633–44. https://doi.org/10.1007/s00500-020-05560-w.
Article
Google Scholar
Azodi CB, Tang J, Shiu SH. Opening the black box: interpretable machine learning for geneticists. Trends Genet. 2020;36(6):442–55. https://doi.org/10.1016/j.tig.2020.03.005.
Article
CAS
PubMed
Google Scholar
Daniya T, Geetha M, Kumar KS. Classification and regression trees with Gini index. Adv Math Sci J. 2020;9(10):8237–47. doi:https://doi.org/10.37418/amsj.9.10.53.
Crispen PL, Boorjian SA, Lohse CM, Sebo TS, Cheville JC, Blute ML, Leibovich BC. Outcomes following partial nephrectomy by tumor size. J Urol. 2008;180(5):1912–7. https://doi.org/10.1016/j.juro.2008.07.047.
Article
PubMed
Google Scholar
Abu-Ghanem Y, Powles T, Capitanio U, Beisland C, Järvinen P, Stewart GD, Gudmundsson EO, Lam TB, Marconi L, Fernandéz-Pello S, Nisen H, Meijer RP, Volpe A, Ljungberg B, Klatte T, Dabestani S, Bex A. The impact of histological subtype on the incidence, timing, and patterns of recurrence in patients with renal cell carcinoma after surgery-results from RECUR consortium. Eur Urol Oncol. 2021;4(3):473–82. https://doi.org/10.1016/j.euo.2020.09.005.
Article
PubMed
Google Scholar
Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5(9):1315–6. https://doi.org/10.1097/JTO.0b013e3181ec173d.
Article
PubMed
Google Scholar