van Dijk WB, Grobbee DE, de Vries MC, Groenwold RHH, van der Graaf R, Schuit E. A systematic breakdown of the levels of evidence supporting the European Society of Cardiology guidelines. Eur J Prev Cardiol. 2019;26:1944–52.
Article
Google Scholar
Meyer C, Bowers A, Wayant C, Checketts J, Scott J, Musuvathy S, et al. Scientific evidence underlying the American College of Gastroenterology’s clinical practice guidelines. PLoS ONE. 2018;13:e0204720.
Article
Google Scholar
Koh C, Zhao X, Samala N, Sakiani S, Liang TJ, Talwalkar JA. AASLD clinical practice guidelines: a critical review of scientific evidence and evolving recommendations. Hepatology. 2013;58:2142–52.
Article
Google Scholar
Fanaroff AC, Califf RM, Windecker S, Smith SC, Lopes RD. Levels of evidence supporting American College of Cardiology/American Heart Association and European Society of Cardiology Guidelines, 2008–2018. JAMA. 2019;321:1069–80.
Article
Google Scholar
Tricoci P, Allen JM, Kramer JM, Califf RM, Smith SC. Scientific evidence underlying the ACC/AHA clinical practice guidelines. JAMA. 2009;301:831–41.
Article
CAS
Google Scholar
Du Vaure CB, Dechartres A, Battin C, Ravaud P, Boutron I. Exclusion of patients with concomitant chronic conditions in ongoing randomised controlled trials targeting 10 common chronic conditions and registered at ClinicalTrials. gov: a systematic review of registration details. BMJ Open. 2016;6:e012265.
Article
Google Scholar
U.S. Food and Drug Administration. Framework for FDA’S real-world evidence program. https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence. Accessed 16 Nov 2020.
Gombar S, Callahan A, Califf R, Harrington R, Shah NH. It is time to learn from patients like mine. npj Digit Med. 2019;2:2018–20. https://doi.org/10.1038/s41746-019-0091-3.
Article
Google Scholar
Longhurst CA, Harrington RA, Shah NH. A “green button” for using aggregate patient data at the point of care. Health Aff. 2014;33:1229–35.
Article
Google Scholar
Callahan A, Gombar S, Jung K, Steinberg E, Harrington R, Shah NH. Delivering on-demand evidence via an informatics consultation service, pp. 3–5.
Schuler A, Callahan A, Jung K, Shah NH. Performing an informatics consult: methods and challenges. J Am Coll Radiol. 2018;15:563–8.
Article
Google Scholar
Davies NM, Holmes M V., Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362.
Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2020;4:186.
Article
Google Scholar
Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183:758–64.
Article
Google Scholar
Dickerman BA, Hernán MA. Avoidable flaws in observational analyses: an application to statins and cancer. Nat Med. 2019. https://doi.org/10.1038/s41591-019-0597-x.
Article
PubMed
PubMed Central
Google Scholar
Kuan V, Denaxas S, Gonzalez-Izquierdo A, Direk K, Bhatti O, Husain S, et al. A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service. Lancet Digit Heal. 2019;1:e63-77.
Article
Google Scholar
Denaxas S, Gonzalez-Izquierdo A, Direk K, Fitzpatrick NK, Fatemifar G, Banerjee A, et al. UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER. J Am Med Informatics Assoc. 2019.
Dashti HS, Shea MK, Smith CE, Tanaka T, Hruby A, Richardson K, et al. Meta-analysis of genome-wide association studies for circulating phylloquinone concentrations. Am J Clin Nutr. 2014;100:1462–9.
Article
CAS
Google Scholar
Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.
Article
CAS
Google Scholar
Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46:1734–9.
Article
Google Scholar
Serper M, Weinberg EM, Cohen JB, Reese PP, Taddei TH, Kaplan DE. Mortality and hepatic decompensation in patients with cirrhosis and atrial fibrillation treated with anticoagulation. Hepatology. 2020;0–3.
Choi J, Kim J, Shim JH, Kim M, Nam GB. Risks versus benefits of anticoagulation for atrial fibrillation in cirrhotic patients. J Cardiovasc Pharmacol. 2017;70:255–62.
Article
CAS
Google Scholar
Kuo L, Chao TF, Liu CJ, Lin YJ, Chang SL, Lo LW, et al. Liver cirrhosis in patients with atrial fibrillation: would oral anticoagulation have a net clinical benefit for stroke prevention? J Am Heart Assoc. 2017;6.
Lee SJ, Uhm JS, Kim JY, Pak HN, Lee MH, Joung B. The safety and efficacy of vitamin K antagonist in patients with atrial fibrillation and liver cirrhosis. Int J Cardiol. 2015;180:185–91.
Article
Google Scholar
Ahmad FS, Ricket IM, Hammill BG, Eskenazi L, Robertson HR, Curtis LH, et al. Computable phenotype implementation for a national, multicenter pragmatic clinical trial: lessons learned from ADAPTABLE. Circ Cardiovasc Qual Outcomes. 2020;CIRCOUTCOMES–119.
Willoughby C, Fridsma D, Chatterjee L, Speakman J, Evans J, Kush R. A standard computable clinical trial protocol: the role of the BRIDG model. Drug Inf J DIJ/Drug Inf Assoc. 2007;41:383–92.
Article
Google Scholar
Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8:163.
Article
Google Scholar
Kiritchenko S, De Bruijn B, Carini S, Martin J, Sim I. ExaCT: automatic extraction of clinical trial characteristics from journal publications. BMC Med Inform Decis Mak. 2010;10:56.
Article
Google Scholar
Constantin A, Pettifer S, Voronkov A. PDFX: fully-automated PDF-to-XML conversion of scientific literature. In: Proceedings of the 2013 ACM symposium on Document engineering. 2013. pp. 177–80.
Parizi RM, Guo L, Bian Y, Azmoodeh A, Dehghantanha A, Choo K-KR. CyberPDF: smart and secure coordinate-based automated health PDF data batch extraction. In: 2018 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE). 2018. pp. 106–11.
Jacobs AK, Quinn TA, Nelson SJ. Mapping SNOMED-CT concepts to MeSH concepts. In: AMIA annual symposium proceedings. 2006. p. 965.
Gokhale KM, Chandan JS, Toulis K, Gkoutos G, Tino P, Nirantharakumar K. Data extraction for epidemiological research (DExtER): a novel tool for automated clinical epidemiology studies. Eur J Epidemiol. 2020;36:1–14.
Google Scholar
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.
Article
Google Scholar
Vimalananda VG, Gupte G, Seraj SM, Orlander J, Berlowitz D, Fincke BG, et al. Electronic consultations (e-consults) to improve access to specialty care: a systematic review and narrative synthesis. J Telemed Telecare. 2015;21:323–30.
Article
Google Scholar
Informatics Consultation Service at Stanford. http://greenbutton.stanford.edu. Accessed 17 Dec 2020.
Larsson SC, Traylor M, Markus HS. Circulating vitamin K1 levels in relation to ischemic stroke and its subtypes: a Mendelian randomization study. Nutrients. 2018;10:1–7.
Google Scholar
Li Y-C, Haug PJ, Lincoln MJ, Turner CW, Pryor TA, Warner HH. Assessing the behavioral impact of a diagnostic decision support system. In: Proceedings of the annual symposium on computer application in medical care. 1995. p. 805.
Plante DA, Kassirer JP, Zarin DA, Pauker SG. Clinical decision consultation service. Am J Med. 1986;80:1169–76.
Article
CAS
Google Scholar
Mouhayar E, Salahudeen A. Hypertension in cancer patients. Texas Hear Inst J. 2011;38:263.
Google Scholar
Budrionis A, Bellika JG. The learning healthcare system: Where are we now? A systematic review. J Biomed Inform. 2016;64:87–92.
Article
Google Scholar
European Medicines Agency. Guideline on registry-based studies. https://www.ema.europa.eu/en/guideline-registry-based-studies. Accessed 15 Dec 2020.
National Guideline Centre (UK). Emergency and acute medical care in over 16s: service delivery and organisation. London: National Institute for Health and Care Excellence (UK); 2018 Mar. (NICE Guideline, No. 94.) Chapter 29, Multidisciplinary team meeting.
Observational Health Data Sciences and Informatics Methods Library. https://www.ohdsi.org/methods-library/. Accessed 07 Dec 2020.
Wolf A, Dedman D, Campbell J, Booth H, Lunn D, Chapman J, et al. Data resource profile: Clinical Practice Research Datalink (CPRD) aurum. Int J Epidemiol. 2019;48:1740–1740g.
Article
Google Scholar