Bevilacqua V, D’Ambruoso D, Mandolino G, Suma M. A new tool to support diagnosis of neurological disorders by means of facial expressions. In: MeMeA 2011 - 2011 IEEE International Symposium on Medical Measurements and Applications, Proceedings: 2011. p. 544–9. https://doi.org/10.1109/MeMeA.2011.5966766.
Carnimeo L, Trotta GF, Brunetti A, Cascarano GD, Buongiorno D, Loconsole C, Di Sciascio E, Bevilacqua V. Proposal of a health care network based on big data analytics for pds. J Eng. 2019. https://doi.org/10.1049/joe.2018.5141.
Article
Google Scholar
Buongiorno D, Trotta GF, Bortone I, Di Gioia N, Avitto F, Losavio G, Bevilacqua V. Assessment and rating of movement impairment in parkinson’s disease using a low-cost vision-based system In: Huang D-S, Gromiha MM, Han K, Hussain A, editors. Intelligent Computing Methodologies. Cham: Springer: 2018. p. 777–88.
Google Scholar
Bortone I, Buongiorno D, Lelli G, Di Candia A, Cascarano GD, Trotta GF, Fiore P, Bevilacqua V. Gait analysis and parkinson’s disease: Recent trends on main applications in healthcare In: Masia L, Micera S, Akay M, Pons JL, editors. Converging Clinical and Engineering Research on Neurorehabilitation III. Cham: Springer: 2019. p. 1121–5.
Google Scholar
Cascarano GD, Brunetti A, Buongiorno D, Trotta GF, Loconsole C, Bortone I, Bevilacqua V. In: Esposito A, Faundez-Zanuy M, Morabito FC, Pasero E, (eds).A Multi-modal Tool Suite for Parkinson’s Disease Evaluation and Grading. Singapore: Springer; 2020, pp. 257–68. https://doi.org/10.1007/978-981-13-8950-4_24.
Google Scholar
Bidet-Ildei C, Pollak P, Kandel S, Fraix V, Orliaguet J-P. Handwriting in patients with Parkinson disease: Effect of L-dopa and stimulation of the sub-thalamic nucleus on motor anticipation. Hum Mov Sci. 2011; 30(4):783–91.
Article
PubMed
Google Scholar
Carmeli E, Patish H, Coleman R. The aging hand. J Gerontol Ser A Biol Sci Med Sci. 2003; 58(2):146–52.
Article
Google Scholar
McLennan JE, Nakano K, Tyler HR, Schwab RS. Micrographia in Parkinson’s disease. J Neurol Sci. 1972; 15(2):141–52.
Article
CAS
PubMed
Google Scholar
Flash T, Inzelberg R, Schechtman E, Korczyn AD. Kinematic analysis of upper limb trajectories in Parkinson’s disease. Exp Neurol. 1992; 118(2):215–26.
Article
CAS
PubMed
Google Scholar
Margolin DI, Wing AM. Agraphia and micrographia: Clinical manifestations of motor programming and performance disorders. Acta Psychol. 1983; 54(1):263–83.
Article
CAS
Google Scholar
Müller F, Stelmach GE. Prehension movements in Parkinson’s disease. Adv Psychol. 1992; 87:307–19.
Google Scholar
Contreras-Vidal JL, Teulings H-L, Stelmach GE. Micrographia in Parkinson’s disease,. Neuroreport. 1995; 6(15):2089–92.
Article
CAS
PubMed
Google Scholar
Van Gemmert AWA, Teulings H. -L., Contreras-Vidal JL, Stelmach GE. Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia. 1999; 37(6):685–94.
Article
CAS
PubMed
Google Scholar
Van Gemmert AWA, Teulings H-L, Stelmach GE. Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 2001; 47(3):504–12.
Article
CAS
PubMed
Google Scholar
Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH. Adaptation of handwriting size under distorted visual feedback in patients with Parkinson’s disease and elderly and young controls. J Neurol Neurosurg Psychiatry. 2002; 72(3):315–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drotar P, Mekyska J, Smekal Z, Rektorova I, Masarova L, Faundez-Zanuy M. Prediction potential of different handwriting tasks for diagnosis of Parkinson’s. In: E-Health and Bioengineering Conference (EHB), 2013. IEEE: 2013. p. 1–4. https://doi.org/10.1109/ehb.2013.6707378.
Nutt JG, Wooten GF. Diagnosis and initial management of Parkinson’s disease. N Engl J Med. 2005; 353(10):1021–7.
Article
CAS
PubMed
Google Scholar
Nutt JG, Lea ES, Van Houten L, Schuff RA, Sexton GJ. Determinants of tapping speed in normal control subjects and subjects with Parkinson’s disease: differing effects of brief and continued practice. Mov Disord. 2000; 15(5):843–9.
Article
CAS
PubMed
Google Scholar
Gordon AM. Task-dependent deficits during object release in Parkinson’s disease. Exp Neurol. 1998; 153(2):287–98.
Article
CAS
PubMed
Google Scholar
Tresilian JR, Stelmach GE, Adler CH. Stability of reach-to-grasp movement patterns in Parkinson’s disease,. Brain. 1997; 120(11):2093–111.
Article
PubMed
Google Scholar
Rand MK, Stelmach GE, Bloedel JR. Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia. 2000; 38(2):203–12.
Article
CAS
PubMed
Google Scholar
Helsper E, Teulings H-L, Karamat E, Stelmach GE. Preclinical Parkinson features in optically scanned handwriting. In: Handwriting and Drawing Research: Basic and Applied Issues. Amsterdam: IOS Press: 1996. p. 241–50.
Google Scholar
Longstaff MG, Mahant PR, Stacy MA, Van Gemmert AWA, Leis BC, Stelmach GE. Discrete and dynamic scaling of the size of continuous graphic movements of parkinsonian patients and elderly controls. J Neurol Neurosurg Psychiatry. 2003; 74(3):299–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ünlü A, Brause R, Krakow K. Handwriting analysis for diagnosis and prognosis of parkinson’s disease. In: International Symposium on Biological and Medical Data Analysis. Springer: 2006. p. 441–50. https://doi.org/10.1007/11946465_40.
Chapter
Google Scholar
Rosenblum S, Samuel M, Zlotnik S, Erikh I, Schlesinger I. Handwriting as an objective tool for Parkinson’s disease diagnosis. J Neurol. 2013; 260(9):2357–61.
Article
PubMed
Google Scholar
Loconsole C, Trotta GF, Brunetti A, Trotta J, Schiavone A, Tatò SI, Losavio G, Bevilacqua V. Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkinson’s Disease In: Huang D-S, Jo K-H, Figueroa-García JC, editors. Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7-10, 2017, Proceedings, Part II. Cham: Springer: 2017. p. 493–503. https://doi.org/10.1007/978-3-319-63312-1_43. http://link.springer.com/10.1007/978-3-319-63312-1_43.
Chapter
Google Scholar
Loconsole C, Cascarano GD, Lattarulo A, Brunetti A, Trotta GF, Buongiorno D, Bortone I, De Feudis I, Losavio G, Bevilacqua V, Di Sciascio E. A comparison between ann and svm classifiers for parkinson’s disease by using a model-free computer-assisted handwriting analysis based on biometric signals. In: 2018 International Joint Conference on Neural Networks (IJCNN): 2018. p. 1–8. https://doi.org/10.1109/IJCNN.2018.8489293.
Loconsole C, Cascarano GD, Brunetti A, Francesco Trotta G, Losavio G, Bevilacqua V, Di Sciascio E. A model-free technique based on computer vision and sEMG for classification in Parkinson’s disease by using computer-assisted handwriting analysis. Pattern Recogn Lett. 2018. https://doi.org/10.1016/j.patrec.2018.04.006.
Article
Google Scholar
Bevilacqua V, Loconsole C, Brunetti A, Cascarano GD, Lattarulo A, Losavio G, Di Sciascio E. A Model-Free Computer-Assisted Handwriting Analysis Exploiting Optimal Topology ANNs on Biometric Signals in Parkinson’s Disease Research. In: Intelligent Computing Theories and Application: 2018. p. 650–5. https://doi.org/10.1007/978-3-319-95933-7_74. http://link.springer.com/10.1007/978-3-319-95933-7_74.
Chapter
Google Scholar
Bevilacqua V, Cariello L, Columbo D, Daleno D, Fabiano MD, Giannini M, Mastronardi G, Castellano M. Retinal fundus biometric analysis for personal identifications. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5227 LNAI: 2008. p. 1229–37. https://doi.org/10.1007/978-3-540-85984-0_147.
Sun ZL, Huang DS, Cheung YM, Liu J, Huang GB. Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images. IEEE Geosci Remote Sens Lett. 2005; 2(2):108–112. https://doi.org/10.1109/LGRS.2005.844169.
Article
Google Scholar
Breiman L. Classification and Regression Trees: Routledge; 2017.
Huang D-S. Systematic theory of neural networks for pattern recognition, vol. 201. Beijing: Publishing House of Electronic Industry of China; 1996.
Google Scholar
Huang D-S, Ma S-D. Linear and nonlinear feedforward neural network classifiers: A comprehensive understanding. J Intell Syst. 1999; 9(1):1–38.
Article
Google Scholar
Bevilacqua V, Carnimeo L, Mastronardi G, Santarcangelo V, Scaramuzzi R. On the comparison of nn-based architectures for diabetic damage detection in retinal images. J Circ Syst Comput. 2009; 18(08):1369–80.
Article
Google Scholar
Bevilacqua V, Mastronardi G, Menolascina F, Pannarale P, Pedone A. A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: The breast cancer classification problem. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings: 2006. p. 1958–1965. https://doi.org/10.1109/IJCNN.2006.246940.
Bevilacqua V, Mastronardi G, Piscopo G. Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis Comput. 2007; 25(2):196–203. https://doi.org/10.1016/j.imavis.2006.01.027.
Article
Google Scholar
Menolascina F, Bellomo D, Maiwald T, Bevilacqua V, Ciminelli C, Paradiso A, Tommasi S. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics. 2009; 10(SUPPL. 12):4. https://doi.org/10.1186/1471-2105-10-S12-S4.
Article
Google Scholar
Bevilacqua V, Brunetti A, Triggiani M, Magaletti D, Telegrafo M, Moschetta M. An Optimized Feed-forward Artificial Neural Network Topology to Support Radiologists in Breast Lesions Classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion - GECCO ’16 Companion. New York: ACM Press: 2016. p. 1385–92. https://doi.org/10.1145/2908961.2931733. http://dl.acm.org/citation.cfm?doid=2908961.2931733.
Google Scholar
Buongiorno D, Barsotti M, Barone F, Bevilacqua V, Frisoli A. A linear approach to optimize an emg-driven neuromusculoskeletal model for movement intention detection in myo-control: A case study on shoulder and elbow joints. Front Neurorobotics. 2018; 12:74. https://doi.org/10.3389/fnbot.2018.00074.
Article
Google Scholar
Buongiorno D, Barsotti M, Sotgiu E, Loconsole C, Solazzi M, Bevilacqua V, Frisoli A. A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: 2015 IEEE World Haptics Conference (WHC): 2015. p. 273–9. https://doi.org/10.1109/WHC.2015.7177725.
Myo™Gesture Control Armband. www.myo.com. Accessed Mar 2018.
WACOM Cintiq 13” HD. www.wacom.com/en-ch/products/pen-displays/cintiq-13-hdwww.wacom.com/en-ch/products/pen-displays/cintiq-13-hd. Accessed Mar 2018.