Largely in accordance with the framework used by the mHealth Alliance [24], the organizations interviewed were categorized as follows (Figure 1): (i) point-of-care support (24 cases), (ii) data collection and disease surveillance (three cases), (iii) treatment compliance (two cases) and (iv) distant medical education (three cases). These include five cases of (exclusive) developers of software or hardware that have been classified based on category of use. Some organizations’ activities fall into two categories and hence the number of cases exceeds 28. Point-of-care can be in rural (21 cases) or urban areas (five cases), with two technology providers figuring in both. We first consider the nature of work in each category before discussing their enablement by technology, the various challenges in running such programmes, and their finances. As mentioned above, the interviews were not recorded. Therefore, we do not include quotations in the Results. Although triangulation or other techniques of verifying responses were not used, interviewees from similar situations had broadly similar responses to a given question, confirming the reliability of the responses.
Nature of work
Point-of-care
Telemedicine starts when doctors share their phone numbers with patients, in an informal way. This has been happening for decades in India. A subsequent effort involved medical equipment being installed in a car, and a specialist being consulted using the nearest landline. Current efforts are outlined below.
Rural and semi-urban programmes
The four main streams today are (a) stationary clinics, (b) van-based camps, (c) a technician working with a mobile phone and (d) mobile phone applications. Some organizations focus on one or two medical issues, such as diabetes and hypertension whereas others work across issues, and can span pre-natal care, malnutrition, dengue and HIV/AIDS, for instance.
-
(a)
A stationary clinic (whether private or public sector) may already exist, which a non-governmental organization (NGO) or a city-based hospital equips with diagnostic hardware, a computer and an internet connection to enable tele-consultations with a specialist in the city. Illustratively, a general physician may not have the facility to record electrocardiograms (ECG), but will install the requisite machine and then make use of such tele-consultations. This care may or may not require video conferencing and the telemedicine aspect is sometimes hidden from patients. The primary care doctors are happy to be able to provide an additional category of care and popular areas for this modality include cardiology, neurology, nephrology and paediatrics. This connection of specialists to distant doctors may also be done internationally, and one Indian hospital has connections to 150 centres globally. The targeted beneficiary here is the primary care doctor who now has better facilities and access to the specialist, which in turn benefits the patient.
Another approach is to set up a new clinic. An NGO refurbishing an existing centre or setting up its own facilities may have specific communication strategies, including branding, to attract patients. The centre may be manned just by technicians, or by fresh medical graduates who will be connected to a specialist in the metro. There might also be a technician to help with the computer. The consultation may involve a simple telephone call to the doctor, or it may use the satellite connection provided for free by the public sector Indian Space Research Organization (ISRO). In addition to the consultation, patients may be provided free medicines and transport to and fro the consultation.
Training the manpower that will work in non-urban centres is important to the success of such a programme. In some cases, local people, including high school students, are recruited and trained at an urban hospital before returning to the community to administer primary care.
Another scenario in this category involves increasing the efficiency of a hospital’s specialists without reaching new patients. Several corporate hospitals routinely send their specialists to peripheral clinics, and telemedicine enables the doctors to provide care by analysing reports at the base hospital instead. In this situation there is only an exchange of patient records without any video conference. For one large private hospital this forms its only category of telemedicine.
-
(b)
Care may also be provided by an outreach van that may be a stand-alone activity or complementary to a clinic (that may or may not be part of the same organization). In one example, a van carries nurses, general physicians and a technician, has a small pharmacy, and is equipped to take ultrasounds, ECGs and X-rays. Specialist tele-consultations take place in cardiology, neurology or critical care. In another case, there is specific screening for diabetes and diabetes-related complications like nephropathy and coronary artery disease. An eye hospital’s van programme may involve multiple distant doctors reviewing eye images in real time. The spectacles may be made in the van, or at the base hospital with subsequent distribution by a local NGO.
-
(c)
Some programmes work through outreach health workers, especially the Accredited Social Health Activists (ASHAs) who are part of the Government of India’s (GoI) National Rural Health Mission (NRHM).
Largely, the programmes have been run in non-urban settings, although sometimes in urban slums, with those relating to mother and child health being the most popular. The ASHAs have been provided mobiles that are usually Java-based. The mobiles increase their stature in the community, and the message on the mobile is also taken more seriously than the spoken word. The mobile may have an algorithmic set of questions that the ASHA needs to ask the beneficiary, such as a pregnant woman or a patient. It also tracks whether she has made the requisite number of visits to the beneficiary and has spent enough time per visit. It improves the quality of care, including follow-up and emergency care, and the number of referrals. Some software specializes in case management. It can track the number of beneficiaries in particular programmes and will identify someone who has been lost to follow up. Monitoring the productivity of rural health workers, who normally work without supervision, is an important aspect of these programmes. A separate initiative involves instructional videos that are preloaded on a micro-SD card for a mobile phone, that is purchased in small shops. There are key messages on 14 health issues, such as hand washing, oral rehydration therapy and exclusive breast feeding, that are derived from a document that is endorsed by organizations of the United Nations. These serve to educate the ASHAs and beneficiaries directly as well. The expectation is that the programme will modify behaviour and reduce mortality, improve nutrition and so on. In some cases, the ASHAs receive modest cash incentives to bring patients to the centre from where there is a telemedicine consultation. Despite several challenges, as mentioned below, some of the ASHAs are highly motivated, contributing to the success of the programmes.
In a separate effort, more than 20,000 traditional birth attendants have been trained and given free home delivery kits. They also use diagnostic hardware that is tele-linked to doctors at a base hospital. Yet another kind of outreach consists of a technician who visits diabetic patients, for instance. Pictures of the eye, taken with a mobile phone, are sent to the hospital for an opinion.
-
(d)
Finally, mobile phone applications can include health related games that can be played on low end mobiles, and sms-es for behaviour change or for reminders of visits to the doctor.
Web based care in urban areas
Aside from rural populations, some telemedicine is geared to urban users, who are targeted by for-profit companies. Some companies focus on primary and preventive care, creating awareness about health, diet and fitness, and working for behaviour change. One company has tied up with a private telecommunications company to send health tips to users’ mobiles. As part of this, proprietary content that is culturally more suitable for Indian users may be developed. They may also enable web-based consultations, with the patient reaching a nurse, a doctor or an ambulance from home. A suitable variety of doctors may be empanelled to handle multiple languages.
One sub-category of web-based care is that of follow-up telemedicine after surgery. Patients, primarily from tier 2 and 3 towns, receive a password to a website which enables communication with their doctor and an exchange of files after returning home. This category dominates the telemedicine practice of one hospital chain.
Data collection and disease surveillance
There are a large number of pilots concerned with data collection in eHealth, primarily mHealth. Relevant studies include the million deaths study (MDS) and medical certification of cause of death. MDS is the biggest electronic health-related data collection project in the world and is being done in partnership with GoI, which has provided access to its data collectors and the data already collected. Aside from collecting fresh data the participating organization is analyzing existing data and converting records to an electronic form. The results from MDS can sometimes differ widely from other GoI data, which should be useful inputs for better public health planning. A separate study concerns identifying long term risk factors for non-communicable diseases.
In terms of disease surveillance, one study, concerned with dengue, was a project to demonstrate that effective and up-to-date surveillance records can be created using mobiles instead of paper. A typical record consisted of the patient’s name (optional), gender, age group, location, disease, signs, symptoms and case-status (referred and treated). Also, a text entry field termed ‘notes’ was provided to record additional information. It typically took less than 10 seconds for a record to be created, and the submitted data was stored in a central database. The application also had a store-and-forward modality in case of a break in connectivity.
Treatment Compliance
Two programmes are concerned with treatment compliance, one involving patients and the other healthcare providers. The first concerns antiretroviral (ART) adherence, and works on the Mobile Technology for Community Health (MOTECH) platform, on a simple mobile. The patient selects options via an interactive voice response system and receives automated advice. The programme captures adherence to six specific regimens and the algorithms also identify common side effects. It is useful even in urban areas where patients may forget to ask questions during a doctor’s visit, may forget to take medicine, or may be lost to follow up if they don’t return to the clinic. This is a qualitative pilot study. It is a successor to an earlier pilot, for both urban and rural patients, where the preferred language, pitch of the voice and so on were assessed to make the system more usable and friendly.
The second programme involves managing, at scale, tuberculosis (TB) registrations and TB suspects. Through a web-based interface, the ‘directly observed treatment, short-course’ (DOTS) provider uploads data on a patient and the drugs taken. The system also tracks when the provider distributes a sputum collection container so that a map of TB suspects can be created. This programme works with GoI’s Revised National Tuberculosis Control Programme (RNTCP) to strengthen it, by using diagnostic and drug resources, also from RNTCP.
Distant medical education
Doctors’ education (either basic or continuing education) is a fairly active aspect of telemedicine in India today. Examples of such programmes are as follows. (i) One corporate hospital chain has conducted over 500 grand rounds through multi point video conferencing; (ii) A medical college has conducted 1500 workshops and conferences using ISRO’s connectivity or over the internet; and (iii) GoI has created the Pan African eNetwork for education and health, covering 42 countries, which is used both for clinical consultations and for continuing medical education. Thus, categories (ii) and (iii) are supported by GoI, but category (iii) is primarily delivered by private medical institutions.
Technology
eHealth requires suitable technology, and interviewees reported on connectivity, software, hardware and analytics.
-
(a)
Connectivity: The prime mover of telemedicine in India, ISRO, did proof of concept demonstrations in the 1990s. This was a pioneering effort, even globally. Subsequently, in 2001, it became a regular programme in certain government hospitals. However internet and mobile connectivity are much cheaper now. Moreover, satellite communication equipment is extremely bulky and cannot be taken to remote locations easily. So, although use of the ISRO satellite connection persists, it is decreasing. A special case of connectivity involves the (public sector) Indian Railways. Most of the tracks are hooked up to the landline telephone network, and one public sector initiative locates projects near railway lines for this reason.
-
(b)
Software: For outreach workers using mobiles, data collection is not straightforward, given widespread illiteracy or semi-literacy. The questionnaires have to be primarily yes/no- or menu-driven. Data validation is important in terms of the length of the answer and the types of characters entered, and nonsensical responses should be rejected by the system. In one case, the application has been completely changed so that every question engages the user through audio and visual props. Although the software is sometimes designed to work on both Java and Android phones, it usually has to work on lower cost mobiles. One organization distributes mobile phones and also provides a field engineer who designs an application during the course of the project if required.
Software has also been created for electronic patient records, for processing, compressing and transferring images, for post-operative follow up and for back-end services. Commercial software tends to be compliant with Digital Imaging and Communications in Medicine (Dicom) standards and compatible with data formats from a wide range of devices. Some organizations use the open source MOTECH and may feed their improvements to the platform for other users.
-
(c)
Hardware: Hardware usually records some or all of the following medical parameters: heart and lung sounds, blood pressure, temperature, blood glucose, skin and ear, nose and throat images, SpO2, ECG and pulse rate. The data is captured, stored and transmitted to a central server. Several vendors, or users, have developed their own device, with similar functionality. In one case it took six months to develop the technology, and a further six months to validate it in public sector hospitals. The company has obtained the IEC mark for its device and is now applying for the (European) CE mark. The device is usually sold, not rented.
-
(d)
Analytics: In one case, the firm supplying the hardware subsequently does analytics on its clients’ data related to disease profiles, the kind of consultations per patient, drugs prescribed and diagnostic parameters of patients. It may also use economic and demographic data for modelling. This company does not rent or sell its hardware, and instead prefers to have a partnership with its clients.
Challenges in eHealth
There are several challenges in this field of work, some pertaining to one or two programmes and others to several. These are listed below.
Donors: A major challenge concerns the tendency for donors to like the concept of mHealth and to require it of the NGOs they fund. The NGO hastily proceeds, without fully understanding the requirements on the ground. The programmes are therefore donor-driven rather than needs-driven. Donors may also prefer to give money for a specific disease, although patients require overall healthcare. Furthermore, donors (or clients or technology providers) sometimes prefer the latest technology, which can be a challenge to implement once users are comfortable with an earlier one.
Government: The GoI’s Planning Commission strongly recommends telemedicine. Nevertheless, there may be a lack of suitable policies, or lacunae in their implementation, that can prevent more effective telemedicine.
In a government hospital, for instance, neither is telemedicine mandatory, nor does a doctor earn more for this work. Therefore these doctors are often unmotivated to use this modality. In private hospitals, in contrast, a certain amount of van duty or other telemedicine may be made a mandatory part of the doctor’s job. In the largest government (satellite-enabled) programme which involves 425 set ups donated by ISRO, 85% are not in use due to bad management, insufficient incentives, or lack of technical staff or electricity. In this programme, although private hospitals constitute only 30% of the participating hospitals, they account for 70% of the tele-consultations, that are delivered on a non-profit basis.
Although there are examples of NGOs or private healthcare providers working with the government and doing a good job of creating telemedicine facilities and programmes, there can be several challenges in working with a government (at the state level or national). If a government agency is required to clear a programme or requires permission to be part of it, there can be large delays. More seriously, a change in the government may lead to a programme being axed. Also, by government guidelines, the number of people covered by a programme often serves as a surrogate for impact, which can be unsatisfactory. In terms of funding, there may be a good budget, but no assurance of how it will be spent. There needs to be a better matching of the needs and the financing, especially because government funding usually comes with the requirement that the money has to be spent within the year or be forfeited. Sometimes due to fear of misutilization much of the funds may remain unspent at the end of the year. Furthermore, government funding often targets secondary and tertiary care that requires hospitalization, instead of primary or preventive care, an exception being the ASHA programme.
In terms of health education, the multi-levelled administration can be inefficient in implementing complex programmes. Thus, a proposed 12-step process may be reduced to three steps by the time it is implemented, losing much of the meaning of the intervention. Yet another issue concerns corruption. By a minister’s own admission, preventive care projects are not lucrative, and therefore such projects tend not to be supported. Sometimes a state government issues a tender just for infrastructure, since this is where people can make illegal money, and does not plan for other elements of a programme.
Telemedicine Society of India (TSI): In 2003–5 TSI’s telemedicine hype lead to the creation of infrastructure and to ISRO donating bandwidth and equipment. Unfortunately, due to the inefficiencies of the public sector described above, the infrastructure has remained largely unused, leading to huge disillusionment in government.
Records and data: Many telemedicine projects are based on the electronic collection and storage of data. However the government either mandates a paper-based system or it fears that the people dealing with paper records will become redundant with a switch. Also, even if some data is collected electronically, the remainder has to be done by paper, lowering the incentive to shift to electronic records. Yet another challenge is that it is not trivial to collate data in a format in which it can be analyzed, and also map the data to the geographic area of coverage. Furthermore, as NGOs or governments use mobiles, they may suddenly have large amounts of data that they are not in a position to handle. They may then need to invest in human resources for data analysis.
Technology: There are several technological challenges in telemedicine. First, those who design the mobile applications may do so without much understanding of the ground reality, making them sub-optimal. Second, as mentioned above, there is a trend to constantly upgrade software while the existing one is still functional. Instead of implementing a project with the current software, money is spent on developing and piloting a new version. Low end mobiles are widespread, but cheap smartphones such as the open-source Android devices would be better suited for people with poor literacy, and for applications that employ a global positioning system (GPS) tracking function. However if one upgrades to a smartphone, one needs an application that may no longer run on a simpler phone. Thus there may be rapid obsolescence of the currently used hardware and software. Third, the novelty of the technology has required extended learning and optimization periods for both manufacturers and implementers, thereby slowing or decreasing its spread, especially in the early years. Fourth, the electric supply and network coverage can be poor, which is sometimes circumvented by the store-and-forward modality. If the government subsidised it, a satellite connection could be used where internet connectivity is absent, but no new satellite-based connections are being established. Fifth, companies that were pioneers in this area were forced to come up with their own technical solutions. Thus, hospitals may use proprietary software that is not Dicom compliant, and therefore not transferable across hospitals with different patient flows, employment structures and so on. As and when modalities for scale up across organizations are worked out, standardized software will become essential. Thus, there are several technical challenges, and yet human resources are a far bigger issue, as discussed further below.
Fragmentation of programmes: The most successful eHealth programmes are driven by organizations outside the government, whether for-profit or non-profit. However even if a programme covers most of a state, it will be offered by a single organization, possibly in partnership with the government. An exception is an ophthalmology programme, developed by a private hospital in one state, that the government of another state is copying. It is being rolled out as a public-private partnership, with the original hospital acting as a consultant to the private partner in the latter programme.
Thus, an over-arching issue concerning telemedicine, whether amongst those who run programmes, or those who develop the software or hardware, is that each initiative is running on its own, without the sharing of experiences. Also, there isn’t much research in this area. This wastes resources due to the duplication of effort, and also impedes scale up.
Communication: There are different kinds of challenges related to communication. First, since IT and medical professionals don’t really understand each other, developing appropriate software is not straightforward. Second, for the educational projects, it is important for beneficiaries to be engaged so that there is acceptance of the information. Not everyone believes the messages concerning washing hands and sleeping properly for instance. Thus, health has to be made an interesting topic if such educational programmes are to succeed.
Logistics: There are logistical challenges, especially when working in remote areas. (i) It can take three months to plan a van trip. The planning includes identifying NGOs and donors, educating patients about which conditions need medical attention and motivating them to attend the camp. The follow-up of patients is also non-trivial. A specific challenge is that the van returns to the city every evening. It would take separate incentives to get doctors to stay on the road overnight to enable them to reach the most distant patients. (ii) Patients may come to the health centre only in the morning, although the specialist is available for tele-consultation only in the late afternoons. (iii) After the tele-consultation, there can be the challenge of patients’ access to drugs. To deliver drugs to a rural area, one organization tied up with public buses, and logistics were worked out according to the bus schedules. Although the same organization also tried to work with unbranded generics, they found that the better distribution channels of branded generics was worth the extra cost.
Manpower: The shortage of skills is evident in a variety of settings, as follows. (i) Although supposedly educated up to middle school, some ASHAs are illiterate and can barely answer a call. Therefore learning how to use the phone can be a challenge. Their professional training may also be poor, leading to low quality counselling of beneficiaries. (ii) Technicians who work in the telemedicine centres are not skilled in computer use and need to be trained. This can lead to high training expenditure and staff shortages. (iii) A specific challenge in MDS is the narrative part of the autopsy where health workers need to make accurate notes based on what family members say. This requires a special skill. (iv) The NGOs and research groups in health and population studies, and in the government, may find technology challenging. There may be reluctance to learn something new, and even if provided a ready product they will not necessarily make full use of it. (v) A doctor needs special skill to interact with rural patients, being empathetic and humble, and discussing other things before health issues. A change in doctor can lead to a big drop off in the attendance at a rural facility if the new person lacks these skills. (vi) The doctor must also be flexible, and be able to function with the few facilities available in a rural setting. (vii) People shifting to other jobs is another persistent challenge. After some experience, a fresh medical officer will soon get a higher paying job elsewhere. Women birth attendants may get married, or pregnant, and leave. To tackle this issue, one organization only employs retired doctors, who move less often. (viii) Some of the challenges relate to working with technicians at a distance. Illustratively, one ophthalmology hospital does not allow a technician to dilate the pupil since he would be unable to deal with any side effects, and this limits the care that can be offered. (ix) Even staff in rural areas who have been trained may need re-training, sometimes weekly.
Consulting the independent specialist: A challenge specific to tele-consultations relates to the delay and hassle involved in operating the computer and other technology without assistance, waiting for the connection and so on. Further, billing and transferring money electronically means that doctors have to pay taxes on this income. Unless there are 30–50 consultations a day it is usually not worth the specialist’s time, and this may not have happened yet.
Attitude: Aside from skills, the attitude of everyone involved in telemedicine plays a very important role in its success. (i) Implementers need to have contagious enthusiasm for their projects. If they take the health workers into confidence at every stage of the project, the latter develop a much needed sense of ownership of the project. (ii) An ASHA is often more preoccupied with her own household than with her official work. (iii) A common problem is that a rural doctor may be too ‘proud’ to consult an urban specialist, despite patients’ requests. (iv) Users’ acceptance of both technology and mode of healthcare delivery is important, and convincing them may take considerable effort. (v) Services related to family planning, contraception and abortion cannot be implemented easily in South India, which is more conservative. Also there are more qualified allopathic medical practitioners available in the south, so a project cannot be run with the less qualified Registered Medical Practitioners who will be accepted in the north.
Policies and regulation
A number of government policies can affect mHealth operations, yet different categories of programs will be affected by different policies. For example, those aimed at improving rural infrastructure such as electrification and mobile network coverage are likely to have a positive impact on most programs. This is happening in certain regions of the country, although other regions are still neglected. Policies that make mHealth duty compulsory for doctors working in public hospitals would benefit telemedicine programs that involve collaboration with such hospitals. A policy that promotes and supports the funding of the complete substitution of paper records with electronic ones will contribute to the expansion of data collection and disease surveillance programs. Such policies are much awaited by the eHealth community.
Regulation of mHealth in India is an emerging issue and whereas the telemedicine community came up with guidelines in 2003, these apparently had many wrong premises, such as the assumption that a doctor is present to sign a patient’s consent form, and this has lead to criticism. Currently there are no national guidelines for mHealth practice, which gives the implementers much freedom. Illustratively, one private tele-opthalmology operator intentionally does not inform patients about the fact that the pictures of their retina are transmitted to a remote location where they are analysed by a specialist doctor. In general, most telemedicine operators reported that they comply with regulations of standard medical practice laid down by the Medical Council of India and state regulatory bodies. For example, an operator of mobile telemedicine centres manned exclusively by non-medical staff could not deploy a mobile pharmacy because only qualified pharmacists are allowed to dispense prescription drugs. Since no pharmacies were present in the concerned rural areas, drugs were dispensed in a city and shipped to villages on scheduled buses as described in the section Logistics above.
Finances and sustainability
One of the biggest challenges facing most of the programmes concerns funding and sustainability. The sources of funds (or other crucial support) for each programme are listed in Additional file 2. These are primarily philanthropic donors, government (that usually provides non-cash support), cross-subsidy or revenue, and rare cases of venture capital. The financial sustainability of each programme is also discussed. In terms of government-run or supported schemes (including those involving ASHAs), these will be sustainable so long as the government continues its support. In several cases, sustainability is dependent on patient volume. Thus there are geographic limitations on where such programmes can run. Low-cost efforts such as health information, where corporates see value in large-scale visibility, are sustainable due to the latters’ support. For-profit endeavours that depend on venture capital investment are yet to prove their sustainability, even in urban areas.
The costs for some aspects of the programmes are listed in Additional file 3. These include capital expenditure such as that for a van (Rs. 25–30,00,000), a stationary clinic (Rs. 1–2,00,000 for a basic clinic or Rs. 5–6,00,000 for an eye clinic) or a mobile phone (Rs. 4,500 for a mid-range model), and running costs such as doctors’ salaries (Rs. 6000 for a fresh graduate in a rural area), incentives to ASHA workers (Rs. 100 a month to bring patients to a tele-medicine centre) or mobile phone connection charges (Rs. 199 for a month’s rental for biosurveillance work). Since most of the programmes are run by non-proft organizations and are geared to poor patients, running costs tend to be a small fraction of what would be charged by a for-profit entity in an urban environment, for example.
A specific mention should be made of how doctors were paid for their involvement in eHealth. In the most successful programmes, run by large non profit hospitals, doctors were not paid beyond their regular salaries. In government hospitals, too, there was no separate fee to a doctor. In the less successful website-based consultation programs doctors were paid via bank transfers by the website.