Skip to main content

Advertisement

Table 2 Selected combinations of algorithms

From: Using the distance between sets of hierarchical taxonomic clinical concepts to measure patient similarity

Triple# IC Code-level Similarity (CS) Set-level Similarity (SS)
< 1,2,5> levels(a → r) \( 1-\frac{2 IC(c)}{IC(a)+ IC(b)} \) \( \frac{1}{\left|A\right|+\left|B\right|}\bullet \left(\sum \limits_{a\in A}\underset{b\in B}{\min } CS\left(a,b\right)+\sum \limits_{b\in B}\underset{a\in A}{\min } CS\left(b,a\right)\right) \)
< 1,2,6> \( \frac{\left({\sum}_{a\in A}\frac{1}{\left|B\right|}{\sum}_{b\in B} CS\left(a,b\right)+{\sum}_{b\in B}\frac{1}{\left|A\right|}{\sum}_{a\in A} CS\left(b,a\right)\right)}{\left|A\cup B\right|} \)
< 1,2,7> \( \frac{1}{\left|A\right|\bullet \left|B\right|}\bullet \left(\sum \limits_{a\in A,b\in B} CS\left(a,b\right)\right) \)
< 1,2,8> Minimum Weighted Bipartite Matching
< 2,2,5> \( -\log \left(\frac{\frac{\left| leaves(a)\right|}{\left| subsumers(a)\right|}+1}{\left| leaves(r)\right|+1}\right) \) \( 1-\frac{2 IC(c)}{IC(a)+ IC(b)} \) \( \frac{1}{\left|A\right|+\left|B\right|}\bullet \left(\sum \limits_{a\in A}\underset{b\in B}{\min } CS\left(a,b\right)+\sum \limits_{b\in B}\underset{a\in A}{\min } CS\left(b,a\right)\right) \)
< 2,2,6> \( \frac{\left({\sum}_{a\in A}\frac{1}{\left|B\right|}{\sum}_{b\in B} CS\left(a,b\right)+{\sum}_{b\in B}\frac{1}{\left|A\right|}{\sum}_{a\in A} CS\left(b,a\right)\right)}{\left|A\cup B\right|} \)
< 2,2,7> \( \frac{1}{\left|A\right|\bullet \left|B\right|}\bullet \left(\sum \limits_{a\in A,b\in B} CS\left(a,b\right)\right) \)
< 2,2,8> Minimum Weighted Bipartite Matching
< 1,3,8> levels(a → r) \( 1-{e}^{\alpha \left( IC(a)+ IC(b)-2 IC(c)\right)}\bullet \frac{e^{\beta IC(c)}-{e}^{-\beta IC(c)}}{e^{\beta IC(c)}+{e}^{-\beta IC(c)}} \) Minimum Weighted Bipartite Matching
< 1,4,8> levels(a → r) \( \frac{IC(l)- IC(c)}{IC(l)} \) Minimum Weighted Bipartite Matching