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Abstract 

Background:  Developmental dysplasia of the hip (DDH) is a relatively common disorder in newborns, with a 
reported prevalence of 1–5 per 1000 births. It can lead to developmental abnormalities in terms of mechanical dif‑
ficulties and a displacement of the joint (i.e., subluxation or dysplasia). An early diagnosis in the first few months from 
birth can drastically improve healing, render surgical intervention unnecessary and reduce bracing time. A pelvic X-ray 
inspection represents the gold standard for DDH diagnosis. Recent advances in deep learning artificial intelligence 
have enabled the use of many image-based medical decision-making applications. The present study employs deep 
transfer learning in detecting DDH in pelvic X-ray images without the need for explicit measurements.

Methods:  Pelvic anteroposterior X-ray images from 354 subjects (120 DDH and 234 normal) were collected locally at 
two hospitals in northern Jordan. A system that accepts these images as input and classifies them as DDH or normal 
was developed using thirteen deep transfer learning models. Various performance metrics were evaluated in addition 
to the overfitting/underfitting behavior and the training times.

Results:  The highest mean DDH detection accuracy was 96.3% achieved using the DarkNet53 model, although other 
models achieved comparable results. A common theme across all the models was the extremely high sensitivity (i.e., 
recall) value at the expense of specificity. The F1 score, precision, recall and specificity for DarkNet53 were 95%, 90.6%, 
100% and 94.3%, respectively.

Conclusions:  Our automated method appears to be a highly accurate DDH screening and diagnosis method. More‑
over, the performance evaluation shows that it is possible to further improve the system by expanding the dataset to 
include more X-ray images.
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Background
Developmental dysplasia of the hip (DDH) is a relatively 
common disorder in newborns with a reported preva-
lence of 1–5 per 1000 births [1], and recent studies indi-
cate that there is a possibly higher incidence rate [2]. Hip 

dysplasia is a deformity that leads to structural instabil-
ity and capsular laxity. DDH can result in developmen-
tal abnormalities in terms of mechanical difficulties, a 
displacement of the joint (i.e., subluxation or dysplasia), 
additionally, malformed growth and can eventually cause 
arthritis if left untreated [3]. Early diagnosis in the first 
few months from birth can drastically improve healing, 
render surgical intervention unnecessary and reduce the 
bracing time [4]. Pelvic X-ray inspection represents the 
gold standard for DDH diagnosis [5].
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Accurate diagnosis of DDH requires specialist knowl-
edge of hip development and the alignment of the ace-
tabulum and femoral head. Several possible acetabulum 
deformities may exist. Moreover, the treatment effective-
ness and accuracy may require follow-up imaging and 
an inspection of the hip [4]. Figure 1 shows some of the 
most common pediatric pelvic parameters used to assess 
hip X-ray images as either normal or DDH. In pediatrics, 
a hip is judged as dysplastic based on the acetabular angle 
being greater than 30°for a newborn, a broken Shenton’s 
line, or an abnormal location of the femoral head (if ossi-
fied and visible) [6].

Recent advances in deep learning artificial intelligence 
have enabled many image-based medical decision-
making applications. Deep learning is concerned with 
building neural networks with a number of layers that 
far exceed the traditional three (i.e., input, output and 
hidden). The late part of the last decade has witnessed 
a resurgence and proliferation of deep learning-based 
applications powered by the computational prowess of 
graphical processing units (GPUs) [8]. Convolutional 
neural networks (CNNs) are one of the most commonly 
used deep learning networks in the research literature. It 
is characterized by a series of convolution, pooling and 
rectified linear unit (ReLU) layers that conclude in a fully 
connected layer that combines the various features dis-
covered by the subsequent layers. CNNs have been found 
to be useful for discovering features in images of various 
shapes from a wide range of medical specialties regard-
less of any scale, rotation, or translation [9]. Some appli-
cation examples include eardrum otoendoscopic images 
[10], lung X-ray images [11], and images of white blood 
cells [12].

Regarding skeletal and bone-related diseases, deep 
learning has been used in many studies that detect bone 

diseases (e.g., cancers, arthritis, etc.) or deformities. Liu 
et al. [13] used deep learning to build a diagnostic CNN 
model of bone metastasis on bone scintigrams. Their 
approach works by performing a region classification 
using Resnet34, which is followed by a segmentation 
using U-net. A segmentation map is fed into the CNN 
model, which generates the diagnosis report. Jakaite 
et al. [14] employed a deep learning strategy of the group 
method of data handling (GMDH) to detect osteoarthri-
tis. Fraiwan et al. [15] used deep transfer learning for the 
classification of vertebral X-ray images into spondylolis-
thesis, scoliosis, or normal. Other bone-related applica-
tions include bone age assessment [16–18], bone mineral 
density prediction [19] and fracture detection [20].

Given these recent advances, the DDH identification 
literature has been lagging behind in employing such 
powerful tools. Most of the related works still employ 
image processing techniques to automatically detect pel-
vic landmarks, delineate important lines (e.g., Hilgen-
reiner’s), and/or estimate certain angle measurements 
(e.g., the acetabular angle). To this end, Xu et al. [21] used 
a multitask hourglass network to detect six hip land-
marks and the age of the femoral head. They achieved an 
average pixel error of 4.64, however, this type of metric 
may be susceptible to changes in the scale of the image. 
Al-Bashir et  al. [22] detected important features in pel-
vic X-ray images using Canny edge detection. Then, 
the bread first search was used to locate possible femur 
head center locations. After that, the Hough transform 
was employed to find possible edges, and the best can-
didate was chosen based on eigenvalues and covariance 
matrices. Finally, the acetabular and center edge angles 
were estimated. They reported an accuracy range of 78.4-
85.4%. Toward a similar result, Xu et al. [23] used object 
detection using mask-region based convolutional neural 
networks (Mask-RCNN) followed by a high resolution 
network (HRNet) for landmark detection and extraction. 
After that, the ResNet50 model was used for classifica-
tion. Sahin et al. [24] constructed a model template image 
based on expert opinion and used comparisons with that 
template to find the best fitting (i.e., diagnosis). However, 
this type of method depends on the quality, scale, rota-
tion, and shape of the pelvic image being similar to the 
template. Liu et  al. [25] used local morphological and 
global structural features of the pelvis along with pyramid 
nonlocal UNet (PN-UNet) and reported an AA measure-
ment average accuracy of 90.1% (right) and 89.8% (left).

All of the aforementioned literature follow a common 
traditional theme of attempting to estimate the location 
of the pelvic landmarks and the associated radiographic 
parameters. However, such approaches do not measure 
the impact of the measurement error on the diagnosis 
(e.g., a 3°error could be the same as 5°if both result in the 

Fig. 1  The pediatric radiographic parameters used to assess normal 
and dislocated hip [7]
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same wrong diagnosis). Moreover, the multiple steps in 
each method may lead to compounded errors. In addi-
tion, the images may require explicit processing. In this 
work, we utilize advances in deep learning to automati-
cally diagnose DDH from X-ray images in a manner that 
eliminates the need for multiple stages, complicated pre-
processing, landmark detection, or feature extraction.

The research contributions of this work are as follows:

•	 A highly accurate artificial intelligence system for 
the diagnosis of DDH is developed based on radio-
graphic X-ray images of the pelvis. Such a product 
has the potential to support clinical decision-making 
and reduce errors and overhead.

•	 Numerous X-ray images of DDH patients are col-
lected. This dataset will be made publicly available, 
which will benefit research in the area and the educa-
tion/training of medical students.

•	 The performance of thirteen deep transfer learn-
ing models is thoroughly evaluated and compared 
using various setups and metrics that can reveal any 
strengths/shortcomings.

The remainder of this paper is organized as follows. The 
methods section describes the general steps taken to 
develop the DDH diagnosis system, the dataset, deep 
learning models, the experimental setup and perfor-
mance metrics. The results are described and discussed 
in the results section. In the final section, we present our 
conclusions.

Methods
The general steps used to build and test the DDH detec-
tion models are shown in Fig.  2. The approach used in 
this work does not require any landmark detection, nor 

does it rely on an explicit feature extraction. Moreover, 
no angle measurements are needed. All of these aspects 
are automatically handled by the intricacies of the deep 
learning model layers and operations. The next few sub-
sections explain each part in detail.

Dataset
The pelvic X-ray images, in an anteroposterior (AP) view, 
were collected locally by the authors at King Abdullah 
University Hospital, Jordan University of Science and 
Technology, Irbid, Jordan and at Alsafa specialized hospi-
tal, Jarash, Jordan. The dataset used in this work included 
354 subjects (120 DDH, 234 normal) with a mean age 
of 4.5± 0.83 months and a maximum of 7 months. The 
images were taken as part of a standard diagnostics/
screening procedure for infants to check for DDH. The 
images were ordered by the specialists at KAUH and 
Alsafa Hospital and processed by the designated radiolo-
gists at the corresponding hospital. The diagnosis (nor-
mal or DDH) was determined by three specialists upon 
X-ray inspection.

Only one image per subject was included in the data-
set in one of the two classes (i.e., DDH or normal). The 
original images were in a high resolution JPEG format 
(i.e., larger than 2000×2000 pixels). The images were 
later resized to match the specific deep learning model 
requirements. Aside from cropping to remove the irrel-
evant black parts of the image, no other preprocessing 
operations were performed.

Deep learning models
Instead of building the CNNs per application from 
scratch, transfer learning allows the use of highly capa-
ble pretrained networks. The main operational premise 
is that training a large model on a very large and diverse 

Fig. 2  A graphical representation of the steps used in this work
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dataset will serve as a template for specific applications. 
Initial layers will learn generic features (e.g., color), 
whereas the later layers will serve the specific applica-
tion. This approach has been successfully used in many 
applications in the literature [26].

In this work, thirteen deep learning CNN pre-
trained models were used individually to detect DDH 
in hip X-ray images. These were DarkNet-53 [27], 
DenseNet-201 [28], EfficientNet-b0 [29], GoogLeNet 
[30], Inceptionv3 [31], Inception-ResNet, Mobile-
Netv2, ResNet-(18, 50, and 101) [32], ShuffleNet [33], 
SqueezeNet [34] and Xception [35]. The models dif-
fer in their input size, width of the network and the 
number of layers (i.e., depth). Moreover, some models 
introduced changes for computational efficiency (e.g., 
residual networks). All models were pretrained using 
the ImageNet dataset [36].

Experimental setup
The hyperparameters for all the models were set as fol-
lows: The minimum batch size, which controls the com-
putational efficiency, was set to 16. Depending on the 
model, larger values may not be possible due to the large 
memory requirements. The maximum number of epochs 
was set to 50 to allow the learning process to peak while 
avoiding unnecessarily lengthening the training time (i.e., 
training with a flat loss curve in later epochs). The learn-
ing rate was set to 0.0003. The stochastic gradient descent 
with momentum (SGDM) optimization algorithm was 
used as the solver for network training. It is widely used 
for training due to it fast convergence [37].

Two methods for splitting the data into training/test-
ing were evaluated: 70/30 and 90/10. This will test the 
models’ ability to learn if they are fed more data, and give 
more insight into the learning process (e.g., overfitting or 
underfitting).

Input images were augmented by performing random 
x-axis and y-axis translations (i.e., moving the image 
along those axes) using the pixel range [− 30 30] and a 
random scaling using the scale range [0.9 1.1]. An aug-
mentation has been found to improve the learning 
process by preventing overfitting (i.e., optimizing the 
model for specific image details) [38]. This step does not 
increase the size of the dataset because the augmented 
dataset replaces the original dataset. Hence, the results 
are not artificially improved by duplication. Figure  3 
shows the effect of image augmentation.

The deep learning models were customized, trained, 
and evaluated using MATLAB R2021a software run-
ning on an HP OMEN 30L desktop GT13 with 64 GB 
RAM, NVIDIA GeForce RTXTM 3080 GPU, Intel CoreTM 
i7-10700K CPU @ 3.80GHz, and 1TB SSD.

Performance evaluation metrics
The performance was evaluated using the metrics in 
Eqs. 1–5, where TP is true positive, FN is false negative, 
FP is false positive and FN is false negative. The recall 
(i.e., sensitivity or true positive rate) measures the ability 
to identify DDH X-rays as positive. On the other hand, 
specificity (i.e., true negative rate) measures how many 
normal X-rays are correctly identified as such (i.e., nega-
tive or normal). An overly sensitive system will identify 
a high percentage of positive cases, which may be at the 
expense of additional false positives. Thus, precision is 
required to report the percentage of true positive (i.e., 
DDH) images as a percentage of all the reported positive 
images, including the false images. Accuracy determines 
the ratio of correctly identified positive and negative 
cases to the total number of images. In the case of imbal-
anced datasets with large disparities in the number of 
images in each class, the F1 score provides a good indica-
tor of accuracy [39]. In addition, the training and valida-
tion times were reported.

The receiver operating characteristic (ROC) curve 
and the corresponding area under the curve (AUC) 
were also used in the performance evaluation. The 

(1)Recall =
TP

TP+ FN

(2)Specificity =
TN

TN+ FP

(3)Precision =
TP

TP+ FP

(4)F1 score =2×
Precision× Recall

Precision+ Recall

(5)Accuracy =
TP+ TN

TP+ FP+ TN+ FN

Original image Augmented image

Fig. 3  The effect of image augmentation
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ROC and AUC are typically used to show the compro-
mise between the false positive rate (i.e., 1 - specific-
ity) versus the true positive rate (i.e., recall). In other 
words, it investigates the effect of varying the threshold 
for accepting cases as positive. A good model will have 
high recall values for high values of specificity (i.e., low 
false positive rate) and maintain a high true positive 
rate throughout. Thus, the higher the ROC curve and 
the more to the left it is, the better the performance. 
This is reflected in the value of the AUC.

Results
The objective of the experiments was to evaluate the abil-
ity of the customized and retrained models to correctly 
identify X-ray images that show DDH. In addition, the 
time required for training and validation was reported.

Table 1 shows the mean F1 score, precision, recall and 
specificity for each deep learning model and the 70/30 
data split. Most models, aside from SqueezeNet and 
EfficientNet-b0, achieved comparable F1 scores, with 
DarkNet-53 achieving the highest value (88.9%). All the 
models exhibited high sensitivity to the DDH class and 
achieved very high values, with Inceptionv3 correctly 
identifying all cases. The table clearly shows that the 
source of the errors is the false positives (i.e., identify-
ing normal images as DDH). However, the SqueezeNet 
model was consistent over the two classes (DDH and nor-
mal) in contrast to the other models or even EfficientNet-
b0. The sample confusion matrices in Fig. 4 corroborate 
these observations. The mean, minimum and maximum 
accuracies for all the algorithms using a 70/30 data split 
are shown in Fig. 5. The figure gives an indication of the 
performance fluctuation of the various models with dif-
ferent random choices of images for training and test-
ing. The Darknet53 model produced the least variance, 
and SqueezeNet produced the most variance. Moreover, 
as the number of layers (i.e., depth) is increased in the 
Resnet models, the fluctuation in the accuracy with dif-
ferent random choices decreases. Figure 6 shows a sam-
ple ROC curve for the Inceptionv3 model, as one of the 
best performing models, using a 70/30 data split. The 
ROC curve displays excellent performance, although 
there is obviously room for improvement, and a larger 

Table 1  The mean F1 score, precision, recall, and specificity 
for each deep learning model using 70/30 data split over 10 
randomized runs

Deep learning model F1 score Precision Recall Specificity

SqueezeNet 76.6% 71.0% 86.4% 78.7%

GoogLeNet 87.8% 82.3% 94.4% 89.1%

Inceptionv3 88.6% 79.8% 100.0% 86.6%

DenseNet-201 85.2% 75.1% 98.6% 83.0%

MobileNetv2 85.3% 76.7% 96.7% 84.3%

Resnet101 85.7% 76.0% 98.6% 83.6%

Resnet50 88.8% 81.9% 97.5% 88.4%

Resnet18 84.7% 75.3% 97.2% 83.0%

Xception 84.9% 74.7% 98.6% 82.6%

Inception-ResNet-v2 84.7% 75.9% 96.1% 84.1%

ShuffleNet 82.7% 71.7% 98.1% 79.7%

DarkNet-53 88.9% 80.9% 98.9% 87.9%

EfficientNet-b0 78.5% 65.5% 98.1% 73.4%

Fig. 4  Sample confusion matrices for all the algorithms using 70/30 data split
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dataset will help generate a smoother curve. The AUC 
value was 93.57%.

Although the number of subjects and images used 
in this work is larger than most of the related stud-
ies in the literature, the deep learning models require 
large datasets and achieve better performance with 
an increased number of training samples. To evalu-
ate the performance of the models when they are fed 
with more training data, further experiments were 
performed with a 90/10 data split. Table  2 shows the 
mean F1 score, precision, recall and specificity for 
each deep learning model and the 90/10 data split. All 
models achieved near perfect sensitivity (i.e., recall) 

by correctly identifying DDH images. The SqueezeNet 
model seemed to benefit the most from the increased 
number of training images, with the performance met-
rics greatly improving over the ones reported for the 
70/30 data split (see Table  1) and they exhibited less 
fluctuation (see Fig.  7). Moreover, the DarkNet-53 
model remained in the lead with a 95% F1 score. Fig-
ure  8 shows a sample ROC curve for the DarkNet-53 
model, as the best performing model, using a 90/10 
data split. The ROC curve displays better performance 
than the curve in Fig. 6. The smoothness of the curve is 
not visible due to having most of the recall values close 
to or equal to 1. The AUC value was 95.1%.
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Fig. 5  The mean, minimum, and maximum accuracy for all the 
algorithms over 10 randomized runs using 70/30 data split
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Fig. 6  A sample ROC curve for Inceptionv3 using 70/30 data split. 
The AUC was 93.57%

Table 2  The mean F-score, precision, recall, and specificity for 
each deep learning model using 90/10 data split

Deep learning model F1 score Precision Recall Specificity

SqueezeNet 92.3% 86.2% 100.0% 90.9%

GoogLeNet 86.5% 79.6% 96.7% 84.8%

Inceptionv3 90.0% 82.1% 100.0% 88.3%

DenseNet-201 86.2% 76.6% 99.2% 83.5%

MobileNetv2 94.6% 90.1% 100.0% 93.9%

ShuffleNet 82.9% 71.6% 98.8% 79.6%

Resnet101 92.5% 86.3% 100.0% 91.3%

Resnet50 94.4% 89.8% 100.0% 93.5%

Resnet18 89.1% 81.4% 99.2% 87.4%

Xception 83.9% 76.4% 93.3% 84.8%

Inception-ResNet-v2 86.1% 76.4% 99.2% 83.5%

ShuffleNet 87.7% 78.9% 99.2% 85.7%

DarkNet-53 95.0% 90.6% 100.0% 94.3%

EfficientNet-b0 87.7% 78.3% 100.0% 85.2%
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Fig. 7  The mean, minimum, and maximum accuracy for all the 
algorithms over 10 randomized runs using 90/10 data split
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The confusion matrices in Fig. 9 show a near perfect 
detection of DDH cases, with the false positives as the 
cause of errors. However, such errors may be tolerable 
in a screening system. Although having both high pre-
cision and recall is desirable, in a dependable system, it 
is better to report false positives that can be detected 
with further tests and evaluation by specialists than 
to miss reporting positive cases that will worsen with 
time. Figures  10 and  11 show samples of the wrongly 
and correctly classified pelvic X-ray images, respec-
tively, along with the detection probabilities.

It is important to report the training and validation 
behavior of the deep learning models to expose models 
that overfit or underfit the data. For two of the best per-
forming models, Fig.  12 shows a sample of the training 
and validation progress for the GoogLeNet model using 
70/30 data split and Fig. 13 shows a sample of the training 
and validation progress for the DarkNet-53 model using 
90/10 data split. Both figures show a stable learning pro-
cess with a decreasing loss and no apparent overfitting/
underfitting.

Table 3 shows the training and validation times for all 
the models using the 70/30 and 90/10 data splits. The 
times increase linearly with a 20% increase in the training 
data. The fastest model was SqueezeNet with less than a 
minute and a half for either training data size. The Dark-
Net-53 model requires a reasonable amount of training 
time (317.6 and 362 seconds) given that it achieved the 
highest performance. These times do not generally affect 
the usability of the model, as testing times were on the 
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Fig. 8  A sample ROC curve for DarkNet-53 using 90/10 data split. The 
AUC was 95.11%

Fig. 9  Sample confusion matrices for all the algorithms using 90/10 data split

DDH, 97.7% Normal, 99.9%

Fig. 10  A sample of wrongly classified X-ray images
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order of milliseconds per image and the training is done 
once and offline with respect to the deployment.

In regards to the related literature and to our knowl-
edge, the problem of direct diagnoses of DDH from X-ray 
images has received little attention. Table 4 shows some 
of the related results in the literature. In Sahin et al. [24], 
comparing means is not a valid accuracy metric, as it 
does not compare individual measurements to the corre-
sponding gold standard. Liu et al. [25] report a 94.68% F1 
score, however, this is done for the heavy dislocation case 
based on their approach for measuring the AA index, and 
it is not clear what gold standard did they compare to 

given that they compared their results to a doctor with/
without the aid of a computer. Moreover, the work in this 
paper takes a direct approach to DDH detection, which 
avoids the compounded errors in landmark detection 
and manual/automatic measurements.

The present study has some limitations. First, the size 
of the dataset needs to be much larger to realize the full 
potential of deep learning AI. Second, different medical 
norms may affect the diagnosis; for example, some doc-
tors consider the X-ray to be DDH positive if the AA 
angle is greater than 30°, while others may require the 
angle to be less than 25°for normal diagnosis. In addi-
tion, the age of the child being examined may play a role 
in the diagnosis (e.g., an AA angle may be acceptable for 
a younger age group but not for older ones). Third, full 
angle measurements were not included or available for 
the dataset. Such data enable updates to the diagnosis to 
match different standards. Moreover, it opens the door 
for studies to calculate the various involved angles (e.g., 
AA angle) using deep learning regression.

For future and more robust studies, it is possible to 
develop custom classification models using different 
architectures and diverse/larger datasets. Moreover, 
the development of ensemble deep learning models 
for DDH classification is another avenue for research. 
In addition, exhaustive evaluation with different 

Normal, 99.2% DDH, 94.8%

Fig. 11  A sample of correctly classified X-ray images

Fig. 12  Training and validation progress for the GoogLeNet model using 70/30 data split
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augmentation operations, preprocessing techniques 
and hyperparameters is preferred. Regarding deploy-
ment, the extra effort of wrapping deep learning models 
into smartphone applications should be worthwhile.

Conclusions
Developmental dysplasia of the hip (DDH) is a common 
disorder among newborns, and increased screening and 
radiographic imaging have revealed an even higher prev-
alence than previously thought. Early detection of DDH 
has been shown to drastically reduce the bracing time 
and the need for surgery, and prevents further painful 
long-term complications. However, an accurate diagno-
sis requires specialist knowledge of the development of 
the pelvis, specific measurements and a determination of 
the relative position of several key landmarks, which is an 
error-prone and time-consuming process.

In this work, we collected X-ray images of DDH 
patients, utilized recent advances in deep convolutional 
neural networks and applied transfer learning to the 
problem of DDH diagnosis. Such an approach has the 
potential to achieve high diagnosis accuracy with little 
overhead being incurred to the specialists. Moreover, it 
does not require explicit measurements, manual preproc-
essing, or compounded errors. Future work will focus 
on improving the system by expanding the dataset and 
applying incremental learning approaches to evolve the 
application during deployment. Moreover, we will con-
sider 3D tests for the DDH measurements as they are 
becoming common in identifying certain cases of DDH 
[4] and the application of T önnis and the International 

Fig. 13  Training and validation progress for the DarkNet-53 model using 90/10 data split

Table 3  The mean training and validation time for each deep 
learning model (in seconds)

Data split 70/30 90/10
Deep learning model

SqueezeNet 75.9 84.2

GoogLeNet 129.8 152.8

Inceptionv3 356.7 413.5

DenseNet-201 1261.3 1451.6

MobileNetv2 586.7 674.6

ResNet-101 392.6 454.9

ResNet-50 185.7 205.8

ResNet-18 76.82 82.0

Xception 1431.7 1629.0

Inception-ResNet-v2 1332.0 1363.7

ShuffleNet 443.9 492.7

DarkNet-53 317.6 362.0

EfficientNet-b0 983.1 1331.5
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Hip Dysplasia Institute (IHDI) standard classifica-
tions for DDH severity. In addition, the development of 
ensemble deep learning models for DDH classification is 
another avenue for research. Furthermore, an exhaustive 
evaluation with different augmentation operations, pre-
processing techniques, and hyperparameters is preferred. 
Regarding deployment, the extra effort of wrapping deep 
learning models into smartphone applications should 
result in tangible benefits.
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