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Abstract 

Background:  Patient subgroups are important for easily understanding a disease and for providing precise yet 
personalized treatment through multiple omics dataset integration. Multiomics datasets are produced daily. Thus, 
the fusion of heterogeneous big data into intrinsic structures is an urgent problem. Novel mathematical methods are 
needed to process these data in a straightforward way.

Results:  We developed a novel method for subgrouping patients with distinct survival rates via the integration of 
multiple omics datasets and by using principal component analysis to reduce the high data dimensionality. Then, 
we constructed similarity graphs for patients, merged the graphs in a subspace, and analyzed them on a Grassmann 
manifold. The proposed method could identify patient subgroups that had not been reported previously by select-
ing the most critical information during the merging at each level of the omics dataset. Our method was tested on 
empirical multiomics datasets from The Cancer Genome Atlas.

Conclusion:  Through the integration of microRNA, gene expression, and DNA methylation data, our method accu-
rately identified patient subgroups and achieved superior performance compared with popular methods.
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Introduction
The rapid development of high-throughput technolo-
gies has produced massive amounts of multiomics data, 
including genome, transcriptome, and proteome data as 
well as many more types. The analysis of these data ena-
bles researchers to improve basic research on cancer, 
including oncogene identification [1], recognition of can-
cer mutations [2], screening targets for cancer drugs [3], 
and cancer subtyping [4]. Many global projects, such as 
the International Cancer Genome Consortium (ICGC) 
and The Cancer Genome Atlas (TCGA), have also proven 
that multiomics data are invaluable for medicine. Thus, 

multiomics data integration is essential for understand-
ing biological systems and distinguishing among different 
cancers.Moreover, fusing different datasets for a specific 
disease provides a more accurate comprehensive view of 
the disease, which facilitates diagnosis, treatment, guide-
line instructions, and prevention.

According to the manner of integration, methods for 
clustering multiomics data can be classified into three 
categories, namely, early, intermediate, and late integra-
tion [5, 6]. Early integration tends to rely on learning a 
common representation of the data, after which ordi-
nary single-view clustering methods are implemented. In 
this strategy, the data are fused before the model is built; 
thus, the model ignores the connections among views [5, 
7]. For late integration, the proposed model is applied 
to each type of data independently, and then integration 
is achieved by combining the results. Late integration 
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methods lack a unified framework for integration, lead-
ing to unstable performance [8]. In contrast to the former 
two types, intermediate integration involves projecting 
multiomics data into an intermediate space or manifold 
and learning representations within this space for inte-
gration [7, 9, 10].

Inspired by the advantages of intermediate integration, 
we developed a novel integration method for handling 
high-dimensional multiomics data. We first learned low-
dimensional representations for each view by utilizing 
principal component analysis (PCA). These represen-
tations can be regarded as new features of the patients 
within each view. With the obtained representations, we 
constructed a patient-to-patient graph for each view by 
using the k-nearest neighbors (k-NN) algorithm; these 
graphs served as intermediate representations, which we 
projected onto a Grassmann manifold. Finally, a new rep-
resentation of the patients was obtained by merging these 
projections on the Grassmann manifold.

Its status as an intermediate integration method makes 
our method more advantageous than other methods 
based on early or late integration because it can accu-
rately preserve the properties of each data type, thus 
making it a powerful approach for scaling different data. 
We tested our method by applying it to three types of 
data for many cancers, and we found it very suitable for 
multiple data that require integration for clustering. The 
method can be extended to include image datasets.

Our work focuses on the use of a well-known PCA 
technique based on Grassmann manifold theory that can 
be used to align different bases from different sources 
via a nonlinear alignment method. Nonlinear alignment 
methods, such as the Grassmann manifold method, 
can effectively improve the performance of clustering. 
Regarding multiomics data clustering, our work shows 
high superiority through the use of linking graphs and 
subspace theory.

The rest of this work is organized as follows. We first 
review recent progress in “Related works” section. Then, 
we present the methodology and results in “Methods” 
and “Results and discussion” sections, respectively. 
Finally, we present the conclusions in “Conclusion” 
section.

Related works
The increasing significance of analyzing multiomics data 
has motivated many studies [11–13]. Facing the great dif-
ficulty of reducing the dimensionality of a dataset, the 
authors of [14] proposed a novel method of analyzing a 
breast cancer dataset using the PCA technique, which 
was used to capture the general structure of the clusters 
in the dataset. In the approach proposed in [15], PCA was 
utilized to find the topological structure among patients, 

and a previously unknown subgroup of breast cancers 
with 100% survival and no metastasis was elucidated.

To reduce the effects of bias and regular noise in het-
erogeneous genomic profiles, Shi et  al. [16] proposed a 
pattern fusion analysis  (PFA) framework that enables 
the identification of integrated sample patterns in a low-
dimensional feature space. PFA obtains the local patterns 
of samples by synthesizing a specific feature space and a 
global sampling space across several types of datasets.

To further enhance the robustness of clustering [17, 
18], the authors of [10] proposed a new method called 
similarity network fusion (SNF), in which patient similar-
ity networks acquired separately from each omics data-
set are integrated. The key step of SNF is to iteratively 
update the similarity of each view, and the final fusion is 
completed by averaging all similarity matrices. To avoid 
iterative optimization for SNF, in the GrassmannCluster 
method [7], patient-to-patient similarities are generated 
for multiple omics datasets and are mapped via subspace 
analysis on a Grassmann manifold.

Methods
The proposed method consists of five steps, which are 
summarized as follows: (1) normalization, (2) dimen-
sionality reduction, (3) construction of patient-to-patient 
graphs, (4) embedding of the k-NN graphs, and (5) merg-
ing on the Grassmann manifold.

Normalization
Given M omics, let X (m) ∈ R

N×D denote the data matri-
ces for omics m, where N and D are the numbers of 
patients and features, respectively. For all analyses, we 
perform the z-score transformation:

where Z(m)

f ,p  is the standardized value of feature f for 
patient p and X̄ (m)

f  and σ (m)

f  are the mean and standard 
deviation, respectively, of feature f. Standardizing the 
expression values for each feature across all patients 
through z-score transformation [19] is necessary for run-
ning dimensionality reduction tools, such as PCA.

Dimensionality reduction
The PCA technique has much wider applicability than 
other techniques, such as independent component analy-
sis (ICA) and nonnegative matrix factorization (NMF). 
It is ideal for recognizing patterns and reducing dimen-
sions; for more details, see the Additional file 1. As shown 
in previous references [20], the data after dimensionality 
reduction by PCA effectively capture significant patterns 
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that are present in all the included datasets. After nor-
malizing the data, we utilize PCA as a dimensionality 
reduction method to further extract important informa-
tion from the data, and we select a sufficient number of 
components for each cancer type to explain up to 95% of 
the data variance.

We perform the PCA calculations as described in [20, 
21]. Considering the m-th normalized matrix Z(m) , the 
goal of PCA is to find the maximum projection variance 
of all samples, which can be formulated as:

The matrix P = [w1,w2, . . . ,wk ] is a standard orthogo-
nal basis for a low dimensional space. The solution to 
Eq. (2) is made up of the top k eigenvectors of Z(m)Z(m)T . 
Suppose that �1 ≥ �2 ≥ · · · ≥ 0 are the eigenvalues 
of Z(m)Z(m)T and that the associated eigenvectors are 
w1,w2, . . . ,wk . Thus, the final result of PCA is calculated 
as H (m)T = PTZ(m).

Construction of patient‑to‑patient graphs
We construct a patient-to-patient graph in the PCA space 
to model the specific structure within each view [22–24]. 
For the m-th graph G(m) = {V (m),E(m)} , the nodes V (m) 
denote patients within the space, and the edges represent 
the connections among these patients. . On this basis, we 
first compute the similarity matrix W (m) of graph G(m) . 
Each element W (m)

ij  measures the similarity between 
patients i and j and is computed as follows:

The parameter t is the normalization factor [7]. The 
higher the value of this parameter is, the more similar the 
two patients are.

Next, we select the k-nearest neighbors of each patient 
to preserve the local structure of each graph:

where Ni consists of the k nearest neighbors of patient 
i. The parameter k depends on the sample size. Different 
omics have distinct structures. Thus, the k-NN graph is 
more representative than the original similarity W (m)

ij .

Embedding of the k‑NN graphs
To further extract crucial omics features, we project all 
the graphs into low-dimensional subspaces and obtain 
their associated embeddings in those spaces.

We first calculate the normalized graph 
Laplacian matrix L(m) , which is defined as 

(2)max
P

Z(m)TPPTZ(m)
, s.t. PTP = I

(3)W
(m)
ij = e

−

∥∥∥H(m)
i −H

(m)
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2t2 , i, j = 1....N

(4)W̃
(m)
ij =
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W

(m)
ij if vi ∈ Ni

0 otherwise

L(m) = D(m)− 1
2 ∗ (D(m) − W̃ (m)) ∗ D(m)− 1

2 , where D(m) is 
the degree matrix of the similarity W̃ (m) , and each element 
is computed as D(m)

ij =
∑

i W̃
(m)
ij  [25].

With the learned Laplacian matrix, its embedding U (m) 
can be calculated by solving the associated eigenvalue 
problem according to the spectral clustering method:

The solution to Eq. (5) is the smallest k eigenvector of the 
normalized Laplacian matrix L(m) . The embedding is the 
basis of each space. Thus, it is more comparable among 
omics than the original graphs.

Merging on the Grassmann manifold
Minimizing the Euclidean distance between the integrated 
embeddings and the M embeddings of the omics is a natu-
ral way to obtain a fused representation:

However, such a scheme assumes that similar patients 
are located close to each other in Euclidean space, which 
is often not the case. Multiomics data are complex and 
heterogeneous. Therefore, measuring their distance on a 
manifold, such as in a Grassmann manifold, rather than 
in Euclidean space is more appropriate.

The Grassmann manifold G(k, n) [26] is a set of k-dimen-
sional linear subspaces. Each point on G(k, n) represents 
a set of orthonormal bases Y that can span a k−dimen-
sional space span(Y). Thus, the distance between the spaces 
span(Y) and span(Ỹ ) can be defined as the sum of the prin-
cipal angles for all the basis pairs:

where �i is the principal angle between basis Yi and basis 
Ỹi [26, 27].

Based on this measurement, the distance between sub-
space embeddings can be formulated as follows:

(5)

min
U (m)∈Rn∗k

tr(U (m)TL(m)U (m)), s.t. U (m)T U (m) = I
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(8)
M

i=1

d2proj(U ,U (m))

(9)=kM −

M∑

i=1

tr(UUT
U

(m)
U

(m)T )



Page 4 of 9Alfatemi et al. BMC Medical Informatics and Decision Making          (2022) 22:190 

To minimize the discrepancy, we propose minimizing 
their geometric distance by minimizing the following 
objective function:

The Eq.  (10) forces the integrated representation U to 
be close to all the embeddings U (m) in terms of the pro-
jected distance on the Grassmann manifold, and its solu-
tion consists of the k largest eigenvectors of the modified 
Laplacian matrix Lmod =

∑M
m=1U

(m)U (m)T . Finally, we 

(10)min
U∈Rn∗k

−

M∑

m=1

tr(UUT
U

m
U

mT

), s.t.U
T
U = I

cluster the results of subspace U integration by applying 
the k-means clustering algorithm.

Results and discussion
In this section, we discuss the main results of our study. 
First, we introduce the datasets used in our work. Next, 
we explain the experimental procedures. Then, we com-
pare our results with those of recent methods. Finally, we 
analyze the performance of all methods.

Datasets
We used datasets processed using the SNF method, 
which were downloaded from the TCGA website and 
include data on breast invasive carcinoma (BIC), colon 
adenocarcinoma (COAD), kidney renal clear cell carci-
noma (KRCCC), glioblastoma multiforme (GBM), and 
lung squamous cell carcinoma (LSCC). For each can-
cer type, three types of data are provided, namely, DNA 
methylation, gene expression, and miRNA expression. All 
these datasets contain stage III cancer data, as shown in 
Table 1.

Experimental procedures
As shown in Fig. 1, we first preprocessed the omics data 
using z-score normalization. The original omics data 
have an enormous number of features. Therefore, in the 
proposed method, we utilized PCA to obtain reduced 

Table 1  Patients (samples ) and features for the dataset

Cancer type 
(samples)

Gene 
expression(features)

DNA 
methylation 
(features)

MicroRNA 
(features)

BIC (105 patients) 17,814 23,094 354

GBM (215 
patients)

12,042 1305 534

KRCCC (122 
patients)

17,899 24,960 329

LSCC (106 
patients)

12,042 23,074 352

COAD (92 
patients)

17,814 23,088 312

Fig. 1  The framework of the proposed method. (1) The DNA methylation, gene expression, and miRNA expression omics datasets for the same 
cohort of patients. (2) The representation for each data type by using PCA. (3) The patient-to-patient graph for each type of omics data. (4) The 
subspace representation for graphs. (5) Subspaces merging via analysis on the Grassmann manifold. (6) The final integrative groups of patients
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representations. Then, we created patient-to-patient 
graphs for each type of omics data. Note that we deleted 
edges with low similarity measures, which indicate 
uncertain relationships between samples. After obtaining 
all the graphs, we computed their k-dimensional spectral 
embeddings to further encode their information. Then, 
we merged all the representations on the Grassmann 
manifold. Finally, the patients were clustered in the fused 
representation, and we evaluated the clustering results 
via a post hoc analysis.

Comparison with popular methods
To prove the efficiency of the proposed method, we com-
pared it with SNF and the GrassmannCluster method. 
We used Cox survival p values to compare the results of 
our method with those of SNF and the GrassmannClus-
ter method, and the results are shown in Table 2. For fair 
comparisons, we used the same number of group sub-
types for each cancer for SNF and the GrassmannCluster 
method.

Regarding the GrassmannCluster method, there was 
no COAD among the types of cancer. However, we used 
its code to obtain the Cox survival p values, as shown in 
Table 2. Four out of the 5 types of cancer obtained by the 
GrassmannCluster method were studied. Our method 
showed the important differences between the survival 
times. In SNF, 3 out of the 5 types of cancer were stud-
ied, showing that our method indicated significant differ-
ences in the survival times among subgroups.

Regarding the Grassmann clustering method, there was 
no COAD among the types of cancer. However, we used 
its code to obtain the Cox survival p values, as shown in 
Table  3. Four out of the 5 types of cancer were studied 
with the Grassmann clustering method. Our method 
showed important differences between the survival 
times. For SNF, 3 out of the 5 types of cancer were stud-
ied, and our method indicated significant differences in 
the survival times among subgroups.

Great care was taken to test a synthetic omics dataset 
extracted from [6, 28] to present comparisons. Out of 
200 raw data samples, three types of data were simulated, 
namely, microRNA, gene expression, and DNA methyla-
tion data, which included 503, 2541, and 936 features, 

respectively. Then, we applied three mathematical clus-
tering methods, that is, SNF, the GrassmannCluster 
method, and our method, to the synthetic omics dataset. 
As shown in Table 3, the performance was measured in 
terms of common quantitative measures: the accuracy 
(ACC), normalized mutual information (NMI), F-score, 
precision and purity. These metrics are widely used to 
evaluate clustering performance, with a higher value 
indicating better performance. The average results from 
ten runs are illustrated in Fig.  2. This figure shows that 
the proposed method outperforms the conventional 
methods in terms of accuracy. For example, when the 
SNF and GrassmannCluster methods are used, the accu-
racy is 0.500 and 0.8800, respectively, while the NMI is 
0.639 and 0.9429; in contrast, our method results in an 
accuracy of 0.9150 and an NMI of 0.9468, both of which 
are better than the accuracy and NMI values achieved 
with the SNF and GrassmannCluster methods. In short, 
the results prove that our method is superior. The experi-
ments were performed using a laptop computer with an 
Intel(R) Core(TM) i7-3537U CPU, 4 GB of RAM, the 
Windows 10 operating system, and MATLAB R2020A.

Performance evaluation
To further demonstrate the superior performance of the 
proposed method, we plotted the heatmaps of all the sim-
ilarities for each cancer type in Fig. 3. Breast cancer was 
selected as a case study, and the proposed method was 
applied to the TCGA data mentioned in “Datasets” sec-
tion. The patients were clustered into five subgroups, as 
shown in Table 4. For more details, see Additional file 1: 
Section 6. The patients were grouped based on two main 
factors: (1) the silhouette score [29] to evaluate the most 
similar patients within the subgroups, for which it was 
found that k = 5 was the optimal value (see Additional 
file 1: Fig. S1 and Additional file 1: Fig. S2, and (2) the p 
value in the Cox log-rank test, to evaluate the significance 
of the differences in survival profiles between subgroups 
(see Additional file 1: Fig. S3).

We compared the obtained subgroups against other 
known subgroups (luminal A, luminal B, triple-nega-
tive/basal-like, HER2-enriched and normal-like), for 
which we downloaded the data of already known sub-
groups from the TCGA website for the same patients. 
Kaplan–Meier and multivariate Cox analyses were 
performed to compare the known subgroups and the 
newly obtained subgroups. Significant survival differ-
ences were obtained for the newly obtained subgroups 
compared to the already known subgroups, as shown in 
Additional file  1: Fig. S4 and Table  S1. It is clear that 
our obtained subgroups provide better survival per-
centages. Each group has a different survival effect, e.g., 
group 4 has the highest effect compared with the other 

Table 2  Survival analysis by Log-rank test on five tumor dataset

Cancer type GrassmannCluster SNF Our method

BIC (5 clusters) 2.0× 10
−4

1.1× 10
−3 4.3× 10

−5

GBM (3 clusters) 4.3× 10
−3 2.0× 10

−4
2.3× 10

−4

KRCCC (3 clusters) 2.8× 10
−2

2.9× 10
−2 1.4× 10

−1

LSCC (4 clusters) 1.6× 10
−2

2.0× 10
−2

2.7× 10
−3

COAD (3 clusters) 4.2× 10
−2

2.0× 10
−2

2.7× 10
−3
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Fig. 2  Performance comparison for generating subgroups for our method, SNF and GrassmannCluster using synthetic omics data
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groups, while group 1 has the worst survival progno-
sis (P value 0.001). Additionally, group 4 has the highest 
survival among all groups, with a hazard ratio (HR) of 
0.02, a 95% confidence interval (CI) of (0.001–0.3) and a 
p value of 0.008.

In general, the differences in the survival profiles 
between subgroups were assessed by means of Cox 
log-rank tests using the survminer R package. The p 
value for breast cancer was p < 0.00001 (see Table  2, 
Fig.  4). These results demonstrate that our method 
shows promising performance in cancer subgroup-
ing. Consequently, we can conclude that our method 
provides superior and suitable performance in 

combining different types of omics data. Furthermore, 
our approach is very flexible in choosing suitable fea-
tures for every patient.

Conclusion
In this paper, we proposed a novel multiomics clustering 
method. Our method is based on subspace representa-
tion and manifold integration. We projected each type 
of omics data into a low-dimensional space via PCA and 
built a graph for the patients. Then, all the constructed 
graphs were represented by their spectral embeddings 
and subsequently merged on a Grassmann manifold. 
The proposed approach can effectively identify patient 

Fig. 3  The clustering results heatmaps of similarities score for each type of cancer

Table 3  Clustering performance on synthetic multiple omics data. A higher value indicates better performance

Datasets Methods NMI ACC​ F-score Precision Recall Purity

Synthetic omics data GrassmannCluster 0.9429 0.8800 0.9320 1 0.8743 1

SNF 0.639 0.500 0.5665 0.3952 1 0.5000

Our method 0.9468 0.9150 0.9393 1 0.8855 1

Table 4  An example of survival to illustrate the comparison between five subgroups for breast cancer

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

Number of patients 29 19 19 21 17

Events 10 2 1 2 3

Median (days) 1563 3945 2965 4273 1699

N.risk 5 2 1 1 2

Lower 95% CI 0.2188 0.0673 NA NA 0.0839

Upper 95% CI 0.872 1 NA NA 1

Survival 0.437 0.333 0 0 0.375
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subgroups with distinct survival rates by combining 
microRNA, gene expression, and DNA methylation data. 
Our method was more accurate in addressing the patient 
subgroup problem than recent methods.

Our approach can be extended to include images, for 
which multiple types of properties need to be integrated. 
Moreover, our method can be used for other applications 
that require the integration of multiple types of features.
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