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Abstract 

Background:  Bio-entity Coreference Resolution (CR) is a vital task in biomedical text mining. An important issue in 
CR is the differential representation of identical mentions as their similar representations may make the coreference 
more puzzling. However, when extracting features, existing neural network-based models may bring additional noise 
to the distinction of identical mentions since they tend to get similar or even identical feature representations.

Methods:  We propose a context-aware feature attention model to distinguish similar or identical text units effec-
tively for better resolving coreference. The new model can represent the identical mentions based on different 
contexts by adaptively exploiting features, which enables the model reduce the text noise and capture the semantic 
information effectively.

Results:  The experimental results show that the proposed model brings significant improvements on most of the 
baseline for coreference resolution and mention detection on the BioNLP dataset and CRAFT-CR dataset. The empiri-
cal studies further demonstrate its superior performance on the differential representation and coreferential link of 
identical mentions.

Conclusions:  Identical mentions impose difficulties on the current methods of Bio-entity coreference resolution. 
Thus, we propose the context-aware feature attention model to better distinguish identical mentions and achieve 
superior performance on both coreference resolution and mention detection, which will further improve the perfor-
mance of the downstream tasks.
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Background
Context and motivation
Bio-entity Coreference Resolution focuses on identify-
ing the coreferential links in biomedical texts, which 
is a crucial task for artificial intelligence systems to be 
capable of fully understanding the biomedical texts, as 
significant entities are highly likely to be mentioned mul-
tiple times throughout the texts. Moreover, by improving 
the performance of several downstream tasks, including 

information extraction [1–3], entity linking [4], question 
answering [5], it can further break sentential boundaries 
and connects entities from texts, which is beneficial for 
both extracting complete bio-events and constructing 
bio-networks.

An important challenge in Bio-entity coreference res-
olution is identical mentions (see Task Section for the 
definition) as they tend to get similar or even identical 
representations, which makes the coreference more puz-
zling. This often leads to two types of wrong predictions: 
the false coreferential link among string matching men-
tions and the false local coreferential link among sub-
string matching mentions. First, considering the first 
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example as shown in Fig. 1, in previous neural network-
based models, the undistinguished representation of 
string matching mentions: “it” T2, T3, T5 during feature 
extraction makes them close in feature vector space. This 
likely leads to the false prediction between T5 and T2, 
T3. Similarly, for the latter example, sub-string matching 
mentions: “pachytene” T6, “the “pachytene checkpoint”” 
T7 and “pachytene checkpoint” T8 overlap in “pachy-
tene”. The undistinguished representation of the overlap 
likely causes the false local coreferential link between T6 
and T7’, T8’.

Generally, the differential representation of identi-
cal mentions based on context is necessary as the above 
problem accounts for a large proportion of the corefer-
ence dataset. Different from general texts, biomedical 
texts contain many professional terms along with their 
synonyms, and most of the mentions are string match-
ing or sub-string matching, which makes the problem 
more serious. So, in this paper, we focus on the distin-
guished representation of identical mentions in biomedi-
cal texts. Take protein coreference as an example, we 

make statistics on the identical mentions of the BioNLP 
dataset [6] and CRAFT-CR dataset [7]. First, BioNLP 
primarily annotates the coreferential links among pro-
tein/gene noun phrases, pronouns, and determiners. 
We first count the identical mentions in each document 
and find that documents containing identical mentions 
account for 42.9% of the whole in training dataset and 
52% in the development dataset. However, approximately 
20% of these identical mentions lack a coreferential link. 
In Table 1, we further analyze the POS (part of speech) 
tag of these identical mentions and their frequency (the 
number of times the identical mention appears in the 
document). The results show that these identical men-
tions are mostly determiners and wh-determiners, which 
is consistent with the annotation criteria of the dataset. 
Moreover, documents containing two identical mentions 
account for the largest proportion.

The training and development sets have 800 and 150 
documents, respectively. Each represents the number of 
documents containing identical mentions with different 
frequency of different POS tag.

Fig. 1  Example of linking errors of identical mentions affected by similar representations. The correct prediction is marked blue. The false link errors 
are highlighted in red. Correct annotations: {T1, T2, T3} in eg.1, {T7, T8} in eg.2

Table 1  Statistics of identical mentions on training and development set of BioNLP

Frequency NN/NNS/NP PRP WH- IN All

Train 2 49 66 80 107 302

3 7 13 33 43 96

 > 3 14 12 9 28 63

All 70 91 122 178 461

Dev 2 7 11 18 20 56

3 1 5 11 7 24

 > 3 0 0 0 7 7

All 8 16 29 34 87
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Second, CRAFT-CR covers a wider range of corefer-
ences and mainly focuses on noun phrases and events, 
we additionally make statistics on the number of clusters 
with identical mentions and find that about 65% clus-
ters containing identical mentions. We further find that 
where nearly 52% of the entity clusters contain string 
matching mentions that account for more than half of the 
cluster’s total mentions. Consider that most of the coref-
erential links exist among nouns and noun phrases in 
CRAFT-CR, we make detailed statistics on whether there 
are string matching and sub-string matching between 
coreferential mention pairs in the Table  2. The results 
show that about 70% of the mention pairs have string 
matching or sub-string matching, which indicates that 
such large-scale coreferential annotations in CRAFT-CR 
cause the coreference system more likely to make wrong 
coreferential links between string matching mentions 
and wrong local coreferential links between sub-string 
matching mentions.

Existing neural network-based models [7–10] have 
achieved reasonable good performance by applying the 
neural network with integrate domain specific informa-
tion via pre-trained embeddings and bio-related features. 
However, these methods do not focus much on the dis-
tinction of identical mentions, which may further lead 
to wrong coreferential links as we mentioned above. 
Specifically, though context sensitive encoding networks 
(such as Bi-LSTM and RNN) can distinguish identical 
mentions based on the contexts. But, by using one-hot 
mapping for feature extraction, identical mentions often 
get similar or even the same feature representation. This 
means they are close in the feature vector space, which 
will bring additional noise to their distinction. In this 
paper, our goal is to distinguished represent these identi-
cal text units based on context, so that shorten the dis-
tance between identical text units with similar contexts 
and increase the distance between those with different 
contexts in feature space. Thus, we propose a general 
context-aware feature attention mechanism that adap-
tively learns the importance of each feature based on con-
texts, so as to re-encodes the feature during the feature 
fusion. Thus, the context based re-encoded features can 
reduce the noise brought by the similar representation of 
identical mentions, so as to better distinguish them.

The experiments are conducted by fusing the feature 
attention mechanism on several neural network-based 
methods [9, 10]. The proposed model is evaluated 
on the BioNLP Protein Coreference dataset [6] and 
CRAFT-CR dataset [7]. The experimental results show 
that the proposed model brings improvements on most 
the baselines. Specifically, for [9], it brings 2.0% F1 on 
BioNLP and 0.5% F1 on CRAFT, and for [10], it brings 
0.3% F1 on CRAFT, which achieves the state-of-the-
art performance. Additional experiments on mention 
detection also achieve the state-of-the-art performance 
with 81.1% F1 on BioNLP and 71.5% F1 on CRAFT. The 
results reveal the effectiveness of our model in extract-
ing the semantic information and reducing the text 
noise. Furthermore, empirical studies on identical men-
tion coreference demonstrate that the feature attention 
mechanism aids in distinguishing identical mentions 
based on different contexts by reducing the noise.

Related work
In bio-entity coreference resolution tasks, words refer-
ring to each other are called mentions, while a men-
tion can either be a common noun, a proper noun, or a 
pronoun. Taking the first example in Figure 1, a coref-
erence system partitions the mentions into two coref-
erence chains: (“Protein phosphorylation”, “it”, “it”), and 
(“TPCK”, “it”).

In recent years, the task has attracted researchers’ 
attention because of its great potential in biological 
research. The BioNLP protein Coreference dataset [6] 
and the CRAFT-CR dataset [7] are two typical data-
sets for bio-entity coreference resolution. The former 
are abstracts extracted from PubMed and primarily 
focuses on coreference among protein/gene. The latter 
consists of full papers extracted from PMC, covering a 
broader range of coreferences. Previous work on these 
two datasets can be categorized into three classes. (1) 
rule and feature-based models [8, 11, 12] which heav-
ily rely on syntactic parsers to extract manually crafted 
features and rules, (2) hybrid models [13, 14], which 
combine rule-based and machine learningbased meth-
ods for biomedical coreference resolution, (3) neural 
network-based models [7–10], which use deep learning 
or neural networks to make coreferential links auto-
matically through domain-specific information inte-
gration, including pre-trained embeddings and some 
biomedical features.

Generally, the above work is summarized in Table  3. 
Our work is most closely related to the work of [9, 10], 
while we focus on the problem that previous neural 
network-based methods may cause noise for the dis-
tinction of identical mentions during feature extraction, 

Table 2  Statistics on whether there are string matching and 
sub-string matching between coreferential mention pairs on 
CRAFT-CR

String matching Sub-string 
matching

Others

Train (%) 61.4 8.3 30.3

Dev (%) 58.2 7.0 34.8
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since they often get similar or even the same feature rep-
resentation. This further mislead to make coreferential 
mistakes.

Methods
Task
In an end-to-end coreference resolution system, the 
input is a document D with T words, and the output is 
a set of mention clusters. Let N be the number of pos-
sible text spans in D. We consider all possible spans up 
to a predefined maximum width. START​(i) and END(i) 
are the start and end indices of a span i in D respectively. 
For each span i the system needs to assign an antecedent 
ai ∈ {ε, 1, . . . , i − 1} from all preceding spans or a dummy 
antecedent ε . The dummy antecedent represents two 
cases: (1) the span i is not a mention, or (2) the span i is 
a mention but not coreferential with any previous span. 
Finally, all spans that are connected by a set of antecedent 
predictions are grouped.

The formal definition of identical mention is as follows. 
Suppose the N mentions in a document D are denoted 
as M = {m1,m2, . . .mN } . The identical mentions are 
defined by: M = {mi|∃mj = miandmj ∈ Mandj �= i . For 
each identical mention mi, we define its frequency as 
the number of times that this mention appears in the 
document.

Baseline model
In this section, we briefly describe the baseline model 
[15] which is the basic model of most of the neural net-
work-based Bio-entity coreference systems [7, 9, 10].

Span representation
Assuming vector representation of a sentence with L 
words as {x1, x2, . . . , xL} , while xt denotes the concat-
enation of fixed pre-trained word embeddings and CNN 
(convolutional neural network) character embeddings 
[16] for tth word. The Bi-LSTMs (Bidirectional long 
short-term memory) [17] are used to encode each xt.

Then, the model uses the attention mechanism [18] 
over words in each span to learn a task-specific notion 
of headedness, and the final representation gi of span i is 
produced by:

 where x∗START (i) and x∗END(i) are the outputs of Bi-LSTM 
corresponding to the first and last word of the span i. x̂i 
is the head embedding encoded by the head attention 
mechanism. ϕ(i) is the feature vectors.

Scoring
The scoring functions: mention score sm and antecedent 
score sa take the span representations as input. All the 
spans are ranked based on their mention scores sm . The 
coarse antecedent score which denotes whether span i is 
coreferential with span j is calculated as sa:

where wm and wα are the weight matrix, ◦ denotes ele-
ment-wise multiplication, FFNN  is the feed-forward neu-
ral network, and ϕ(i, j) is the pair-wise features encoding 
the distance between the two spans.

Feature attention
Model structure
To reduce the noise brought by features and distinguish 
the identical mentions effectively, we propose a context-
aware attention mechanism called Feature Attention to 
adaptively exploit features based on context.

As shown in Fig. 2, we use a general attention mecha-
nism that learns the importance or weight of each feature 
based on contexts. Suppose the initial feature vectors is 
ϕ = [ϕ1,ϕ2, . . . ϕV ] , where ϕj indicates the j − th feature 
and x∗u is the contexts vectors generated by Bi-LSTM for 
span u (here we use the average of the context represen-
tation of each word in the span). Then the model learns 
the weight of each feature based on the contexts, and 
generate new feature vectors ϕ∗:

(1)gi = [x∗START (i), x
∗
END(i), x̂i,ϕ(i)]

(2)sm(i) = wm • FFNNm(gi)

(3)sa
(
i, j
)
= wα • FFNNα([gi, gj , g

◦
i gj ,ϕ(i, j)])

(4)aj = wa • FFNN (ϕj f (x
∗
u))

Table 3  Coreference resolution performance comparison by the 
average F1 value

All the models are evaluated on the platforms provided by the task organizers

Dev-F1 Test-F1 Feature-based 
Rule-based

Hybrid Neural

BioNLP

 [13] 62.4 60.9 √

 [14] 68.6 / √

 [11] 63.9 48.1 √

 [12] 67.5 / √

 [8] 72.2 62.0 √ √

 [9] 63.4 51.2 √

 [10] 65.6 69.5 √

CRAFT

 [7] 45.5 46.4 √

 [9] 33.9 36.0 √

 [10] / 57.0 √
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where ⊕ is the concatenation operation and f (x∗u) is a lin-
ear function to map x∗u to the same dimension with the 
feature vector. aj,u is the weight of each feature based on 
the contexts and ϕ∗ is the new reweighed feature vectors.

Span feature attention
To use features adaptively, we apply the Feature Attention 
mechanism to the span features: span width, grammatical 
number, and Metamap entity tags.

As shown in Fig. 3, a new context-aware feature vector ϕ∗ 
is generated by the Feature Attention method and the new 
span features are applied to update the span representation, 
where x∗u is the contexts vectors generated by Bi-LSTM for 
span i and FA is the Feature Attention mechanism:

Coreference Score
The final coreference score of span i and j shows that (1) 
whether span i is a mention, (2) whether span j is a mention 
and (3) whether j is an antecedent of i:

(5)aj,u =
exp(aj)∑V
v=1exp(av)

(6)ϕ
∗ = ⊕V

j=1aj,u • ϕj

(7)ϕ
∗
(i) = FA(ϕ(i), x∗u)

(8)gi = [x∗START (i), x
∗
END(i), x̂i,ϕ

∗
(i)

Fig. 2  The Feature Attention model. The model learns to weigh each 
feature based on contexts

Fig. 3  The model of computing the span embedding representations
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where sm(i) is the mention score derived by Eq.  (2), 
sa
(
i, j
)
 is the antecedent score derived by Eq.  (3), sc

(
i, j
)
 

is a rough sketch of likely antecedents and wc is a learned 
weight matrix.

Experiments
Dataset and baseline
The experiments are performed on the BioNLP Protein 
coreference dataset [6] and CRAFT-CR dataset [7]. The 
BioNLP Protein Coreference dataset consists of 1210 
PubMed abstracts and mainly focuses on protein/gene 
coreference. In CRAFT, there are 97 full papers extracted 
from PMC, covering a broader range of coreferences. For 
BioNLP, we use the scorer1 provided by the organizers 
to make a fair comparison with the previous work. For 
CRAFT-CR, the dataset is divided into three subsets in a 
ratio of 6:1:3 for training, development, and test. We eval-
uate it on the platform2 provided by the task organizers.

To show the effectiveness of the proposed method, we 
conduct the experiments by fusing our Feature Attention 
mechanism on several neural network-based methods. 
As most previous neural network-based methods’ codes 
are not open accessed [8], we only use the following open 
accessed ones [9, 10]. Because [9] is based on the old ver-
sion [19] of the neural system [15], we modify it with the 
new one [15].

BERTfilter [7]: The system provides: (1) a filter of 
noisy mentions based on parse trees.(2) an integra-
tion of language model BERT.
Lee2018 [8]: The system aprovieds (1) a rule-based 
method (2) a machine learning-based method using 
LSTM network.
Bioe2e [9]: The system applies a state-of-the-art 
general system [15] with domain-specific features 
for biomedical text.
KE-LSTM [10]: The system proposes a knowledge 
enhanced LSTM to better resolve bio-entity corefer-
ence.
Simple [11]: The system develops a rule-based sys-
tem with simple modules derived from available sys-
tems.
Bio-SCoRes [12]: The system presents a novel, highly 
flexible architecture and provided a set of strong, 
linguistically-based baseline methods.

(9)

s
(
i, j
)
=

{
0, j = ε

sm(i)+ sm
(
j
)
+ sa

(
i, j
)
+ sc

(
i, j
)
, j �= ε

(10)sc
(
i, j
)
= gTi wcgj

Hybrid [13]: The system proposes a hybrid approach 
that combines both rule-based and learningbased 
method.

Hyperparameters
We follow the same hyperparameters as in [15]. For input 
words, we use (1) GloVe [20] word embeddings pre-
trained on Pubmed with a window size of 2; (2) ELMo 
embeddings we trained on the PubMed with ELMo [21]; 
(3) BERT embeddings trained by the language model 
BERT [22] on general domains. For headword, we use 
GloVe [20] word embeddings pre-trained on Pubmed 
with a window size of 2. We only consider 50 anteced-
ents and the maximum span width is 30 for BioNLP and 
10 for CRAFT-CR. The ratio of top span is set up to 0.7 
and 0.35 for BioNLP and CRAFT-CR, respectively. The 
model is trained up to 70 epochs with early stopping. 
Instead of Universal Sentence Encoder [23], we use Bi-
LSTM to encode sentences and the window size is set up 
to 10. This is because (1) compared with Bi-LSTM, USE 
requires a higher amount of computation. Due to the lim-
ited computing resources, we have to reduce the values of 
hyperparameters: maximum span width and ratio of top 
span. This will limit the performance. (2) We have used 
pre-trained BERT embeddings, which overlaps with USE 
to some extent. To show the validity of the Feature Atten-
tion mechanism, we consider the following experiments:

•	 BioNeu: modify [9] with the new neural network sys-
tem [15].

•	 BioNeu-feature: BioNeu without span features (span 
width, grammatical number, and Metamap entity 
tags).

•	 BioNeu + SFA: BioNeu with SFA (span feature atten-
tion) mechanism.

•	 KE-LSTM: a knowledge enhanced bio-entity corefer-
ence system [10].

•	 KE-LSTM-feature: KE-LSTM [10] without features 
(span width, grammatical number, and Metamap 
entity tags).

•	 KE-LSTM + SFA: KE-LSTM [10] with SFA (span fea-
ture attention) mechanism.

Results
Evaluation of coreference
Tables  4 and 5 show the performance comparison on 
the development and test set of BioNLP and CRAFT-
CR, respectively. We respectively modify the two base-
lines by removing the features (-feature) and proposing 
SFA (+SFA). BioNeu is the modified one of [9] as we 
mentioned in section Dataset and Baseline. From the 

1  http://​bionlp-​st.​dbcls.​jp/​CO/​eval-​test/
2  https://​github.​com/​UCDen​ver-​ccp/​craft-​share​dtasks

http://bionlp-st.dbcls.jp/CO/eval-test/
https://github.com/UCDenver-ccp/craft-sharedtasks
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experimental results, we have the following observations. 
First, the results display that the CRAFT-CR corpus is 
more challenging than the BioNLP dataset as the scores 
are always lower on the CRAFT-CR dataset. Second, 
compared with BioNeu and KE-LSTM [10], the perfor-
mance is reduced when features are removed. This indi-
cates that domain-related features do help in the domain 
task. However, these features will bring noise to identical 
mentions which is further proved and discussed in sec-
tion Identical Mention Coreference Evaluation.

Last, compared with BioNeu, the Feature Attention 
mechanism brings improvements on all the baselines. 
Specifically, for BioNeu, it brings 2.0% F1 on BioNLP and 
0.5% F1 on CRAFT, and for KELSTM [10], it brings 0.3% 
F1 on CRAFT. Though KE-LSTM + SFA gains perfor-
mance on the development of BioNOLP, it shows limita-
tion on the test. The results suggest that the distinction of 
mentions based on contexts is vital for effectively resolv-
ing coreference. In this case, context-aware attention 

models will assist in achieving this goal and making accu-
rate predictions. For the limitation of KE-LSTM + SFA 
on BioNLP, it may because for the most coreferential 
annotations that exist between noun or noun phrase and 
determiners, the introduction of SFA intensifies the dif-
ference of features between the two mentions. And this 
brings noise to the system. In general, we notice that our 
model performs much better precision than competitors 
on the basis of ensuring recall, indicating that after the 
distinct representation of mentions based on context, the 
noise brought by the representation of similar or identi-
cal mentions is reduced. Besides, we also find that the 
proposed model has a stronger generalization ability than 
competitors on the BioNLP.

Mention detection subtask
To further understand the utility of the Feature Atten-
tion mechanism for mention detection subtask, we list 
the mention detection performance of the two datasets 

Table 4  The performance of protein coreference resolution with different models on two evaluation datasets of BioNLP

The maximum value is in bold

Dev Test

P R F1 P R F1

Hybrid 59.9 77.1 67.4 55.6 67.2 60.9

Simple 63.4 64.4 63.9 46.3 50.0 48.1

Bio-SCoRes 72.4 63.2 67.5 / / /

Lee2018-rule 68.8 76.0 72.2 60.2 63.8 62.0

lee2018-neural 60.4 61.9 61.2 54.9 58.0 56.4

Bioe2e 71.7 56.7 63.1 55.6 47.5 51.2

BioNeu 77.1 61.9 68.7 71.5 60.9 65.8

BioNeu-feature 75.5 65.8 70.4 69.5 60.2 64.5

BioNeu + SFA 73.0 65.3 69.0 72.3 61.6 66.5

KE-LSTM 68.1 63.4 65.6 69.6 69.4 69.5
KE-LSTM-feature 74.4 64.8 69.3 62.8 61.2 62.0

KE-LSTM + SFA 70.8 68.3 69.6 69.5 68.2 68.8

Table 5  F1 scores of coreference on CRAFT test set in comparison with some baselines

E2E_MetaMap and BERTfilter are the baselines in [7]

The maximum value is in bold

System B3 BLANC CEAFE CEAFM LEA MUC Ave

E2E_MetaMap 36.4 46.5 33.1 41.0 32.4 51.8 40.2

BERTfilter 44.0 48.9 39.8 49.0 40.0 57.0 46.4

BioNeu 45.0 55.4 36.1 49.8 41.8 55.1 47.2

BioNeu-feature 45.3 53.2 36.5 49.4 42.1 56.1 47.1

BioNeu + SFA 45.1 56.2 37.0 49.7 42.0 56.3 47.7

KE-LSTM 54.9 63.1 48.6 59.4 51.3 64.5 57.0

KE-LSTM-feature 54.5 62.2 48.1 59.2 51.4 64.5 56.6

KE-LSTM + SFA 55.0 63.6 49.5 59.4 51.7 64.6 57.3
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in Table  6. For both the two datasets, compared with 
Bioneu and KE-LSTM [10], the performance is signifi-
cantly increased when SFA is introduced to the baselines. 
Moreover, the SFA model indeed performs much better 
in the recall scores. This indicates that, in the baseline 
model, where there is a span not predicated as a men-
tion, the other identical spans will likely not be detected 
as mentions due to their similar representations. How-
ever, in the SFA model, such false-negative errors are 
decreased, having benefited from the Feature Attention 
mechanism that reweighs the features to distinguish 
identical spans with different representations based on 
different contexts.

Discussion
Identical mention coreference evaluation
To demonstrate the efficacy of the Feature Attention 
mechanism in the distinguished representation of iden-
tical mentions and their coreference resolution, we 

make statistics on the performance of identical men-
tion coreference among baseline, baseline-feature, and 
baseline+SFA. For BioNLP, Table  7 shows the perfor-
mance of different models on identical mention coref-
erence with different POS tags. The results display that 
compared with the two baselines (Bioneu and KE-LSTM 
[10]), the performance of identical mention coreference 
is improved when features are removed, and the supe-
rior is more obvious on precision. This is consistent with 
our previous analysis that features integrated in neural 
network-based model will bring noise to identical men-
tions, because identical mentions often have similar or 
even the same feature representation, which may further 
lead to wrong coreferential links. Moreover, when SFA 
mechanism is introduced in the two baselines, such noise 
brought by features is reduced, thus improving the per-
formance of identical mention coreference. Last, for dif-
ferent POS tags, we find that the SFA is more effective 
on NN/NNS/NP (noun or noun phrase), which may be 
because that features play a more vital role in the seman-
tic representation of such noun or noun phrase. Thus 
SFA helps the model to better distinguish such noun or 
noun phrase by further distinguishing their features.

In Table  8, we compare the coreference performance 
of different models on three types of mention pairs on 
CRAFT-CR: String matching, Sub-string matching and 
Others. Among them, the performance of identical texts 
units representation will directly affect the coreference 
performance of String matching mention-pairs, followed 
by Sub-string matching ones. First, the results show that 
compared with the two baseline models (BioNeu, KE-
LSTM [10]), the performance of string or sub-string 
matching mention pairs is improved when features are 
removed, and for those mention pairs that do not have 
string or sub-string matching, the performance is limited. 
This demonstrates that features integrated in neural net-
work-based model help in the coreferential prediction of 
mention pairs with larger differences but will bring noise 
to identical mentions. Furthermore, the performance 
is improved when SFA mechanism is introduced to the 

Table 6  The performance of mention detection with different 
models on two datasets

E2E_MetaMap and BERTfilter are the baselines in [7]. Bioe2e is the baseline in [9], 
and KE-LSTM is the baseline in [10]

The maximum value is in bold

BioNLP P R F1

Bioe2e 82.0 66.3 73.3

BioNeu 84.1 73.1 78.2

BioNeu + SFA 83.4 76.1 79.6

KE-LSTM 78.0 84.1 80.9

KE-LSTM + SFA 78.2 84.3 81.1
CRAFT P R F1

E2E_MetaMap 67.1 52.7 59.0

BERTfilter 73.1 57.8 64.5

BioNeu 81.6 49.6 61.7

BioNeu + SFA 83.4 49.4 62.0

KE-LSTM 79.3 63.1 70.3

KE-LSTM + SFA 78.8 65.6 71.5

Table 7  The coreference performance of different models on identical mentions with different POS tags on BioNLP dataset

KE-LSTM is the baseline in [10]

NN/NNS/NP PRP WH IN

P R F1 P R F1 P R F1 P R F1

BioNeu 62.5 17.8 27.7 39.0 37.8 38.4 68.3 73.0 70.6 65.6 64.3 64.9

BioNeu-feature 42.9 21.4 28.5 46.3 41.3 43.6 69.1 75.7 72.2 70.1 74.2 72.1

BioNeu + SFA 52.9 32.1 40.0 45.7 34.8 39.5 72.0 73.0 72.5 71.6 72.3 71.9

KE-LSTM 66.7 21.4 32.4 45.0 39.1 41.8 63.5 73.0 67.9 67.6 68.3 68.0

KE-LSTM-feature 75.0 21.4 33.3 47.0 34.9 40.1 71.8 75.6 73.6 72.0 76.2 74.0

KE-LSTM + SFA 92.3 80.0 85.7 47.5 50.0 48.7 66.3 77.5 71.5 60.4 63.4 61.9
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baselines, especially on precision. Such superiority indi-
cates that the Feature Attention mechanism does help to 
reduce the noise brought by features and distinguish the 
identical mentions based on context, which provides fur-
ther help in coreference. Besides, SFA is more powerful 
on string matching mention pairs. This is consistent with 
the superiority of SFA in distinguishing identical texts 
units.

Remaining problems and future work
Finally, we find that the proposed model has some limita-
tions. First, from the results of identical mention corefer-
ence evaluation on CRAFT-CR, we find that the model 
is limited when there is no string or sub-string matching 
between mention pairs. According to our former statis-
tics, this may be because most of the coreferential anno-
tations in CRAFT-CR exist between string or sub-string 
matching mention pairs, which cause the model to be 
trained to pay more attention to the links between identi-
cal mentions. Furthermore, on CRAFT-CR, we also find 
that when the mention’s length (number of tokens within 
the mention) is much long and sub-string matching, it is 
likely to make the local coreferential link. Considering 
the first example in Figure 4, there are two long mentions: 
“the Bmp2C/C; Bmp4C/C; Prx1::cre mice” T1 and “the 
Bmp2C/C; Bmp4C/C; Prx1::cre limbs” T2. Due to their 

long length and sub-string matching, the model tends to 
make local predictions between “the Bmp2C/C’;” T3 and 
“the Bmp2C/C’;” T4, “Bmp4C/C;” T5 and “Bmp4C/C;” 
T6. Third, for BioNLP, we find that when there are several 
syntactic relations in the sentence, such as preposition-
object relation, coordinate relation, subordination rela-
tion, etc. it is hard to predict the coreference. As shown 
in the second example in Figure 4, the model makes the 
false link between “the same phenotype of NF-kappaB 
suppression in normal T cells” T1 and “that” T3, because 
of the complex relations among spans: “the same pheno-
type”, “NF-kappaB suppression”, and “normal T cells”.

Therefore, there are several potential improvements 
to our model as future work. First, for the false link and 
the local link caused by the emphasis of coreferential 
links among string matching mentions in the dataset, 
maybe we can balance the dataset by resampling or refin-
ing the loss function. Furthermore, considering that this 
approach is still limited when the syntactic relation is 
complex, we expect to utilize the syntactic information 
with the help of dependency trees.

Case study
To gain further insight into how identical terms’ repre-
sentations can be distinguished by the attention mecha-
nism, we take the former case in Figure 1 as an example 

Table 8  The coreference performance of mention pairs on CRAFT-CR in three cases

KE-LSTM is the baseline in [10]

String match Sub-string match Others

P R F1 P R F1 P R F1

BioNeu 62.5 71.5 66.7 42.6 27.9 33.7 44.1 29.6 35.4

BioNeu-feature 68.4 68.9 68.6 51.4 32.9 40.1 31.9 29.9 30.9

BioNeu + SFA 68.8 67.8 68.3 44.2 28.2 34.4 47.5 29.3 36.3

KE-LSTM 64.8 83.6 73.1 39.8 35.3 37.4 27.2 34.8 30.5

KE-LSTM-feature 66.6 81.5 73.3 47.1 34.3 39.7 24.0 37.4 29.3

KE-LSTM + SFA 70.2 82.8 76.0 41.4 36.9 39.1 29.3 32.8 30.9

Fig. 4  Examples of remaining problems. The correct prediction is marked blue. The spurious link errors are highlighted in red
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to investigate the Feature Attention weights. We list the 
value of span features (span width, grammatical num-
ber, and Metamap entity tags) and visualize the atten-
tion weights of them in Figures  5 and 6, where correct 
coreferential predictions are marked blue. In Figure  5, 
for those three “it”: T1, T2 and T3, they have the same 
feature value. While, the attention weights show that 
there is difference between T3 and the last two. The first 

two “it” that are coreferential (T1 and T2) gain similar 
weights for the three features, where the weight of Meta-
map is the highest, followed by span width, and finally 
the grammatical number. However, T3 has the different 
span weights with the descending order of span width, 
GN, and MetaMap. This displays that identical mentions 
with the same features will have different feature atten-
tion weights depending on their contexts through the 

Fig. 5  The visualization of mentions’ features and their attention weights in the first example. GN means grammatical numbers. Each column shows 
the attention weights of all the features of the span

Fig. 6  The visualization of mentions’ features and their attention weights in the second example. GN means grammatical numbers. Each column 
shows the attention weights of all the features of the span. “celf” means Cell Function comd. “inpr” means intellectual product



Page 11 of 12Li et al. BMC Medical Informatics and Decision Making          (2022) 22:116 	

span Feature Attention, thus benefits the model in dis-
tinguishing identical mentions and avoiding wrong links.

In Fig. 6, for the three mentions: “pachytene” T4, “the 
“pachytene checkpoint”” T5 and “pachytene checkpoint” 
T6, we can find there are some differences between T4 
and the last two coreferential mentions, The Meatamp 
feature of T5 and T6 overlap in “celf”, that is, Cell Func-
tion comd. The span width feature of T5 and T6 is much 
longer than T4. Based on contexts, the Feature Atten-
tion mechanism helps the model distinguish T4 from the 
other two mentions by increasing the weight of MetaMap 
and span width. This further avoids the wrong local links.

To show how the proposed model performs on the dis-
tinguished representation of identical mentions and their 
coreference resolution, for the above T1-T6, we use Princi-
pal Component Analysis (PCA) to reduce the dimension of 
their feature representation to two. The reduced 2-dimen-
sional feature representations before and after using SFA 
are compared in Fig. 7, where (a) is the initial feature rep-
resentations before using SFA, and (b) is the new feature 
representations after using SFA. In Fig. 7a, T1–T4 have the 
same feature representation, since they have the same fea-
ture (1, Single, unknown). In Fig. 7b, after using SFA, the 
coreferential mention pairs T1–T2, T5–T6 are close in the 
feature space, while T3, T4 are far from them. This will 
make the coreferential predictions easier.

Conclusion
Identical mentions impose difficulties on the current 
methods of Bio-entity coreference resolution as they tend 
to get similar or even identical representations. This prob-
lem may directly lead to wrong predictions. In the paper, 
we focus on this issue and distinguish identical mentions 
by developing a context-aware feature attention model. 
We apply the attention mechanism in the process of span 

representation to adaptively exploit features and repre-
sent identical mentions considering different contexts. 
The results show that our model with the Feature Atten-
tion mechanism performs reasonably well in Bio-entity 
coreference resolution. The performance is supported on 
the BioNLP Protein Coreference dataset and CRAFT-
CR dataset. Moreover, as our model learns to distinguish 
identical mentions more effectively, it achieves superior 
performance on the identical mention coreferece.
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