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Abstract 

Background:  The recent explosion of cancer genomics provides extensive information about mutations and gene 
expression changes in cancer. However, most of the identified gene mutations are not clinically utilized. It remains 
uncertain whether the presence of a certain genetic alteration will affect treatment response. Conventional statistics 
have limitations for causal inferences and are hard to gain sufficient power in genomic datasets. Here, we developed 
and evaluated a C-search algorithm for searching the causal genes that maximize the effect of the treatment.

Methods:  The algorithm was developed based on the potential outcome framework and Bayesian posterior update. 
The precision of the algorithm was validated using a simulation dataset. The algorithm was implemented to a cBio-
Portal dataset. The genes discovered by the algorithm were externally validated within CancerSCAN screening data 
from Samsung Medical Center.

Results:  Simulation data analysis showed that the C-search algorithm was able to identify nine causal genes out of 
ten. The C-search algorithm shows the discovery rate rapidly increasing until the 1500 data instances. Meanwhile, the 
log-rank test shows a slower increase in performance. The C-search algorithm was able to suggest nine causal genes 
from the cBioPortal Metabric dataset. Treating the patients with the causal genes is associated with better survival 
outcome in both the cBioPortal dataset and the CancerSCAN dataset which is used for external validation.

Conclusions:  Our C-search algorithm demonstrated better performance to identify causal effects of the genes than 
multiple log-rank test analysis especially within a limited number of data. The result suggests that the C-search can 
discover the causal genes from various genetic datasets, where the number of samples is limited compared to the 
number of variables.
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Introduction
Identifying genomic sequences and analyzing data is a 
major focus in cancer studies [1]. An understanding of 
the causal relationship between therapeutic effect and 
genomic variances among tumors will allow individual-
ized treatment and reduce unnecessary treatment.

There are open-access, open data sources, such as 
the cBioPortal for Cancer Genomics. Although a large 
amount of data is readily accessible to researchers, most 
of the identified gene mutations are not clinically utilized 
[2].

Conventional statistical analysis of genetic data con-
sists of a series of single-statistic tests. The cumulative 
probability of false positives increases as the number of 
genes increases. To deal with multiple-testing problems, 
the false discovery rate (FDR) is used, which is “expected 
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type I errors among the total number of rejected null 
hypotheses” [3]. Despite the approach, the dimension of 
the data significantly affects the statistical power of the 
test. In addition, conventional statistics only draw an 
association; therefore, distinguishing causal relationships 
from spurious associations is a challenge [4].

To draw causal effects from observational data, Rubin 
introduced a potential outcome framework [5, 6] Indi-
vidual levels of treatment effect are derived from a com-
parison of two potential outcomes. however, observing 
the exposed and unexposed outcomes at the same time 
is impossible. One of the methods to overcome this fun-
damental problem of causal inference is to compute the 
potential outcome from samples matched with similar 
covariate profiles [4, 7, 8]. However, due to the curse of 
dimensionality in cancer genomics, enough sample size 
may not be available to match the exposed and unex-
posed within a genetic subset [9].

We developed an algorithm called C-search that 
can estimate potential outcomes using the similarity-
weighted Monte Carlo method. We adopted Bayesian 
posterior update, which allows us to estimate the uncer-
tainty of our decision boundary from small datasets with-
out losing power [10]. This system was used to identify 
the causal genes that maximize the effect of the treat-
ment. In this study, we compared the performance of 
causal gene discovery between the conventional statisti-
cal method and our C-search using a simulation dataset 
and an open-source gene dataset.

Materials and methods
Pseudo‑counterfactual assumption and similarity 
weighted Monte Carlo
Assume that individual i with variable Xi is treated with 
the treatment variable Ti. Ti is a binary variable ( Ti = 1 , if 
treated; Ti = 0 , if not). There are two potential outcomes: 
Y (Xi,Ti = 1) , and Y (Xi,Ti = 0) . The causal effect of the 
treatment can be drawn from the comparison between 
both [6].

Here, we define f (Xi) as the outcome of an individual 
i with variable Xi when treated, and g(Xi) as the oucome 
of the individual when not treated. Then, individual treat-
ment effect ( ITE ) of the individual i , ITE(Xi) can be writ-
ten as follows:

However, we can observe only one potential outcome 
at most [4, 8]. Therefore, we should infer the counterfac-
tuals from an untreated data pool. We call them pseudo-
counterfactuals because they are not identical to the 
factual.

ITE(Xi) = f (Xi)− g(Xi)

Draw an individual j with variable Xj from the 
untreated data pool. Weight function W

(

Xi,Xj

)

 is defined 
as the probability of similarity sim

(

Xi,Xj

)

 between the 
factual and pseudo-counterfactual [11]. Using the simi-
larity weighted Monte Carlo method [12], we could esti-
mate ITE(Xi) as follows:

Measurement of the difference in survival outcome using 
Win probability (Pwi)
Survival outcome Y  includes survival time and survival 
events. Measuring individual differences in survival out-
comes is difficult because they are right-censored. One 
of the most well-established outcome measures for sur-
vival difference is the bi-partite ranking system, such as 
the Wilcoxon − Mann − Whitney statistics [13]. Adopt-
ing this concept, we assumed the comparison in out-
come between two individuals i and j as a Bernoulli 
trial. If i lives longer than j , i will win a score. ITE for 
the survival outcome can be defined as the win prob-
ability ( Pwi : the chance that the treated individual i wins 
over its untreated counterpart), which follows a binomial 
distribution.

The beta distribution is a conjugate prior for the bino-
mial distribution. If we consider the comparison between 
two individuals i and j as a simple Bernoulli trial, the pos-
terior distribution after observing the score s (or observ-
ing s times of winning of i ) after Nj trials can be defined 
as follows:

Update Win probability using similarity weighted Monte 
Carlo
In ideal settings where all individuals j

(

j ∈
{

1, 2, . . .Nj

})

 
in the counterpart group that are identical to the individ-
ual i , the outcome of j is a good estimator for the coun-
terfactual outcome of i. However, an identical condition 
is impossible in the observation setting. We use the simi-
larity weighted Monte Carlo method to update Pwi.

(1)

∑

j

W
(

Xi,Xj

)

= 1

ITE(Xi) ≈ f (Xi)−
∑

j

g
(

Xj

)

·W
(

Xi,Xj

)

(2)

Pwi ∼ p(“win′′|Xi)

Pwi ∝ p(Xi|
′
“win′′)p

(

“win′′
)

p
(

“win′′
)

∼ Beta(α0,β0)

Posterior Pwi ∼ Beta
[

α0 + s,β0 +
(

Nj − s
)]
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We matched individual i with the individuals in the 
counterpart data pool and updated the score(s ) with 
the similarity weight W

(

i, j
)

 calculated from the simi-
larity sim

(

i, j
)

 between i and j. The sim
(

i, j
)

 can be 
the Euclidean distance in the original data space [14]. 
Other methods use a transformed one-dimensional 
score, that is, a regression function, such as a propen-
sity function [15].

Here, we defined a basal function—a regression func-
tion that approximates the survival state. The covariates 
of individual i and matched controls j are projected 
onto the space through the basal functions Pi(Y |Xi) 
and Pj(Y |Xj). To incorporate the difference onto the 
similarity weight, we used the Boltzmann probability 
distribution:

k is a constant and τ is the annealing temperature. These 
hyperparameters represent degrees of freedom.

Let sj be the score from a single comparison between 
i and j . The posterior distribution after observing a 
single comparison between i and j can be written as 
follows:

The Pwi is estimated from the posterior distribu-
tion after observing Nj the number of counterpart 
individuals.

We defined the observed clinical covariates as Vi. 
Genetic alteration is represented by simple binary val-
ues (e.g., for each genetic profile g1, g2, g3, . . . , gNg , exist-
ing alteration is given a value of 1; if not, it is given a 
value of 0). The individual i has the genetic variable Gi 
that consists of a set of genetic profile.

(3)

sim(i, j) = e−|Pi−Pj |/kτ

W
(

i, j
)

=
e−|Pi−Pj|/kτ

∑N
j e−|Pi−Pj|/kτ

(4)

{

sj = 1, if Yi(T = 1) > Yj(T = 0)

sj = 0, if Yi(T = 1) < Yj(T = 0)

Posterior Pwi ∼ Beta
[

α + sj ·W
(

i, j
)

,β +
(

1− sj
)

·W
(

i, j
)]

(5)

PosteriorPwi ∼ Beta



α +

Nj
�

j=1

sj ·W
�

i, j
�

,β

+

Nj
�

j=1

�

1− sj
�

·W
�

i, j
�





Gi =
[

g1, g2, g3, . . . , gNg

]

i

g1, g2, g3, . . . , gNg ∈ {0, 1}

Individual Clinical 
covariates

Genetic 
covariates

T Y(T = 0) Y(T = 1)

i Vi Gi Ti Yi(T = 0) Yi(T = 1)

To estimate Pwi , we may use the similarity weight cal-
culated from the basal function using clinical covariates 
and/or genetic covariates. We denote the weight of the 
basal function of clinical covariates as WV

(

i, j
)

 and the 
weight using the basal function of the genetic covari-
ates as WG

(

i, j
)

 . Using Eq. 3, WV
(

i, j
)

 and WG
(

i, j
)

 can 
be written as follows:

The win probabilities of individual i using both weights 
are as follows:

Causal gene suggestion
To find a single gene ( gk) effect on the treatment effect, 
we assumed that each gene has an independent win 
probability P(“win′′|gk).

We used the similarity weighted Monte Carlo method 
to estimate P

(

“win′′|Xi, gk = 1
)

 or individual i ’s win 
probability Pwi

(

gk = 1
)

(Eq.  7). Observing individual i ’s 
win probability Pwi

(

gk = 1
)

 updates the prior distribu-
tion of P

(

“win′′
)

= Beta(α0,β0) and the posterior is as 
follows:

Sampling Nk-number of individuals with gk = 1 , the 
posterior can be as follows:

(6)

simV (i, j) = e−|Pi(Y |Vi)−Pj(Y |Vj)|/kτ

WV
(

i, j
)

=
simV

(

i, j
)

∑Nj

j simV
(

i, j
)

simG(i, j) = e−|Pi(Y |Gi)−Pj(Y |Gj)|/kτ

WG
(

i, j
)

=
simG

(

i, j
)

∑Nj

j simG
(

i, j
)

(7)

Posterior Pwi ∼Beta



α +

Nj
�

j=1

sj ·W
V
�

i, j
�

·WG
�

i, j
�

,

β +

Nj
�

j=1

(1− sj) ·W
V
�

i, j
�

·WG
�

i, j
�





(8)
P(“win′′|gk) ∝ P

(

gk |“win
′′
)

· P
(

“win′′
)

k ∈ {1, 2, 3, . . . , n}, n ∈ N

(9)

PosteriorP
(

“win′′|gk
)

∼ Beta
[

α0 + Pwi

(

gk = 1
)

,β0

+
(

1− Pwi

(

gk = 1
))]
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In reality,Pwi

(

gk = 1
)

 is not stationary because Pwi 
depends on individual variables Vi,Gi . To identify the 
marginal treatment effect, we need to balance all con-
founding variables using inverse propensity score 
weighting (IPW) as follows.

For the treatment decision, we need to know whether 
treating a patient with genetic alteration 

(

gk
)

 is ben-
eficial with sufficient evidence. We can estimate the 
posterior distribution of Pw without gk in the same 
manner. If gk has a significant benefit for the treatment, 
the upper bound of the 95% confidence interval of 
P(“win′′|gk = 0 ) should be lower than the lower bound 
of P(“win′′|gk = 1).

Results
Simulation data analysis
The C-search algorithm was validated with the simula-
tion data (Additional file 1), where the 10 causal genes 
that positively modulated the treatment outcome were 
hidden among 300 genes. We compared the precision 
of the C-search algorithm with that of the conventional 
log-rank survival analysis. Both the C-search algorithm 
and conventional statistics suggested 10 possible causal 
genes. The precision of the algorithm was determined 
by the number of true causal genes among the sug-
gested genes. The performance of the algorithm was 
evaluated using five-fold cross-validation. To balance 
the covariate profile, we used propensity score match-
ing. To perform the multiple comparison tests, we 
set the FDR to 0.05 and controlled it with the Benja-
mini − Hochberg procedure [16, 17].

The power of log-rank survival analysis depends 
on the number of data [18]. To demonstrate whether 
the algorithms are dependent on the number of data, 

(10)

Posterior P
�

“win′′|gk
�

∼ Beta



α0 +

Nk
�

i=1

Pwi

�

gk = 1
�

,

β0 +



Nk −

Nk
�

i=1

Pwi

�

gk = 1
�









(11)

Posterior P
(

“win′′|gk
)

∼ Beta

[

α0 +

N
∑

i=1

Pwi

(

gk = 1
)

ê(Vi)ê(Gi)
,

β0 +

(

N
∑

i=1

1− Pwi

(

gk = 1
)

(

1− ê(Vi)
)(

1− ê(Gi)
)

)]

ê(Vi) = P(T |Vi), ê(Gi) = P(T |Gi)

100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 
4000 simulation data were used for the analysis. As the 
number of data increases, both algorithms show better 
causal gene discovery. The C-search algorithm continu-
ously improved its discovery performance until 1500 
samples were obtained and then plateaued. Conven-
tional statistics showed a linear improvement accord-
ing to the number of samples. It required at least 4000 
samples to show performance comparable to that of the 
C-search algorithm (Fig. 1).

Finding positive modulators from open‑source data
We also analyzed the cBioPortal Metabric breast can-
cer data using the C-search algorithm to identify causal 
genes that are associated with improved outcomes of 
chemotherapy. The dataset includes gene mutation pro-
files of 173 genes and clinical data from 2433 patients 
with primary breast cancer [19]. Clinical data consisted 
of age, chemotherapy, radiation therapy, sex, survival life-
time, and survival events. Among the 2433 records, 964 
records that have missing on clinical data were omitted. 
A total of 1,469 patients were included in the analysis 
(Additional file 1).

The C-search suggested nine positive modulators: 
PRKCZ, CLK3, CDKN2A, BRAF, KRAS, CASP8, JAK1, 
PRKACG, and SIK2. We allocated all patients who had 
any of them to the causal gene group and those who had 
not to the other gene group. If they are the true causal 
genes, treated patients should show a statistically sig-
nificantly better prognosis compared to the untreated 
patients in the causal gene group. In addition, among the 

Fig. 1  The number of causal genes discovered by C-search and 
conventional statistics. The X-axis is the number of samples consisting 
of the simulation data. The Y-axis is the number of true causal genes 
among the 10 suggested causal genes that the algorithm discovered. 
The C-search algorithm shows the discovery rate rapidly increasing 
until the 1500 data instances. The log-rank test shows a slower 
increase in performance



Page 5 of 10Lee et al. BMC Medical Informatics and Decision Making          (2022) 22:113 	

a

c d

fe

b

Fig. 2  Discovery of positive modulator genes by C-search in the cBioPortal breast cancer dataset. Nine causal genes are discovered, and patients 
with causal genes are assigned to the causal gene group. Patients without casual genes are assigned to the other gene group. All Kaplan − Meier 
survival curves are adjusted with propensity score matching [39]; 95% confidence intervals are depicted, and p-values are noted. a Kaplan − Meier 
survival curves of the causal gene group and the other gene group. b Treated and untreated patients are compared in the causal gene group. c 
Treated and untreated patients are compared for the other gene group. d The causal gene and other gene group are compared between treated 
patients. e The causal gene and other gene group are compared between the untreated patients. f Survival curve following the optimal policy and 
the other policy is shown
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patients who were treated, the causal gene group should 
show a better prognosis than the other gene group.

There were no overall survival differences between the 
causal gene group and the other gene group (Fig.  2a). 
Among patients with causal genes, the treatment group 
showed a better prognosis than the untreated group 
(Fig.  2b). Meanwhile, in the other gene group, there 
were no statistically significant differences between 
the treated and untreated groups (Fig.  2c). Among the 
treated patients, the causal gene group showed signifi-
cantly better survival than the other gene group (Fig. 2d). 
In the untreated group, the other gene group showed 
better survival outcomes compared with the causal gene 
group (Fig.  2e). We define the optimal policy as treat-
ing patients with causal genes and not treating patients 
without causal genes. The other policy is to treat patients 
in the other gene group and not to treat patients in the 
causal gene group. The Kaplan − Meier survival curve of 
the optimal policy showed better survival outcomes than 
the other policies (Fig. 2f ).

Conventional log‑rank analysis of open‑source data
To discover causal genes using conventional statistics 
from the cBioPortal dataset, we performed log-rank 
survival analysis. As the dataset includes gene mutation 
profiles of 173 genes, multiple log-rank survival analy-
ses were applied for each mutation profile. For each gene 
mutation, the patients treated were divided into two 
groups: one group consisted of patients who harbored 
the mutation and one group of patients without the 
mutation. Survival outcomes were compared between 
the two groups. Propensity score matching was used to 
balance the covariate profile. We set the FDR to 0.01 and 
controlled it using the Benjamini − Hochberg procedure 
[16, 17].

A total of 10 genes were shown to be correlated with 
positive treatment outcomes: EGFR, CLK3, PTEN, 
CDH1, GATA3, KRAS, RB1, PRKACG, NEK1, and NRAS. 
Patients who have any of these are allocated to the causal 
gene group, and those who do not are assigned to other 
gene group. Kaplan − Meier survival curves comparing 
the overall survival differences between both groups are 
depicted in Fig. 3a. No survival differences were observed 
between patients with causal genes and without causal 
genes. In both the causal gene group and the other gene 
group, treatment was not associated with positive out-
comes compared with no treatment (Fig.  3b, c). Mean-
while, in the treated group, the causal gene group showed 
better survival than the other gene group (Fig.  3d). 
Among the untreated patients, the causal gene group and 
the other gene group had no statistically significant dif-
ferences in survival (Fig.  3e). Following optimal policy 

demonstrated better survival than following the other 
policy (Fig. 3f ).

Comparison between C‑search and conventional log‑rank 
analysis
We compared the Kaplan − Meier survival curve of the 
following optimal policy, which was determined by the 
genes that each algorithm discovered. The survival out-
come following the C-search policy showed statistically 
significant better survival outcomes (Fig. 4).

Validation with external data
To determine whether the genes found by the algorithm 
will act as causal genes in the other dataset, we used 
CancerSCAN screening data from Samsung Medical 
Center. CancerSCAN is a custom panel developed by 
the Samsung Genomic Institute [20]. The usage of the 
data was approved by the institutional review boards of 
the participating institutions (Samsung Medical Center 
2019-11-127).

CancerSCAN data consists of 559 breast cancer sam-
ples obtained at the Samsung Medical Center from 
January 2014 to September 2016. Mutation profiles of 
81 genes and clinical data on age, chemotherapy, radia-
tion therapy, sex, survival time, and survival events were 
included (Additional file 1). Among the causal genes sug-
gested by C-search, mutation profiles of BRAF, KRAS, 
CDKN2A, and JAK1 were found in the CancerSCAN 
dataset. We assigned patients to the C-search causal gene 
group who acquired at least one of the mutations. The 
CDH1, EGFR, KRAS, PTEN, and RB1 are genes suggested 
by log-rank analysis whose mutation profiles exist in the 
CancerSCAN dataset. Patients with these mutations are 
assigned to the conventional statistics causal gene group.

Figure  5a shows the significant survival difference 
between the treated and the untreated in the C-search 
causal gene group. The optimal policy suggested by the 
C-search showed a significantly better survival outcome 
(Fig.  5b). Meanwhile, among conventional statistical 
causal gene group, the treated did not demonstrate statis-
tically better survival compared to the untreated (Fig. 5c). 
The survival outcomes following the optimal policy sug-
gested by conventional statistics and those of the other 
policies are not statistically different (Fig. 5d).

Discussion
Biotechnological breakthroughs in gene profiling have 
led to an increased focus on individualized precision 
therapy [21]. Clinicians want to treat patients who will 
benefit the most from the therapy while avoiding treat-
ment that will not benefit or even get harm from therapy.
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There are studies on genetic assays to predict prog-
nosis or response to treatment for breast cancer [22]. 
BluePrint molecular subtyping profile uses 80 genes to 
determine the sensitivity to adjuvant treatment [23]. 
Prosigna Breast Cancer Prognostic Gene Signature 
Assay utilizes the PAM50 test, which identifies gene 

signatures specific to breast cancer subtypes (luminal 
A/B, HRE2, basal-like) [24]. Both studies used genomic 
profiles to infer the molecular subtypes of cancer and 
drew a correlation between the subtypes and the prog-
nosis or response to treatment. However, since the cor-
relation does not infer causation, we cannot conclude 

a

c

e f

d

b

Fig. 3  Discovery of positive modulator genes using conventional log-rank analysis in the cBioPortal breast cancer dataset. Ten causal genes are 
discovered, and patients with causal genes are assigned to the causal gene group. Patients without casual genes are assigned to the other gene 
group. All Kaplan − Meier survival curves are adjusted with propensity score matching [39]; 95% confidence intervals are depicted, and p-values 
are noted. a Kaplan − Meier survival curves of the causal gene group and the other gene group. b Treated and untreated patients are compared 
in the causal gene group. c Treated and untreated patients are compared for the other gene group. d The causal gene and other gene group are 
compared between the treated patients. e The causal gene group and the other gene group are compared between the untreated patients. f 
Survival curve following the optimal policy and the other policy is shown
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that the specific genomic profile results in a positive 
response to treatment. In contrast, our C-search algo-
rithm uses a potential outcome framework to study the 
causal effect of each gene on treatment.

The estimation of causal effects from observational 
studies can be done in a number of ways. Methods based 
on propensity scores match, stratify, and/or inversely 
weight covariates that affect treatment allocation [25, 
26]. G-computation implements regression models [27]. 
Mendelian randomization uses germline gene muta-
tions as instruments to make causal inference [28, 29]. 
These methods are used to estimate average treatment 
effect of the target population. To estimate and compare 
the treatment effect of the patient who have a specific 
genetic mutation, one must calculate conditional causal 
effect, which is the average treatment effect of a sub-
group of patients with that mutation [30]. However, due 
to the curse of dimensionality in cancer genomics, some 

Fig. 4  Survival differences between the optimal policy determined 
by C-search and conventional log-rank analysis are shown. The 
C-search’s policy shows better outcomes than the others. The 
Kaplan − Meier survival curve is adjusted with propensity score 
matching; 95% confidence intervals are depicted, and p-values are 
noted

a b

c d

Fig. 5  External validation of the causal genes suggested by C-search and conventional log-rank analysis. a Kaplan − Meier survival curve of the 
treated and the untreated among the C-search causal gene group. b Kaplan − Meier survival curve following and not following C-search optimal 
policy. c Kaplan − Meier survival curve of the treated and the untreated among the conventional statistics causal gene group. d Kaplan − Meier 
survival curve following and not following conventional statistics optimal policy
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subgroups may lack sufficient sample size to draw mean-
ingful conclusions [31]. In addition, when the algorithm 
handles a smaller dataset, the result drawn from the 
inference has a considerable amount of uncertainty. It is 
important to incorporate uncertainty into the prediction 
of the algorithm [32, 33]. The C-search algorithm updates 
the gene’s win probability with a Bayesian update, thus, 
reflecting its uncertainty in the analysis. Pseudocode 
for the algorithm and the computational complexity are 
shown in Additional file 1.

We demonstrated that the C-search algorithm can iden-
tify causal genes from a simulation dataset that includes 
hidden confounders. Compared to conventional log-rank 
analysis, C-search requires fewer data to gain sufficient 
power to find the causal genes. Therefore, the C-search 
may find more candidate causal genes than conventional 
association studies using genomic data. When there are 
not enough data subsets, it is important as we used Bayes-
ian update to estimate the gene’s win probability.

Both C-search and log-rank analysis successfully found 
positive modulators in the Metabric dataset (Figs.  2, 3), 
yet the gene set found by C-search showed better results 
than log-rank analysis (Fig.  4). Among the positive regu-
lators that C-search and conventional log-rank analysis 
found, two genes are found in common in both algorithms: 
KRAS and PRKACG​. The KRAS gene targets several miR-
NAs to enhance chemotherapy in acute myeloid leukemia, 
lung cancer, breast cancer, and gallbladder cancer [34–36]. 
PRKACG​ is a gene that encodes the protein kinase A subu-
nit Cγ, whose role in cancer has not been elucidated. The 
causal genes suggested by both algorithms contained rela-
tively few overlapping genes. This may be due to intercor-
related genes, at least to some extent; therefore, one of the 
co-expressed genes may be selected for the set as a predic-
tor and yield comparable results [37].

Our study has several limitations. There were only a few 
clinical variables available in the open-source dataset; there-
fore, hidden confounders may affect the performance of 
the algorithm. IPW may result in bias in this setting [15, 
38]. However, the algorithm performance in the simula-
tion data, including 10 hidden confounders, showed better 
results than log-rank analysis. As there are no golden stand-
ard datasets to evaluate the performance of the algorithm 
to determine the treatment modulating effect of genetic 
variables, we can only evaluate the algorithm’s performance 
indirectly. Using the CancerSCAN dataset, we were able 
to externally validate that the causal genes suggested by 
C-search showed comparable results in the external dataset.

Conclusion
We proposed an algorithm that uses a potential out-
come framework and Bayesian updating, inferring 
the causal effect of the genetic variable on treatment 

outcomes. The proposed algorithm was shown to find 
causal genes from the simulation data in a relatively 
small number of samples compared to the log-rank 
analysis. It also showed its performance in finding 
positive treatment modulators from the open-source 
breast cancer dataset, which is validated with external 
data. The C-search algorithm may be applied to vari-
ous types of datasets where the number of samples is 
limited compared to the number of variables.
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