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Abstract 

Background:  Imbalance between positive and negative outcomes, a so-called class imbalance, is a problem gener-
ally found in medical data. Despite various studies, class imbalance has always been a difficult issue. The main objec-
tive of this study was to find an effective integrated approach to address the problems posed by class imbalance and 
to validate the method in an early screening model for a rare cardiovascular disease aortic dissection (AD).

Methods:  Different data-level methods, cost-sensitive learning, and the bagging method were combined to solve 
the problem of low sensitivity caused by the imbalance of two classes of data. First, feature selection was applied to 
select the most relevant features using statistical analysis, including significance test and logistic regression. Then, we 
assigned two different misclassification cost values for two classes, constructed weak classifiers based on the support 
vector machine (SVM) model, and integrated the weak classifiers with undersampling and bagging methods to build 
the final strong classifier. Due to the rarity of AD, the data imbalance was particularly prominent. Therefore, we applied 
our method to the construction of an early screening model for AD disease. Clinical data of 523,213 patients from the 
Institute of Hypertension, Xiangya Hospital, Central South University were used to verify the validity of this method. In 
these data, the sample ratio of AD patients to non-AD patients was 1:65, and each sample contained 71 features.

Results:  The proposed ensemble model achieved the highest sensitivity of 82.8%, with training time and specificity 
reaching 56.4 s and 71.9% respectively. Additionally, it obtained a small variance of sensitivity of 19.58 × 10–3 in the 
seven-fold cross validation experiment. The results outperformed the common ensemble algorithms of AdaBoost, 
EasyEnsemble, and Random Forest (RF) as well as the single machine learning (ML) methods of logistic regression, 
decision tree, k nearest neighbors (KNN), back propagation neural network (BP) and SVM. Among the five single ML 
algorithms, the SVM model after cost-sensitive learning method performed best with a sensitivity of 79.5% and a 
specificity of 73.4%.

Conclusions:  In this study, we demonstrate that the integration of feature selection, undersampling, cost-sensitive 
learning and bagging methods can overcome the challenge of class imbalance in a medical dataset and develop a 
practical screening model for AD, which could lead to a decision support for screening for AD at an early stage.
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Background
With the development of technology and digital medi-
cal data, computer techniques have been widely applied 
in the medical field. However, medical datasets are often 
imbalanced [1], for example, the non-patients/negative 
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class set, has far more samples than the patients/posi-
tive class set. And the class imbalance problem is a typi-
cal problem in classification tasks [2]. When the dataset 
is imbalanced, in order to improve accuracy, many clas-
sifiers tend to misclassify minority samples into major-
ity samples, even though a classifier that classifies all the 
samples into the majority class can get an accuracy of up 
to 98%. Obviously, the classifier is invalid because it can-
not identify patients effectively. Therefore, accuracy is 
not an appropriate evaluation metric, and sensitivity and 
specificity are often used for evaluation in medical treat-
ment instead. In particular, sensitivity always attracts 
more attention, which shows the ability of classifiers to 
find all positive samples. Misclassifying the patients class 
set leads to more serious consequences than misclassify-
ing the non-patients class set.

There are three categories of strategies to solve the 
problem of class imbalance: the data-level approach, 
the algorithm-level approach and ensemble learn-
ing techniques [3, 4]. The data-level approach includes 
oversampling, undersampling and feature selection. 
Oversampling generates minority samples. Its disadvan-
tage is that it causes overfitting and increases time com-
plexity accordingly. Undersampling selects a part of the 
data from the majority set and recombines the minority 
set into a new dataset, which causes loss of information. 
Zhou et al. [5] and Feng et al. [6] revealed that combining 
sampling techniques and ensemble methods could solve 
the problem of information loss effectively. Feature selec-
tion based on the importance of factors can identify the 
most relevant factors for the classification. It can com-
press the dimensionality of the feature space. Because 
class imbalance problems are usually accompanied by 
high dimensionality of the data, it is important to adopt 
feature selection techniques. Researchers have shown 
it can alleviate the class imbalance problem to a certain 
extent [7].

The algorithm-level method mainly applies cost-sensi-
tive learning methods [8], which are an extension of the 
weight adjustment method, by assigning higher weights 
to the minority class samples to modify their preference 
for the majority class. Many studies have demonstrated 
that ensemble learning techniques can achieve better 
performance than a single classifier when the dataset is 
imbalanced [9, 10]. Ensemble learning techniques com-
bine multiple weak classifier models to obtain a better 
and more comprehensive strong model. There are two 
ways to integrate base classifiers into a strong classifier: 
bagging and boosting. The bagging method is a paral-
lel ensemble techniques in which the base classifiers are 
generated in parallel, while the boosting method is a 
sequential method where the base classifiers are gener-
ated sequentially, with the later classifiers influenced by 

the earlier ones. The boosting method runs slowly and is 
sensitive to abnormal data and noise. In many real-world 
applications, one strategy cannot solve the class imbal-
ance problem effectively. Usually several strategies are 
combined to solve the imbalance problem. Feng et al. [11] 
improved the performance of the general vector machine 
(GVM) by feature selection and cost-sensitive learning 
methods. Tao et al. [12] adopted cost-sensitive SVM and 
the boosting ensemble method for imbalanced dataset 
classification. Mustafa et  al. [13] solved the class imbal-
ance problem by combining undersampling techniques 
with the MultiBoost ensemble method. Seiffert et al. [14] 
showed that both sampling and the ensemble technique 
can improve the accuracy of skewed data streams effec-
tively. Sainin et al. [15] applied feature selection and sam-
pling methods to improve the ensemble model for the 
class imbalance problem.

Aortic dissection (AD) is a cardiovascular disease 
caused by the rupture of the aortic intima, in which the 
blood breaks through the aorta to form pathological 
changes in the true and false lumen. This is a very rare 
clinical emergency with low morbidity, a high rate of mis-
diagnosis and a high mortality rate [16]. And the number 
of non-patients is much larger than patients. It has been 
reported that the first 90 min in the early stage of AD is 
the prime time for treatment. In one study [17], the death 
rate was 21% for an AD patient untreated in the first 
24 h, 37% for 48 h and 74% for one week. Most patients 
who are not treated will die within a year [18]. Current 
studies have limited understanding of the causes of AD. 
Although there are many known pathogenic factors for 
AD including family history of AD, pre-existing AD or 
aortic valve disease, hypertension, and cigarette smok-
ing, [19], there is no highly sensitive and specific indica-
tor [20]. At present, the golden criteria of AD diagnosis 
is CTA (computer tomography angiography) [21]. This 
check uses imaging detection to show the location, scope, 
entrance, exit and involvement of the aortic branches 
and aortic valve. Because AD has an insidious onset, pri-
mary medical institutions often face many difficulties in 
the diagnosis and prognosis of the disease. When facing 
a patient, the doctor will first inquire about the patient’s 
medical history and physical examination results. Once 
the doctor feels the patient is at high-risk due to medi-
cal history and the presence of typical symptoms, CTA 
will be arranged to help confirm the diagnosis. The typi-
cal symptoms of AD are sudden severe pain in the chest, 
back and between the shoulder blades. However, some 
patients do not have typical symptoms. They may expe-
rience chest tightness, syncope, nausea and other symp-
toms, and these atypical symptoms are diverse. Many 
doctors lack the ability to distinguish and diagnose atypi-
cal AD patients, which leads them not to arrange a CTA. 
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Thus, some patients with AD fail to get an accurate diag-
nosis and effective treatment in time.

Therefore, earlier screening and prediction of AD is 
essential. To help doctors screen for patients with sus-
pected AD, doctors can take the screening results as 
advice and further examine those high-risk patients to 
then make an accurate diagnosis. Some researchers have 
used machine learning (ML) techniques to diagnose 
AD patients. Huo et  al. [22] applied data mining meth-
ods including SVM, Naïve Bayes, Bayesian Network and 
J48 to classify AD patients, and the Bayesian network 
performed best with an accuracy of 84.55%. However, 
the purpose of their study was to identify false positive 
patients in 492 emergency cases who were sent to emer-
gency room as AD patients. Their research is not suitable 
for early screening. Liu et al. [23] used multiple ensem-
ble learning methods to screen for AD patients; however, 
they only explored the performance of existing ensemble 
methods.

In recent years, many ML approaches have been pro-
posed for classification and medical treatment. Saadatfae 
et al. [24] proposed a new KNN algorithm that improved 
the pruning process of the LC-KNN. The results showed 
their method performed better than recent related 
works. Simon et  al. [25] evaluated the performance of 
logistic regression and other ML algorithms to predict 
the risk of cardiovascular diseases and other diseases. 
Among them, logistic regression achieved as good of a 
performance as other ML models. A review [26] inves-
tigated the state-of-the-art research on deep learning 
techniques in the healthcare system between 2015 and 
2019, which concluded that ensemble techniques based 
on deep learning techniques performed better than a sin-
gle method. Ashish [27] applied SVM and the extreme 
gradient boosting method to detect ischemic heart dis-
ease using the Z-Alizadeh Sani dataset. Among various 
ML algorithms, SVM has proven to be one of the most 
outstanding methods [28]. The main idea of SVM [29] is 
to establish an optimal decision hyperplane to maximize 
the distance between the two types of samples closest to 
the plane, thereby providing good generalization for clas-
sification problems. However, SVM does not take into 
consideration the class distribution and class imbalance 
problem. In order to handle this problem, Veropoulos 
et al. [30] adjusted the loss function of SVM by modifying 
two different misclassification cost values. Kang et al. [31] 
proposed a weighted undersampling method for SVM; 
the improved algorithm performed well on imbalanced 
data sets. Hazarika [32] proposed a SVM that weights 
the training points based on their class distributions. 
Recently, the use of ensemble learning on SVM has been 
useful and has attracted much attention [33]. Pouriyeh 
et  al. [34] investigated different ML methods for heart 

disease prediction. Then ensemble learning techniques, 
including stacking, bagging and boosting, were applied 
to optimize performance. The SVM method using the 
boosting approach performed best. Huang et  al. [35] 
applied different ML methods to classify supraventricular 
ectopic and ventricular ectopic beats. The SVM ensem-
ble method outperformed other methods. Shorewala 
et al. [36] compared the performance of base ML classi-
fiers and their ensemble techniques in detecting coronary 
heart disease, and the stacking model involving SVM, 
RF and KNN performed best. Alsafi et al. [37] proposed 
a ML system to diagnose coronary heart disease. They 
integrated RF, SVM and XGBoost techniques to build 
a diagnosis model after feature selection and optimized 
oversampling on an unbalanced dataset.

In our work, we have explored the binary class imbal-
ance problem in medical research, and tested our method 
in an early screening model for AD. The significant con-
tributions are as follows:

1.	 An effective ensemble model, which integrates the 
bagging, data-level and algorithm-level methods, 
is proposed to overcome the class imbalance prob-
lem; it outperforms standard competitive base and 
ensemble classifiers.

2.	 Different data-level methods are used to deal with 
the class imbalance problem. First, feature selection 
techniques, including a significance test and logistic 
regression, are used for selecting relevant features. 
Then we integrate the weak classifiers with under-
sampling and bagging to build the final strong classi-
fier.

3.	 The cost-sensitive learning method is applied to 
SVM models to construct weak classifiers by assign-
ing higher misclassification cost to the minority class 
examples; this is different from the decision tree used 
by general ensemble models.

4.	 The proposed ensemble model is able to effectively 
identify patients with AD and also yields better 
results than the clinical screening results of some 
hospitals, indicating it can be used to develop a deci-
sion support for screening for AD at an early stage.

Methods
Our method consists of three parts: feature selection, 
cost-sensitive learning and the proposed ensemble algo-
rithm. The three parts will be introduced in the following 
sections. The data flow diagram of the proposed method 
is shown in Fig. 1. The data-level method based on fea-
ture selection is applied to select the most relevant fea-
tures by significance test and logistic regression methods. 
Then the algorithm-level method based on cost-sensitive 
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learning is implemented on SVM by assigning different 
misclassification cost values for two classes to obtain the 
optimal weight settings w of SVM. The seven-fold cross-
validation technique is used to evaluate the predictive 
performance of the model. First, the dataset is partitioned 
into seven subsets evenly, and each subset is taken as a 
testing dataset. The remaining six subsets are used as the 
training dataset. In this way, seven models are obtained, 
and the average performance indicators of these models 
on the testing sets are used as the model’s final results.

During each training phase, the proposed ensemble 
algorithm was applied to obtain a better and more com-
prehensive ensemble model. The data-level method based 
on undersampling and ensemble learning techniques 
based on bagging were used. First, the weight settings 
w are initialized on SVM to construct weak classifiers 
according to the results of cost-sensitive learning. Then 
multiple weak classifiers are trained using the balanced 
dataset obtained by undersampling. Finally, an ensemble 
model is constructed with weak classifiers by bagging.

During each testing phase, the result of the ensemble 
model on the testing dataset is predicted.

We compare the ensemble model to single classifiers, 
including logistic regression, KNN, decision tree, BP and 
SVM, as well as standard ensemble models including 
EasyEnsemble, AdaBoost and RF.

Data collection
Since screening for AD patients is a typical imbalance 
problem, this study used an AD dataset. Clinical data of 
more than 60,000 cardiovascular in-patients were col-
lected from the Institute of Hypertension, Xiangya Hos-
pital, Central South University between 2008 and 2016. 
We referred to the indicators recommended in the 2014 
ESC Guidelines and selected 71 features initially, includ-
ing blood routine, biochemical examination, clotting 
routine examination and other easily accessible informa-
tion, such as clinical presentation and medical history. 
The imbalance ratio of AD patients to non-AD patients 
is 1:65. Since any imbalance ratio more than 1:50 is con-
sidered a severe imbalance problem, predicting AD is 
such a problem. Details of these features are shown in 
Table 2. The use of all data was authorized by the Insti-
tute of Hypertension, Xiangya Hospital, Central South 
University.

In order to have a comprehensive view of the data, box 
plots and scatter diagrams were drawn for every feature. 
The goal was to find some specific indicators that were 
helpful for classification but failed, which means it is dif-
ficult to distinguish an AD patient from non-patients 
using only one or a few indicators. Figure 2 is a box plot 
of some randomly selected features of our dataset. In a 
box plot, the horizontal line inside the box is the median 
value of the distribution. The upper and lower ends of 
the box are the approximate upper and lower quartiles 
of the distribution, and the whiskers extend 1.5 times 
the interquartile range (IQR) from the box edges. The 
box plot allows for identification of outliers in the distri-
bution. The positive samples are drawn in red while the 
negative samples are blue in the box plot, which clearly 
shows that the distribution of positive samples is similar 
to that of negative samples; thus, it is difficult to separate 
positive and negative samples through a single feature. 
Figure 3 shows a set of scatter diagrams; each diagram is 
drawn using two different features of our dataset. From 
each individual diagram a serious overlap between posi-
tive and negative classes can be found, so it is also hard 
to separate positive samples from the negative with two 
features.

Feature selection
Investigating the features that affect models can help 
to analyze the importance of them. Furthermore, fea-
ture selection techniques based on the importance of 
features play a crucial role in medical diagnosis and 
have been widely applied. They can reduce the dimen-
sionality of features in data, and improve the per-
formance of classifiers. Redundant features or poor 
features can make classifiers inaccurate. Aghaei et  al. 

Feature selection

Apply 7-fold cross validation to split the 
dataset into two parts

Training datasets Testing datasets

Initialize the weights of SVM 
to construct weak classifiers

Apply bagging methods Final prediction results

Dataset

Apply  the ensemble models on 
the test dataset

logistic regressionsignificance test

Apply cost-sensitive learning method to obtain 
the optimal weights of  SVM.

Train multiple weak classifiers
with under-sampling

6/7 of whole data 1/7 of whole data

Fig. 1  Data flow diagram of the proposed method
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[38] analyzed factors associated with HIV-related 
stigma, and concluded strategies of diminishing the 
HIV-related stigma. Joloudari et  al. [39] applied fea-
ture selection technology to improve the accuracy of 
coronary artery disease diagnosis. Four ML models 
were used to establish predictive models and select 
features, among which RF performed best. Liu et  al. 
[40] proposed an embedded feature selection tech-
nology using a weighted Gini index on a decision tree 
for classification of imbalanced data. Singh et  al. [41] 
determined relevant features for breast cancer pre-
diction by significance analysis and feature selection 
methods. Ma et al. [42] studied eight feature selection 
techniques, and recursive feature elimination (RFE) 
based on SVM performed well. Huo et al. [22] applied 
the correlation-based feature selection (CFS) method 
to select attributes that were used to build ML models 
for AD classification. Wang et  al. [43] investigated six 
filter-based feature selection techniques, such as infor-
mation gain and chi-square [44]. Different ML classifi-
ers and performance metrics were applied to build and 

evaluate models. Abdar [45] applied four ML classifiers, 
including decision tree, KNN, SVM and neural network 
to predict heart disease. Logistic regression was used to 
select significant variables.

In order to select relevant features, statistical analysis, 
including a significance test and logistic regression, were 
applied to analyze the influence of features.

A significance test is used to determine whether the 
difference between the experimental treatment group 
and the control group is statistically significant. In the 
significance test, categorical variables were presented as 
frequencies with percentages, and were analyzed by Chi-
square test ( χ2 ). Continuous variables were expressed as 
the mean with standard deviation (SD) and analyzed by 
independent t-tests. The P value less than 0.05 was con-
sidered to be statistically significant. Logistic regression 
is a type of regression analysis commonly used in the 
analysis of diseases. This method can analyze the relative 
importance of some factors in disease prediction. There-
fore, we pinpointed the most relevant factors by using 
logistic regression.

Fig. 2  A box plot of randomly selected dataset features
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Finally, the feature set Fset was constructed according 
to the following formula, including all features whose P 
values in Fs and Fl were no greater than 0.05.

where Fs is the feature set selected by significance test; Fl 
is the feature set selected by logistic regression.

In addition, feature selection based on RF and recur-
sive feature elimination (RFE) were used to verify the 
effectiveness of the features selected in our study. RF is 

Fset = Fs ∪ Fl,

an ensemble learning method that uses multiple deci-
sion trees and has high accuracy and good robustness. 
It can quantify the importance of features through the 
attenuation of the Gini coefficient obtained by the deci-
sion tree. The main idea of RFE is to iteratively build a 
model to remove features. Then the process is repeated 
on the remaining features until all the features are tra-
versed. The order of eliminating features in this pro-
cess is the rank of feature importance. RFE is a greedy 
algorithm for finding the optimal feature subset. SVM 
model was used as the model of RFE in our study.

Fig. 3  Scatter diagrams of dataset features
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Cost‑sensitive learning
SVM is good at high dimension data, making it popular 
for many ML practitioners. Furthermore, in the SVM 
model, by changing the weights of positive and negative 
samples in the loss function, different penalty coeffi-
cients can be set for positive and negative samples, which 
means two different misclassification cost values will be 
assigned. For instance, the greater the weight of the posi-
tive sample, the greater the penalty for this type of sam-
ple, and the greater the penalty, the smaller the error it 
can tolerate. The loss function of SVM is the sum of the 
hinge loss function and the regularization term, which is 
computed as follows:

where xi is the tth samples; yi is the class label of xi ; w and 
b are the parameters of the hyperplane. ||*|| is the L2 
norm. IfxiǫP,w = w1; elsexiǫN ,w = w2.

Based on the advantages of SVM, SVM was selected as 
the base classifier for the ensemble model in this study. 
It is different from standard ensemble learning methods, 
such as AdaBoost and EasyEnsemble, which use deci-
sion tree as the base classifier. SVM models can pay more 
attention to positive samples and alleviate the impact of 
class imbalance.

Proposed ensemble algorithm
In our study, we focus on the binary class imbalance 
problem. The labels for the positive and negative sam-
ples were set to 1 and 0. The pseudo code of the proposed 
algorithm is shown in Algorithm 1, and the correspond-
ing flowchart is shown in Fig. 4. The input of Algorithm 1 
includes a dataset composed of a set of majority class 
samples N  and a set of minority class samples P , as well 
as K most relevant features obtained from feature selec-
tion, and the weight settings w of SVM obtained from 
cost-sensitive learning. First calculate T, the number of 
weak classifiers based on the imbalanced ratio of major 
class set to minority class set. Then there is a loop to build 
and train T weak classifiers. In each loop, first construct 
the weak classifier Hi(i = 1, 2, . . . ,T ) by initializing the 
weight settings w on SVM. Then randomly undersample 
a subset Ni(i = 1, 2, . . . , τ ) from N and construct a new 
balanced dataset Di by combining Ni and all instances of 
the minority class in P:

N
∑

i

[1− yi(w • xi + b)]+ + �||w||2,

N =
⋃T

i=0
Ni,

Di = Ni ∪ P,

where Ni ⊂ N ;N =
⋃T

i=1
Ni;Ni ∩ Nj = �

(

i �= j
)

; |Ni| = |P|.
Then train a weak classifier Hi using Di . Repeat this 

process T  times until T  weak classifiers are all trained. 
Finally, an ensemble model H(x) is built by integrating 
multiple weak classifiers with bagging methods.

Fig. 4  Flowchart of Algorithm 1
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Performance evaluation
Usually, the performance of any classification algorithm 
is measured in terms of accuracy. However, relying only 
on classification accuracy, especially for an imbalanced 
medical dataset, could be misleading. Apparently, if 
a classifier identifies all the samples into the major-
ity class, it can get a high accuracy. But this kind of 
classifier is meaningless. In this study, sensitivity and 
specificity were measured as two evaluation metrics 
as they are commonly used in the medical field. At the 
same time, training time was used as another metric to 
evaluate the complexity of the model. Sensitivity shows 
the ability to detect positive samples correctly to all 
positive samples. The higher the sensitivity, the lower 
the missed diagnosis rate. Specificity shows the abil-
ity to detect negative samples correctly to all negative 
samples. The higher the specificity, the lower the mis-
diagnosis rate. In the screening of diseases, it is more 
important to improve sensitivity, so as to reduce the 
missed diagnosis rate. Specificity does not need to be 
particularly high, and it is acceptable within a reason-
able range. They are computed as follows:

where TP means the number of true positive samples; FN 
means the number of false negative samples; TN means 
the number of true negative samples, and FP means the 
number of false positive samples.

Each metric was tested under seven-fold cross valida-
tion that randomly selected six-sevenths of the dataset 
as the training set and one-seventh of the dataset as the 
test set. The undersampling method was employed to 
balance the training set.

Results
Data collection
After removing some samples with missing data, the 
dataset contains 53,213 samples. According to the hos-
pital’s discharge diagnosis records, among these samples, 
802 cases are AD patients and 52,411 cases are non-
patients. The imbalance ratio of positive samples to nega-
tive samples is 1:65. Among the 802 AD patients, there 
are 574 males (71.6%) and 228 females (28.4%); the age of 
the patients is between 18 and 89 years old, with an aver-
age of 55.57 ± 12.90, and 411 cases (51.2%) are between 
50 and 70 years old. There are 618 (77.1%) drinkers, 506 
(63.1%) smokers, and 596 (74.3%) suffer from chest pain.

specificity =
TN

TN + FP
,

sensitivity =
TP

TP + FN
,

Experimental setup
Experiments were performed on a computer with 
2.6  GHz CPU and 4  GB of RAM running Windows 
7 as the operating system. Feature selection methods 
including logistic regression and a significance test were 
implemented using SPSS 25. Other feature selection 
and ML methods were performed using a Python 3.8 
environment.

To get a better parameter for models in our study, a 
cross-validation grid search approach was used to search 
for the best parameter. The parameter of “n_estimators” 
of AdaBoost and Easy-Ensemble was set to 67, accord-
ing to the imbalanced ratio of major class set to minority 
class set. Other unspecified parameters used the default 
settings. The model parameter settings used in our study 
are shown in Table 1.

Feature selection
The significance test results are shown in Table  2. The 
serial numbers beginning with 1, 2, 3, and 4 indicate 
blood routine, biochemical examination, clotting routine 
examination and other indicators, respectively. Features 
with significant differences are shown in bold. There were 
49 features in Fs with a statistically significant difference 
(P < 0.05), including four indicators in blood routines, 
17 in biochemical examination, seven in clotting routine 
examination and 21 in other.

The logistic regression results are shown in Table  3. 
Variables which are significantly correlated with the tar-
get variable (P < 0.05) are in bold. There were 35 features 
in F1 , including three indicators in blood routines, 12 in 
biochemical examination, four in clotting routine exami-
nation and 16 in other.

In summary, 26 features are in both Fs and Fl ; 23 fea-
tures are only in Fs ; nine features are only in Fl . Finally, the 
union of Fl and Fs was selected as the feature set, called 
Fset. There are 58 features in Fset to build prediction 

Table 1  Experimental parameters of models

Models Parameters

Logistic regression C = 1, penalty = ’l2’

KNN n_neighbors = 17

SVM kernel = rbf, 
C = 4, degree = 3, 
gamma = 0.004

Decision tree max_depth = 3

RF n_estimators = 69

BP hidden_layer_sizes = 142

AdaBoost n_estimators = 65

Easy-Ensemble n_estimators = 65

Proposed model T = 65
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Table 2  Significance test analysis of the indicators used to predict AD

Variables AD
N = 802

Non-AD
N = 52,411

χ
2/t P value

1.1 MCV 91.84 ± 6.82 92.10 ± 7.17 − 1.04 0.161

1.2 MPV 8.93 ± 1.39 9.3 ± 1.58 − 7.59  < 0.001
1.3 HGB 119.76 ± 21.57 119.95 ± 22.47 − 0.23 0.18

1.4 A/G 1.40 ± 0.36 1.49 ± 0.37 − 6.71 0.88

1.5 NEUT 7.16 ± 4.08 4.79 ± 3.47 19.12  < 0.001
1.6 NEUT% 72.83 ± 10.79 65.30 ± 12.09 17.53 0.02
1.7 LYMPH% 16.94 ± 9.10 24.22 ± 10.44 − 19.64 0.01
1.8 LYMPH 1.36 ± 0.60 1.57 ± 2.03 − 2.92 0.22

2.1 TP 64.58 ± 7.06 65.43 ± 8.04 − 3.01  < 0.001
2.2 AIB 37.08 ± 5.67 38.61 ± 6.26 − 6.9 0.04
2.3 GIOB 27.57 ± 5.19 26.94 ± 5.32 3.31 0.13

2.4 TB 16.19 ± 21.62 13.20 ± 26.81 3.13 0.07

2.5 DB 6.65 ± 11.52 5.39 ± 13.53 2.63 0.09

2.6 TBA 6.22 ± 13.32 7.55 ± 15.04 − 2.49 0.17

2.7 ALT 66.50 ± 296.27 32.47 ± 108.73 8.4  < 0.001
2.8 AST 85.34 ± 510.27 36.33 ± 155.39 8.28  < 0.001
2.9 UREA 7.37 ± 5.21 7.06 ± 5.21 1.66 0.29

2.10 CREA 136.87 ± 156.07 138.98 ± 213.75 − 0.28 0.08

2.11 UA 337.62 ± 128.66 349.58 ± 116.65 − 2.88  < 0.001
2.12 HBA1C 2.25 ± 0.62 2.03 ± 0.73 8.39 0.05

2.13 CHO 4.33 ± 0.43 4.37 ± 0.55 − 2.19 0.81

2.14 HDL 1.12 ± 0.17 1.12 ± 0.17 − 0.28 0.71

2.15 LDL 2.60 ± 0.35 2.63 ± 0.46 − 1.98 0.51

2.16 LDH 322.03 ± 684.10 236.51 ± 283.48 8.19  < 0.001
2.17 CK 538.04 ± 5272.64 162.57 ± 567.45 12.3  < 0.001
2.18 CK-MB 35.93 ± 299.32 19.33 ± 33.08 9.48  < 0.001
2.19 MYOG 72.69 ± 84.95 57.60 ± 59.02 7.13  < 0.001
2.20 K +  3.83 ± 0.56 3.97 ± 0.52 − 7.52  < 0.001
2.21 Na +  139.37 ± 4.28 140.71 ± 3.79 − 9.89  < 0.001
2.22 Cl- 101.08 ± 4.95 102.59 ± 4.62 − 9.15 0.01
2.23 CO2CP 23.14 ± 3.21 23.20 ± 3.65 − 0.45  < 0.001
2.24 AG 15.24 ± 3.68 14.95 ± 3.35 2.38 0.7

2.25 Ca +  2.16 ± 0.16 2.21 ± 0.18 − 7.85 0.01
2.26 P +  1.19 ± 0.39 1.19 ± 0.34 − 0.64 0.01
2.27 Mg +  0.90 ± 0.13 0.89 ± 0.13 2.38 0.56

2.28 ESR 31.34 ± 28.57 37.87 ± 30.34 − 6.054 0.023
2.29 FT3 3.77 ± 0.90 3.95 ± 1.60 − 3.32 0.034
2.30 TSH 3.18 ± 7.86 3.52 ± 7.47 − 1.258 0.442

3.1 PT% 99.83 ± 18.59 106.62 ± 17.36 − 10.984  < 0.001
3.2 INR 1.06 ± 0.39 1.01 ± 0.28 5.281  < 0.001
3.3 APTT 37.66 ± 11.29 35.54 ± 9.68 6.14  < 0.001
3.4 FIB 4.44 ± 1.81 3.77 ± 1.22 15.223  < 0.001
3.5 D-Dimer 1.37 ± 1.94 0.97 ± 1.27 8.808  < 0.001
3.6 PLGAg 252.01 ± 24.57 255.86 ± 27.68 − 3.914  < 0.001
3.7 TT 18.92 ± 14.17 19.11 ± 12.91 − 0.398 0.078

3.8 PT 13.57 ± 4.39 13.02 ± 3.06 5.08  < 0.001
3.9 AT-III 271.19 ± 17.23 271.18 ± 21.52 0.01 0.77

4.1 Chest pain 206(25.69) 9460(18.05) 30.985  < 0.001
4.2 Stomach ache 66(8.23) 2996(5.72) 9.199 0.002
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models, as listed in Table 2. The bold items are features 
in Fs . The underlined items are features in Fl and not in 
Fs . Among the features in Fset, four indicators came from 
blood routines, 23 from biochemical examination, eight 
from clotting routine examination and 23 from other.

RF and RFE methods were used to rank the features 
according to their importance from the most important 
to the least important. According to statistical analysis, 
more than 90% of the top 58 features of the two methods 
are in the feature set selected in our study, indicating that 
the features selected are meaningful. Table 4 lists the top 
10 common features of the two feature selection methods 
and their importance based on RF.

Cost‑sensitive learning
In this study, the patients set is called the positive/
minority class set, and the non-patients set is called 
the negative/majority class set. By adjusting the weight 
parameters in the loss function of the SVM model, we 
can reduce class imbalance by assigning higher weights 
to the minority class examples and making the model 
pay more attention to minority samples. In order to 
find the best combination of weights, we implemented 

cost-sensitive analysis on the weights, and compared the 
SVM models with different weight settings.

The results are shown in Table 5. In order to have more 
reliable and valuable test results, seven-fold cross-valida-
tion was used. The average row shows the average of the 
seven-fold cross validation results. In Table 5, SVM (1.3, 
1) means that w1 = 1.3 and w2 = 1 ; w1 was the weight of 
the positive samples, and w2 was the weight of the nega-
tive samples. When the weight of the positive samples 
reaches 2, the specificity is too low. Therefore, SVM mod-
els with a weight greater than 2 on the positive samples 
were not considered.

By changing the weights and sacrificing specificity 
slightly, a SVM model can be generated with higher 
sensitivity. The larger the weight of the positive sam-
ples, the higher the cost the model pays when it mis-
takenly assigns a positive class sample to a negative 
class; thus, our models focus more on positive samples. 
Such models are of great significance due to the fact 
that higher sensitivity may make the model less likely 
to miss a patient. The sacrifice of specificity is worthy 
to some extent because as an early warning system, 
our purpose is only to allow patients who receive an 
alert to undergo further examination to confirm the 

The bold items were features selected by significance test

The underlined items were features selected by logistic regression and not by significance test

Table 2  (continued)

Variables AD
N = 802

Non-AD
N = 52,411

χ
2/t P value

4.3 Heart palpitations 63(7.86) 6106(11.65) 11.099 0.001
4.4 Dizziness and headache 62(7.73) 7803(14.89) 32.127  < 0.001
4.5Aortic valve area murmur 23(2.87) 377(0.72) 48.875  < 0.001
4.6 Family history of hypertension 92(11.47) 4798(9.15) 5.081 0.024
4.7 Family history of aortic dissection 0(0.00) 2(0.00) 0.031 0.861

4.8 Chest trauma history 11(1.37) 206(0.39) 18.623  < 0.001
4.9 Hypertension 530(66.08) 31,571(60.24) 11.285 0.001
4.10 Diabetes 88(10.97) 11,910(22.72) 62.467  < 0.001
4.11 Family history of diabetes 8(1.00) 1480(2.82) 9.693 0.002
4.12 Sex 228(28.43) 22,417(42.77) 66.471  < 0.001
4.13 Hypertension and duration 6.01 ± 6.47 6.10 ± 7.09 − 0.33  < 0.001
4.14 Smoking and duration 10.22 ± 14.39 7.34 ± 13.88 5.831  < 0.001
4.15 Stop smoking and duration 0.57 ± 2.64 0.78 ± 3.26 − 1.82  < 0.001
4.16 Drinking and duration 6.62 ± 11.68 5.57 ± 11.10 2.652  < 0.001
4.17 Stop drinking and duration 0.17 ± 1.12 0.24 ± 1.65 − 1.209 0.016
4.18 Systolic pressure 142.41 ± 26.71 136.86 ± 21.90 7.091  < 0.001
4.19 Diastolic pressure 83.20 ± 16.59 80.46 ± 13.01 5.896  < 0.001
4.20 Heart rate 81.74 ± 13.87 78.73 ± 14.20 5.967 0.31

4.21 Age 55.57 ± 12.90 62.56 ± 13.06 − 15.034 0.319

4.22 Smoking 0.66 ± 0.53 0.82 ± 0.51 − 9.114  < 0.001
4.23 Drinking 0.81 ± 0.48 0.85 ± 0.44 − 2.426  < 0.001
4.24 Diabetes and duration 0.85 ± 2.87 1.82 ± 3.83 − 7.113  < 0.001
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Table 3  Logistic regression analysis of the indicators used to predict AD

Variable B OR 95% CI P value

1.1 MCV 0.009 1.009 (0.998–1.020) 0.129

1.2 MPV − 0.094 0.91 (0.863–0.960)  < 0.001
1.3 HGB − 0.002 0.998 (0.994–1.002) 0.316

1.4 A/G − 0.444 0.642 (0.332–1.240) 0.187

1.5 NEUT 0.006 1.006 (0.989–1.022) 0.497

1.6 NEUT% − 0.018 0.982 (0.970–0.995) 0.005
1.7 LYMPH% − 0.076 0.926 (0.910–0.943)  < 0.001
1.8 LYMPH − 0.011 0.989 (0.920–1.063) 0.77

2.1 TP 0.044 1.045 (0.985–1.109) 0.145

2.2 AIB − 0.001 0.999 (0.935–1.067) 0.975

2.3 GIOB − 0.047 0.954 (0.892–1.021) 0.173

2.4 TB 0.012 1.012 (1.000–1.024) 0.053

2.5 DB − 0.014 0.986 (0.962–1.010) 0.257

2.6 TBA − 0.023 0.978 (0.968–0.988)  < 0.001
2.7 ALT 0 1 (1.000–1.001) 0.306

2.8 AST 0 1 (1.000–1.000) 0.475

2.9 UREA 0.027 1.028 (1.004–1.052) 0.022
2.10 CREA − 0.002 0.998 (0.997–0.998)  < 0.001
2.11 UA − 0.001 0.999 (0.998–1.000) 0.004
2.12 HBA1C 0.327 1.387 (1.253–1.535)  < 0.001
2.13 CHO − 0.29 0.749 (0.523–1.072) 0.114

2.14 HDL 0.69 1.994 (1.198–3.319) 0.008
2.15 LDL 0.167 1.182 (0.787–1.774) 0.421

2.16 LDH 0 1 (1.000–1.000) 0.702

2.17 CK 0 1 (1.000–1.000) 0.189

2.18 CK-MB 0 1 (0.999–1.001) 0.687

2.19 MYOG 0.001 1.001 (1.000–1.002) 0.088

2.20 K +  − 0.469 0.626 (0.535–0.732)  < 0.001
2.21 Na +  − 0.033 0.967 (0.919–1.019) 0.208

2.22 Cl- 0.001 1.001 (0.953–1.052) 0.956

2.23 CO2CP 0.03 1.03 (0.977–1.086) 0.273

2.24 AG − 0.002 0.998 (0.947–1.052) 0.94

2.25 Ca +  − 0.656 0.519 (0.307–0.877) 0.014
2.26 P +  0.246 1.278 (1.007–1.622) 0.043
2.27 Mg +  0.552 1.737 (1.205–2.503) 0.003
2.28 ESR − 0.008 0.992 (0.989–0.995)  < 0.001
2.29 FT3 − 0.153 0.858 (0.800–0.919)  < 0.001
2.30 TSH − 0.009 0.991 (0.980–1.003) 0.154

3.1 PT% − 0.017 0.983 (0.977–0.989)  < 0.001
3.2 INR − 0.197 0.821 (0.337–2.002) 0.665

3.3 APTT 0 1 (0.991–1.009) 0.96

3.4 FIB 0.185 1.203 (1.145–1.265)  < 0.001
3.5 D-Dimer 0.056 1.058 (1.029–1.087)  < 0.001
3.6 PLGAg − 0.006 0.994 (0.990–0.998) 0.002
3.7 TT − 0.007 0.993 (0.986–1) 0.042
3.8 PT − 0.005 0.995 (0.913–1.084) 0.902

3.9 AT-III 0.002 1.002 (0.999–1.006) 0.214

4.1 Chest pain 0.643 1.903 (1.594–2.271)  < 0.001
4.2 Stomach ache 0.084 1.088 (0.826–1.433) 0.55
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diagnosis. However, the specificity should not be too 
low because a model with specificity that is too low can 
lead to much wasted cost by healthy people who pay for 
unnecessary further examination. In this regard, SVM 
(1.3,1) is considered to be the best base model since it 
pursues a higher sensitivity and does not have a speci-
ficity that is too low.

Performance of proposed ensemble model
According to the results of the sensitivity analysis, SVM 
(1.3, 1) performs better, so weak classifiers were con-
structed based on the SVM (1.3, 1).The ensemble model 
was built by multiple weak classifiers. Table 6 compares 
the training times of the three ensemble learning mod-
els. Table 7 compares their sensitivities and specificities. 
Table 8 compares the sensitivities and specificities of the 
base ML algorithms. To minimize errors, average values 
of the seven-fold cross validation were used as results, 
which were then used to explain the generalization abili-
ties of the different models. A smaller value means more 
stable grades on different training sets; in other words, a 
stronger generalization ability.

The model proposed in this article is named Ensem-
ble model in the results. As can be seen from Table 6, RF 
achieved the lowest training time, followed by AdaBoost. 
The training time of EasyEnsemble is generally 50 times 
as much as AdaBoost. The training time of the Ensem-
ble model is much shorter than that of EasyEnsemble. As 
can be seen from Table 7, the Ensemble model obtained 
a higher sensitivity (82.8%) than that of SVM (1.3, 1) 

B, unstandardized regression weight; OR, odds ratio; CI, confidence interval

The bold items were features selected by logistic regression

Table 3  (continued)

Variable B OR 95% CI P value

4.3 Heart palpitations − 0.257 0.774 (0.588–1.017) 0.066

4.4 Dizziness and headache − 0.79 0.454 (0.347–0.594)  < 0.001
4.5 Aortic valve area murmur 1.563 4.774 (2.965–7.685)  < 0.001
4.6 Family history of hypertension 0.07 1.073 (0.846–1.36) 0.56

4.7 Family history of aortic
dissection

− 16.477 0 0 1

4.8 Chest trauma history 0.948 2.581 (1.336–4.985) 0.005
4.9 Hypertension 0.501 1.651 (1.336–2.040)  < 0.001
4.10 Diabetes − 0.776 0.46 (0.364–0.582)  < 0.001
4.11 Family history of diabetes − 0.909 0.403 (0.196–0.828) 0.013
4.12 Sex − 0.529 0.589 (0.485–0.716)  < 0.001
4.13 Hypertension and duration − 0.006 0.994 (0.978–1.009) 0.424

4.14 Smoking and duration − 0.002 0.998 (0.991–1.006) 0.679

4.15 Stop smoking and duration − 0.005 0.995 (0.966–1.026) 0.759

4.16 Drinking and duration 0.004 1.004 (0.994–1.015) 0.41

4.17 Stop drinking and duration − 0.096 0.908 (0.829–0.995) 0.039
4.18 Systolic pressure 0.018 1.018 (1.014–1.022)  < 0.001
4.19 Diastolic pressure − 0.012 0.988 (0.981–0.995) 0.001
4.20 Heart rate − 0.006 0.994 (0.989–0.999) 0.021
4.21 Age − 0.054 0.948 (0.942–0.953)  < 0.001
4.22 Smoking − 0.429 0.651 (0.537–0.790)  < 0.001
4.23 Drinking 0.35 1.419 (1.086–1.855) 0.01
4.24 Diabetes and duration − 0.098 0.907 (0.882–0.932)  < 0.001

Table 4  Feature importance ranking

Features Importance

2.17 CK 2.74%

3.6 PLGAg 2.68%

4.21 Age 2.63%

2.19 MYOG 2.53%

3.7 TT 2.37%

4.18 Systolic pressure 2.36%

3.4 FIB 2.30%

2.20K +  2.16%

2.28 ESR 2.14%

1.6 NEUT% 2.03%
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(79.5%), although it had a lower specificity (71.9%). This is 
acceptable, because we pay more attention to improving 
sensitivity. Among the four ensemble learning models, 
AdaBoost performed poorly, while the Ensemble model 
performed the best. It achieved the highest sensitivity, 
and its specificity is still higher than 70%, which many 
routine diagnoses cannot reach. Moreover, the variance 
of the Ensemble model is obviously smaller than that of 
the other models, which means when dealing with differ-
ent data sets, its performance will be relatively stable; in 

other words, it has a stronger generalization ability. This 
point is demonstrated more vividly by the fourth and sev-
enth experiments, where when AdaBoost, EasyEnsem-
ble and RF perform terribly on sensitivity, the Ensemble 
model does not perform too badly. It can be seen from 
Fig. 5 that the sensitivity of the Ensemble model is opti-
mal and the most stable. Compared with the results of 
the base ML methods in Table 8, the ensemble methods 
demonstrated superior results. And logistic regression 
achieved a good performance with a sensitivity of 76.9% 
and a specifity of 77.4%, followed by BP.

Discussion
Nowadays with the rapid growth of electronic medical 
data, greater challenges are presented to the issues of 
class imbalance. A recent review [46] showed that the 
problem of class imbalance in data mining is still com-
mon. The solutions to the problem of class imbalance 
are characterized by data-level, algorithm-level and 
ensemble learning techniques. Many researchers have 
explored solutions to imbalance problems. Undersam-
pling, which divides the negative class sets and chooses 
only parts of them to participate in training a model, 

Table 5  Sensitivity (Se) and specificity (Sp) of SVM models with different weights on positive and negative samples

SVM (1,1) SVM (1.3,1) SVM (1.6,1) SVM (2,1)

Se Sp Se Sp Se Sp Se Sp

1st 0.772 0.792 0.825 0.746 0.842 0.697 0.868 0.653

2nd 0.746 0.807 0.754 0.751 0.754 0.691 0.789 0.669

3rd 0.781 0.768 0.816 0.727 0.860 0.675 0.868 0.644

4th 0.746 0.790 0.781 0.751 0.807 0.696 0.816 0.666

5th 0.772 0.805 0.781 0.756 0.798 0.684 0.851 0.646

6th 0.728 0.795 0.763 0.741 0.781 0.687 0.833 0.648

7th 0.771 0.779 0.847 0.727 0.873 0.679 0.898 0.642

Average 0.759 0.791 0.795 0.734 0.816 0.687 0.846 0.653

Table 6  Training time of different models (unit: s)

AdaBoost EasyEnsemble Ensemble 
model

Random Forest

1st 3.4 185.3 55.0 0.36

2nd 4.2 191.2 58.4 0.31

3rd 4.0 191.2 54.8 0.31

4th 3.6 188.2 56.0 0.32

5th 3.7 191.2 57.6 0.39

6th 3.8 179.4 55.2 0.39

7th 4.7 185.3 58.1 0.31

Average 3.9 187.3 56.4 0.34

Table 7  Sensitivity (Se) and specificity (Sp) of ensemble learning models

AdaBoost EasyEnsemble Ensemble model Random forest

Se Sp Se Sp Se Sp Se Sp

1st 0.736 0.742 0.798 0.802 0.816 0.705 0.781 0.791

2nd 0.675 0.759 0.737 0.794 0.798 0.733 0.737 0.792

3rd 0.772 0.744 0.825 0.793 0.842 0.704 0.807 0.775

4th 0.631 0.765 0.702 0.816 0.807 0.724 0.693 0.789

5th 0.754 0.748 0.798 0.803 0.860 0.717 0.754 0.821

6th 0.631 0.762 0.781 0.802 0.825 0.730 0.728 0.810

7th 0.711 0.765 0.693 0.818 0.847 0.715 0.695 0.810

Average 70.1% 75.5% 76.1% 80.4% 82.8% 71.9% 74.2% 79.8%

Variance ( ×10
−3) 57.23 10.3 51.49 9.75 19.58 9.89 42.27 15.79
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is commonly used to solve imbalance problems [47]. 
However, its deficiency is that it ignores many poten-
tially useful major class examples. One previous study 
[48] indicated that the combination of ensemble meth-
ods and undersampling techniques could solve this 
problem effectively. In addition, Zhou et al. [5] revealed 
that the integration of ensemble methods and under-
sampling techniques kept the efficiency of undersam-
pling. Gu et.al [49] proposed a fuzzy SVM for the class 
imbalance problem which is a modified class of SVM 
classifier with cost-sensitive methods that adjusts for 
the misclassification costs for two classes. Sainin et al. 
[15] applied feature selection and sampling methods 
to improve the ensemble model for the class imbal-
ance problem, which combines the data-level method 
and ensemble methods. Velusamy et.al [50] combined 
three base classifiers to generate an ensemble method 
with a reduced feature subset on balanced datasets 
using the Synthetic Minority Over-sampling Tech-
nique (SMOTE). Many researchers have only combined 
the data-level method or algorithm-method with the 
ensemble learning techniques; however, there are few 
studies that combine three methods.

Due to the rarity of AD, the dataset we used is highly 
imbalanced, with high imbalance ratio of 65:1. There-
fore, screening for AD is a significant imbalance problem. 
Hence, we applied the proposed ensemble method to the 
construction of an early screening model for AD disease 
to validate our model. AD is a cardiovascular emergency 
with low morbidity and high mortality. Due to its acute 
onset and complex clinical presentations, the rate of 
missed diagnosis and misdiagnosis is high [51]. There-
fore, early screening of AD can effectively prevent later 
health loss and provide doctors with decision support. In 
recent years, some studies have applied ML techniques in 
AD diagnosis. Harris et  al. [52] applied a convolutional 
neural network to classify AD and rupture on post-con-
trast CT images. Wu et al. [53] established a RF model to 
predict in-hospital rupture of type A AD using imaging 
examinations, clinical manifestations and other attrib-
utes of 1,133 patients. But these researchers focused on 
diagnosis, not screening. In the literature [23], four ML 
models have been used to screen for AD cases from 
imbalanced data, and SmoteBagging achieved the high-
est sensitivity of 78.1%. However, the complexity of this 
method was very high, requiring substantial computing 
resources, and the training time was more than 1000 s.

In the current study, an integrated learning approach 
combined data-level methods, algorithm-level methods 
and bagging ensemble techniques to address the prob-
lems posed by class imbalance. Class imbalance issues 
always lead to low sensitivity, which shows the ability of 
the classifier to find all patients. Since identifying patients 
is more important than identifying healthy people, the 
main objective in medical research with imbalanced data-
sets is to improve sensitivity. The experimental results 
show the sensitivity and specificity of the three ensem-
ble models are over 70%, which is an obvious advantage 
over routine diagnostics [51, 54, 55], whose missed rate is 
between 35 and 45%. In other words, routine diagnostics, 
including the examination of CT and MR angiography, 

Table 8  Sensitivity (Se) and specificity (Sp) of logistic regression, decision tree, KNN and BP

Logistic regression Decision tree KNN BP

Se Sp Se Sp Se Sp Se Sp

1st 0.789 0.771 0.702 0.690 0.728 0.715 0.737 0.760

2nd 0.754 0.786 0.596 0.660 0.684 0.709 0.754 0.773

3rd 0.798 0.754 0.684 0.653 0.711 0.700 0.789 0.736

4th 0.711 0.783 0.658 0.680 0.789 0.693 0.746 0.749

5th 0.789 0.774 0.702 0.682 0.772 0.656 0.781 0.765

6th 0.754 0.774 0.667 0.667 0.667 0.679 0.711 0.765

7th 0.788 0.773 0.644 0.679 0.720 0.683 0.788 0.737

Average 0.769 0.774 0.665 0.673 0.724 0.691 0.758 0.755

Fig. 5  Seven-fold cross validation results of sensitivity of AdaBoost, 
EasyEnsemble (Easy), RF, Ensemble model and SVM (1.3, 1)
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failed to identify many people who did suffer from AD, 
while others who did not get sick received unnecessary 
intervention. The ensemble model established in this 
study performed significantly better on sensitivity com-
pared to other models. At the same time, our model has a 
lower complexity with a training time of 56.4 s. Addition-
ally, the variance of the seven-fold cross validation was 
small, indicating that the model had stronger stability 
and generalization ability. In future work, we will investi-
gate our method with different class imbalance ratios and 
datasets.

Conclusion
We have presented a study on class imbalance classifi-
cation using an AD dataset. We have demonstrated that 
the proposed ensemble model using bagging methods 
has great performance by combining feature selection, 
undersampling and cost-sensitive leaning on SVM. The 
ensemble model performed better than base classifiers 
and common ensemble learning algorithms with its high-
est sensitivity being 82.8%, which can find more positive 
outcomes. In healthcare research, class imbalance is a 
common phenomenon; the population of sick people is 
obviously less than non-sick people. Research in this area 
helps to provide an effective method to overcome the 
class imbalance problem.
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