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Abstract 

Background:  The coronavirus (COVID-19) is a novel pandemic and recently we do not have enough knowledge 
about the virus behaviour and key performance indicators (KPIs) to assess the mortality risk forecast. However, using 
a lot of complex and expensive biomarkers could be impossible for many low budget hospitals. Timely identifica‑
tion of the risk of mortality of COVID-19 patients (RMCPs) is essential to improve hospitals’ management systems and 
resource allocation standards.

Methods:  For the mortality risk prediction, this research work proposes a COVID-19 mortality risk calculator based 
on a deep learning (DL) model and based on a dataset provided by the HM Hospitals Madrid, Spain. A pre-processing 
strategy for unbalanced classes and feature selection is proposed. To evaluate the proposed methods, an over-sam‑
pling Synthetic Minority TEchnique (SMOTE) and data imputation approaches are introduced which is based on the 
K-nearest neighbour.

Results:  A total of 1,503 seriously ill COVID-19 patients having a median age of 70 years old are comprised in the 
research work, with 927 (61.7%) males and 576 (38.3%) females. A total of 48 features are considered to evaluate the 
proposed method, and the following results are achieved. It includes the following values i.e., area under the curve 
(AUC) 0.93, F2 score 0.93, recall 1.00, accuracy, 0.95, precision 0.91, specificity 0.9279 and maximum probability of cor‑
rect decision (MPCD) 0.93.

Conclusion:  The results show that the proposed method is significantly best for the mortality risk prediction of 
patients with COVID-19 infection. The MPCD score shows that the proposed DL outperforms on every dataset when 
evaluating even with an over-sampling technique. The benefits of the data imputation algorithm for unavailable bio‑
marker data are also evaluated. Based on the results, the proposed scheme could be an appropriate tool for critically 
ill Covid-19 patients to assess the risk of mortality and prognosis.
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Background
Coronavirus is a large family of viruses that can cause 
common colds, severe acute respiratory syndrome 
(SARS), and Middle East respiratory syndrome (MERS). 
It has been proven that the root cause is a new type of 
virus called the 2019 Novel Coronavirus (COVID-19). 
The World Health Organization (WHO) and the Centres 
for Disease Control and Prevention (CDC) are closely 
monitoring the development of the virus and how to 
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prevent and treat diseases caused by the COVID-19. The 
COVID-19 epidemic has caused an astonishing loss of 
life around the world and poses an exceptional challenge 
to public health and the food system. The social and eco-
nomic interruption triggered by this epidemic is damag-
ing; millions of people are at risk of falling into extreme 
hardship, while millions of businesses face an existential 
threat. Approximately half of the world’s 3.3 billion global 
personnel are at risk of losing their incomes [1–17].

Related works
Recently many algorithms have been developed to diag-
nose the COVID-19 outbreak [18–22]. A predictive 
model of COVID-19 disease progression was proposed 
by [23] using multivariate analysis (Cox proportional 
regression). Pourhomayoun et  al. [24] proposed an ML 
algorithm to accurately predict the mortality risk of 
COVID-19 patients. In [25], a Gaussian process regres-
sion (GPR) model with optimized hyperparameters was 
used to predict the mortality rate using five different 
countries (Turkey, Spain, Sweden, France and Pakistan) 
datasets [26]. An extreme gradient boosting (XGBoost) 
classifier was proposed to model the probability of 
requiring mechanical ventilation within the next 24  h, 
using data from the first 2 h after admission [27]. In [28], 
attempted to predict the occurrence of major adverse 
cardiac events (MACE) in acute myocardial infarction 
(AMI) patients, during the 1, 6 and 12 months follow up 
periods after hospital admission using ANN. A mortal-
ity risk calculator was established based on the XGBoost 
model, and the patients’ dataset was collected from hos-
pitals in Spain (HM Hospitals) and Italy (ASST Cremona) 
[29]. A deep neural network transfer model based on a 
convolutional neural network (CNN) was proposed to 
diagnose a patient with COVID-19 by analysing their 
lungs’ X-ray images [30]. In [31], proposed a CNN trans-
fer learning model to diagnose COVID-19 patients using 
X-ray and CT-Scan images and the gradient weighted 
class activation mapping (GRAD-CAM) technique [32, 
33]. Yadaw et  al. [34] developed a mortality prediction 
model using an XGBoost algorithm. In [35], a multivari-
ate regression model was introduced based on clinical 
characteristics to predict ICU admissions and mortality 
in COVID-19 patients. Wearable technologies have been 
developed to identify patients with COVID-19 [13, 20, 
36].

Besides, most recent studies have been reported to 
understand and diagnose the patients with COVID-
19 [37–42] such as temporal deep learning [43], data-
driven based extreme gradient boosting (XGBoost) 
[44], deep learning with regression analysis [45], bio-
markers-based [46], machine learning and clinical data 
based [35, 47, 48], statistical neural network (NN) and 

DL [49–51], boosted random forest [52], CNN-LSTM, 
CNN-RNN and CNN-ML based on X-ray images 
[53–57].

Early identification of COVID-19 patients is crucial for 
the severity of the risk. The patients with high risk are 
to be identified earlier than those with very low risk for 
this critical disease. Moreover, not every hospital has the 
resources, budget, time, staff, equipment, etc., to conduct 
many complicated tests before needing to decide the risk. 
A mortality risk calculator for COVID-19 is designed to 
be as accurate as possible and uses a minimum number 
of features to produce an acceptable prediction rate. The 
proposed methodology will help to easily prognose the 
patient’s survival rate.

Though there are already a lot of Machine Learning 
(ML) algorithms that have been proposed for the predic-
tion of patients with COVID-19, most of them have not 
reached optimal results, because of the lack of useful 
data, or because they are highly biased to only a certain 
population.

Study contributions
The main contributions of this research work are as 
follow:

1.	 A total of 48 vital features are considered including 
biomarkers to predict the mortality risk of COVID-
19 patients and the trade-off between performance 
feature and sample space.

2.	 The data imputation scheme is introduced which is 
based on the K-Nearest Neighbor and over-sam-
pling Synthetic Minority TEchnique (SMOTE) 
approaches.

3.	 To develop the proposed DL model, a web applica-
tion of Amazon Web Services (AWS) has been used 
and is intended to help frontline physicians in clinical 
decision making under time-sensitive and resource-
constrained conditions for COVID-19 patients.

4.	 The prediction performance of DL models is inves-
tigated using basic features against specialized fea-
tures.

5.	 The oversample and data augmentation techniques 
are introduced to check the effect of the DL model.

6.	 The results of the proposed DL model are compared 
against a random forest (RF), support vector machine 
(SVM), artificial neural network (ANN), XGBoost, 
logistic regression (LR) models to assess its benefits 
when attempting to reduce the false-negative rate 
(FNR).

7.	 Further, the benefits of using over-sampling and data 
imputation techniques (i.e., SMOTE and KNN impu-
tation) are reported.
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8.	 Based on the MPCD score, the proposed DL outper-
forms on every dataset including an over-sampling 
technique.

Organization of the paper: “Datasets and Pre-process” 
section contains materials and methods, including data-
sets and pre-processing of the datasets. "Results and dis-
cussion" comprises the results and discussion, including 
comparative analysis and advantages and disadvantages 
of the research work. “Conclusion and future work” 
section  covers the conclusion and future work of the 
research.

Datasets and pre‑process
Database description
The datasets of the patients with COVID-19 have been 
collected from HM Hospitals Madrid, Spain. It contains 
the anonymized records of 2,307 patients with COVID-
19. The database was divided into six different sections, 
each section contained a different type of data of each 
patient. The common key among every file is the patient 
ID feature, which helps to identify patients across every 
section of the database. The summary of the database is 
shown in Table 1.

Data cleansing
This raw database had five main technical challenges: (1) 
Incomplete record, (2) Different units, (3) Combination 
of categorical and numerical values. (4) Irrelevant and 
redundant, (5) Unbalanced classes. The database from 
all 2307 available records was filtered using the follow-
ing standards: let alone patients with a COVID-19 posi-
tive diagnosis, discharged or confirmed to die, different 
from 0 years of age, their registered value of SpO2. After 
applying all these filters, only 1503 patients were left. The 
RF algorithm has been used to select the features with 
the highest predictive power, and to decrease the fea-
ture space by analysing the importance assigned to each 
feature by the algorithm. For this purpose, the SHapley 
Additive exPlanations (SHAP) values [58] was used to 

estimate the impact/weight of each input variable in the 
prediction. The SHAP value graph is a graphical visuali-
zation of how much a feature contributes to the model’s 
prediction. A large positive SHAP value indicates the 
feature is very relevant to detect positive outputs, while 
a large negative value is associated with negative output. 
The colour bar shows the feature value associated with 
the given SHAP value, while the thickness of a feature’s 
line indicates the number of samples present in the data-
set for the given feature value, and the SHAP values are 
shown in Fig. 1.

In this research work, some biomarkers were selected 
including prothrombin activity, creatinine, D-dimer, 
ferritin, immunoglobulin-G, immunoglobulin-M, 
interleukin-6, lactate, LDH, leukocytes (count and %), 
lymphocytes (count and %), neutrophils (count and %), 
C-reactive protein, platelets, prothrombin time, and tro-
ponin. Since the sampling frequency of lab tests is incon-
sistent, simple time series statistical representation, such 
as maximum and minimum values, was chosen to repre-
sent these characteristics of the biomarkers. Therefore, 
two more features were added for every biomarker, one 
for the maximum and another one for the minimum val-
ues. Features 4 through 10 are categorical data in [True; 
False], while every other feature value is considered as 
numerical data in real (R). All available features are pre-
sented in Table 2.

Data distribution
In Fig. 2, it can be seen that the average age distribution 
of patients after the normal distribution is about 70 years 
old. Oxygen saturation values have a mean of 92.28, with 
a couple of lower outliers, which suggests a more severe 
disease state according to literature. A clear unbalance 
of the classes is observed, with only 16.5% of deceased 
patients. As for comorbidities, there are 919 patients with 
none of the selected comorbidities, 398 patients with only 
1 comorbidity, 148 patients with 2 of them, 35 patients 
with 3, 3 patients with 4 comorbidities, and no patients 
with every comorbidity. The most common comorbidity 

Table 1  Complete raw database description

Section Description

1 Demographic data: patient ID, age, gender, diagnosis

2 (positive/negative/pending), admission/discharge date, SpO2, tem‑
perature, heart rate, blood pressure, etc

3 Prescribed medication: daily dose and duration

4 Evolution of vital signs: SpO2, heart rate, temperature, blood pressure, 
and blood glucose values

5 Laboratory tests with date, results, and units

6 comorbidities are coded based on [World Health Organization (WHO)]
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among patients is hypertension. Since the original data-
set contains a lot of missing cells, the sample size reduces 
as the number of features increases. Tables 3 and 4 show 
the filtered database distribution and biomarkers of the 
patients (1,503) with COVID-19, respectively.

Pre‑processing dataset
To increase the training data availability, a pre-process-
ing algorithm [59] was employed, it is a Greedy-like 
algorithm that at each iteration maximizes the number 
of samples by selecting the column (feature) with more 
rows (samples) available. Since the original dataset con-
tains a lot of missing cells, the sample size reduces as the 
number of features increases. The eight sub-datasets pose 
a trade-off between the number of features and the num-
ber of samples, as the subset cannot be predetermined 
with highly distinguished information, the learning algo-
rithm was applied to all of them. Since normalizing data 
generally accelerates learning rate and leads to faster con-
vergence [60] the remaining numeric features have been 
re-scaled using the min–max normalization method 
[61]. By examining the datasets, it was created into eight 

sub-datasets with different features. The features and 
sub-datasets are illustrated in Fig. 3 and Table 5.

Methodologies
The mortality risk calculator for the COVID-19 patients 
has multiple steps; (1) Collection of raw data, (2) Data 
pre-processing, (3) Over-sampling & data imputation 
and splitting the data, (4) Model developments and (5) 
Model evaluation. The proposed overall procedure is 
shown in Fig. 4.

Deep learning (DL)
The basic idea behind DL is to stack many shallow multi-
layer algorithms to obtain a more abstract representa-
tion of features as the network gets deeper [62]. DL has 
recently gained popularity, particularly in the field of 
computer vision but is rapidly moving towards different 
areas, such as diagnosis and prognosis in the medical 
field [63]. The quintessential DL algorithm is the ANN. 
ANNs are a type of ML algorithm roughly based on the 
biological neurons of the brain and the way that they 
are interconnected with one another to learn complex 

Fig. 1  SHAP values of the selected features accordingly (dataset 8)
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Table 2  Index, acronym, and name of the features

S. No Acronym Feature Name S. No Acronym Feature Name

1 Patient ID 25 IgM (min) IgM (Immunoglobulin M) (min)

2 Age 26 IgG (min) IgG (Immunoglobulin G) (min)

3 SpO2 SpO2 Oxygen saturation (O2) 27 TNI (min) Troponin (min)

4 Gender, 28 PA (min) Prothrombin activity (min)

5 Discharge motive (Label) 29 PT (min) Prothrombin time (min)

6 kidney failure (N17) 30 LIN (% max) Lymphocytes (% max)

7 hypertension (I10) 31 LIN (max) Lymphocytes (max)

8 diabetes (E11) 32 LEUC (max) Leukocytes (max)

9 heart disease (I25) 33 NEU (max) Neutrophils (max)

10 respiratory distress (J80) 34 NEU (% max) Neutrophils (% max)

11 LIN (% min) Lymphocyte (% min) 35 PLAQ (max) Platelet count (max)

12 LIN (min) Lymphocyte (min) 36 PCR (max) C-reactive protein (max)

13 LEUC (min) Leukocyte (min) 37 DD (max) Dimer D Max

14 NEU (min) Neutrophils (min) 38 CREA (max) Creatinine (max)

15 NEU (% min) Neutrophils (% min) 39 LDH (max) LDH (max)

16 PLAQ (min) Platelet count (min) 40 IL6 (max) Interleukin 6 (max)

17 PCR (min) C-reactive protein (min) 41 LEULCR (max) Leukocyte’s count (max)

18 DD (min) D Dimer (min) 42 LAC (max) Lactate (max)

19 CREA (min) Creatinine (min) 43 FER (max) Ferritin (max)

20 LDH (min) LDH (min) 44 IgM (max) IgM (Immunoglobulin M) (max)

21 IL6 (min) Interleukin 6 (min) 45 IgG (min) IgG (Immunoglobulin G) (max)

22 LEULCR (min) Leukocyte’s count (min) 46 TNI (max) Troponin (max)

23 LAC (min) Lactate (min) 47 PA (max) Prothrombin activity (max)

24 FER (min) Ferritin (min) 48 PT (max) Prothrombin time (max)

Fig. 2  Distribution of age (a), oxygen saturation (SpO2) (b), multiple comorbidities (c) and comorbidities (d)
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abstract representations. In this research work, the DL 
model with binary cross-entropy as the loss function and 
the Adam algorithm as an optimizer to adjust the net-
work’s weights have been used. The model has 3 hidden 
layers with 17, 10 and 5 neurons, respectively. The mini-
batch optimization technique was utilized. For the binary 
classification problem, the sigmoid function has been 
used as the activation function. The proposed DL model 
was developed using the Keras framework (version 2.2.4) 
running on TensorFlow 2.0.0 in python 3.6. The hyper-
parameters are summarized in Table 6.

Random forest algorithm (RF)
The RF algorithm has been used as an ensemble of deci-
sion trees to make a prediction [64, 65]. A decision 
tree fits a function (typically piece-wise constant) over 
domain X by recursive partitioning in a greedy way. RF 
regressor was used to predict the mortality risk of the 
patients. The following hyper-parameters have been 
used to train and test the RF model which is the number 

of estimators = 500, maximum depth = 2 and maximum 
feature = 5. This model was developed using the sci-kit-
learn library in python.

SMOTE technique
The Synthetic Minority Over-Sampling Technique 
(SMOTE) is an over-sampling approach in which the 
minority class is over-sampled by creating “synthetic” 
examples rather than by over-sampling with replacement 
[66]. SMOTE technique was used to balance the dataset. 
It generates synthetic examples in a less application-spe-
cific manner, by operating in “feature space” rather than 
“data space”. The minority class is over-sampled by tak-
ing each minority class sample and introducing synthetic 
examples along the line segments joining any/all of the 
K-minority class nearest neighbours [67]. In this research 
project, a final proportion of sm = 0.80 was set to the 
minority class.

Data imputation
The impact of using imputation data on the prediction 
model has been evaluated for cases where there are time 
or budget constraints and obtaining complex biomarker 
data is impossible or unfeasible [68, 69]. To properly eval-
uate the proposed imputation method, amputate avail-
able biomarker features were used to calculate the error 
between imputation and real values. The biomarker fea-
tures were imputation for the test sets using the mean 
value of the “K” most similar patients from the real bio-
marker data and for the train set using the KNN algo-
rithm [70]. The value of “K” is determined by the amount 
of available data. The benefit of using the imputation 
features was evaluated by comparing the model’s perfor-
mance against the same test set with the real biomarker 
data. The error of the estimated imputation data is calcu-
lated using the root mean squared error (RMS).

where x is the real feature value and x̂ is the imputation 
feature value.

Finally, the benefit of adding imputation biomarkers 
data was revealed by comparing the performance of the 
imputation test set against the performance of a model 
which only uses basic patient information, without any 
imputation. As we impute more features, the model’s 
performance has more uncertainty and therefore a higher 
error. This motivates us to impute only the necessary 
number of features to see an improvement of the model 
without adding variance to the output.

(1)sm =
Majority class

Minority class

(2)RMS =
2
√
xi − x̂2

Table 3  Filtered database distribution according to key features

Feature Detail Number of 
patients (%)

Gender Male 927 (61.7%)

Comorbidities Kidney failure 81 (5.4%)

Hypertension 446 (29.7%)

Diabetes 194 (12.9%)

Heart disease 69 (4.6%)

Respiratory distress 21 (1.4%)

Discharge motive Deceased 248 (16.5%)

Table 4  The minimum and maximum range of biomarkers

Name of biomarker Mean value min–max

LEUC (× 103/µL) 6.03–9.85

LIN (× 103/µL) 1.00–1.65

LIN% 13.90–25.03

NEU (× 103/µL) 4.10–7.84

NEU% 63.23–78.66

PLAQ (× 103/µL) 206.42–320.81

Cr (mg/dL) 0.84–1.09

PCR (mg/L) 38.84–130.69

LDH (U/L) 482.91–726.57

DD (ng/mL) 1194.71–4509.60

IL6 (pg/mL) 192.74–239.50

LAC (mmol/L) 1.73–2.29

FER (ng/mL) 1150.13–1526.91

TNI (ng/L) 27.01–36.47

PA (%) 70.58–80.93

PT (s) 13.70–16.55
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Fig. 3  The overall proposed feature selection scheme
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Training and testing data splitting
To properly assess the performance of the proposed 
model, the datasets were divided into training and testing 
samples, in which 90% of the samples were for training 
and 10% for testing. The test samples were usually a small 
part of the dataset, only large enough to vary significantly 
in population. The K-fold cross-validation (CV) algo-
rithm [71, 72] was used for every dataset. In this algo-
rithm, the dataset was first randomly shuffled to avoid 
bias and then divided into K equally sized parts (folds). 
The proposed model was trained K times, where at each 
iteration a different fold, the dataset was used as the test-
ing set while every other fold was used for training. The 
final unbiased result was recorded as the average value of 
each evaluation metric across every fold. The proportion 
of distribution of label classes was kept at every layer. It 
has only been done to avoid a fold of model training with 
positive or negative class patterns. For this purpose, the 
Stratified K-Fold sci-kit-learn function was used, which 
kept the proportion of the label feature across every fold 
[73–75]. Figure 5 shows a graphical representation of the 
10-Fold CV algorithm.

Decision threshold
The decision threshold governed the choice to turn a fore-
casted probability or scores into a class label. The Optimal 

Classifying Threshold Method (OCTM) [76] algorithm was 
used to obtain the decision threshold value that optimizes 
the MPCD score. A 0.5 spaced decision threshold was 
taken for every class. The algorithm is shown in Fig. 6.

Results and discussion
Key performance indicators (KPIs)
To validate the proposed methods, we have used different 
performance indicators such as confusion matrix and its 
true positive (TP), false positive (FP), true negative (TN) 
and false-negative (FN), precision (P), sensitivity/recall 
(R), area under the curve (AUC), F-measure, accuracy, 
alpha, beta, and maximum probability of correct decision 
(MPCD) [77–79].

Precision (P) can be defined as the number of true posi-
tives (TP) divided by the number of TP plus the number of 
false-positive (FP). The P can be written as

(3)P =
TP

FP + TP

Table 5  The number of features in every defined sub-dataset

Data subsets No. of features No. of samples

1 10 1503

2 22 1449

3 24 1434

4 26 1428

5 28 1419

6 30 1341

7 34 1291

8 48 683

Fig. 4  The overall proposed architecture for the risk detection of patients with COVID-19 infection

Table 6  Hyper-parameters for the proposed model

β1, Exponential decay rate of the first moment estimates; β2, Exponential decay 
rate of the second-moment estimates; ɛ, Small number to prevent any division 
by zero

Parameter Value

Hidden layers 3

Neuron number [17, 10, 5]

Activation functions Sigmoid

Output activation Sigmoid

Batch size 32

Epochs 200

Learning rate 0.001

β1 0.9

β2 0.999

ɛ e−7
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Fig. 5  10-Fold cross-validation

Fig. 6  Pseudo-code of the OCTM algorithm
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Recall (R) (Sensitivity) can be calculated as the number 
of true positives (TP) divided by the sum of the number 
of TP and the number of false-negative (FN). It can also 
be defined as the percentage of total relevant results cor-
rectly classified. The R can be posed as

Accuracy (ACC) is referring to predicting the perfec-
tion of a machine learning model. The accuracy can be 
calculated as

Maximum Probability of Correct Decision (MPCD) 
is a probabilistic-based measure of classification perfor-
mance aimed at analysing highly imbalanced data struc-
tures. The MPCD can be designed as

(4)R =
TP

FN + TP

(5)ACC =
TN+ TP

FN+ FP+ TN+ TP

where alpha = FP
FP+TN   and  beta = FN

FN+TP.

Results
Figure  7 shows a boxplot graph of the MPCD score of 
the proposed DL model with and without the SMOTE 
approach of every sub-dataset. The best results of the 
deep learning method are shown in Fig. 8.

Data imputation is the process of replacing missing 
data with substituted values. The results of the imputa-
tion scheme of the NEU%m and LIN%M biomarkers are 
shown in Fig. 9. The boxplot graph of every performance 
metric was compared with and without imputation. We 
can see the increase in the variance of each evaluation 
metric, which is expected because of the error introduced 
by the imputation process. The mean performance values 
of the model are the same overall and indicating that the 
imputation process did not introduce false information 

(6)MPCD = (1− alpha)(1− beta)

Fig. 7  Results summary of the DL model of every dataset (the left blue colour indicates normal dataset and right black colour indicates SMOTE 
dataset)

Fig. 8  Boxplot of the tenfold CV of dataset 7 (the left blue colour indicates normal dataset and right black colour indicates SMOTE dataset)
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in the process. The results of the DDm and DDM impu-
tation process are shown in Fig. 10. In this case, we can 
see a similar variance when comparing the imputation 
and real value models, suggesting a good imputation 
performance.

Figures  11 and 12 show the boxplot graph of root 
square error (RSE) values of the 10-folds when imputa-
tion the NEU%m and LIN%M biomarkers, and DDm 
and DDM, respectively. The prominent red dots in the 
graph represent patients who had different classifications 
between real and imputation data.

Performance comparison
For comparison purposes, the RF [64, 65] support vec-
tor machine (SVM) [80], artificial neural network (ANN) 
[81], XGBoost [82], logistic regression (LR) [83] algo-
rithms have been trained and tested based on the same 
datasets. The comparative results of the DL and RF 

models of every dataset with and without the SMOTE 
approaches are presented in Figs. 13 and 14, respectively. 
The results show that the DL model has high prediction 
accuracy.

In Table 7, the proposed DL model outperforms com-
paratively the support vector machine (SVM), artificial 
neural network (ANN), XGBoost, logistic regression 
(LR) and RF model in practically every dataset on both 
approaches. The RF model greatly benefits from the 
SMOTE approach, while the DL model appears to work 
better even when having unbalanced classes.

The proposed model is also compared with the recently 
published methods. The comparative results are shown in 
Table 8. In [21], the authors used 53 confirmed COVID-
19 patients and the dataset was collected from the 
Wenzhou Central Hospital and Cangnan People’s Hos-
pital in Wenzhou, China. The median age was 43 years, 
and 62.2% of patients were men. Common symptoms 

Fig. 9  Metrics comparison of the imputation NEU%m and LIN%M biomarkers (Left-blue) against real values (Right-black)

Fig. 10  Metrics comparison of the imputation of the DDm and DDM biomarkers
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included fever (in 47 patients, 88.7%) and cough (in 32, 
60.4%). The median number of white blood cell count 
(× 109 = L) was reported as 4.8, and the median number 
of Lymphocyte count (× 109 = L) was 1.2. Out of the 53 
patients, 9.4% developed ARDS, 1.9% patients were taken 
into the intensive care unit (ICU) and 47.5% required 
supplemental oxygen. They compared various ML algo-
rithms using a tenfold cross-validation accuracy. The 
top accuracy achieved was 80% using the support vector 
machine (SVM) and K-nearest neighbour (KNN) (k = 5) 
algorithm.

Pourhomayoun et  al. [24] proposed an ML algorithm 
to accurately predict the mortality risk of COVID-
19 patients. 17,000 laboratory-confirmed COVID-19 
patients’ dataset was collected from 76 countries with an 
average age of 56.6, from which 74.4% recovered. Data 
imputation techniques were used for missing values, and 
a balanced dataset was created for training and testing 
the model. 112 features were available from symptoms 
and doctor’s medical notes, and patient’s demographic 
and physiological data. After applying different filter and 
wrapper methods, the feature space was reduced to 42 

Fig. 11  RSE values for imputation NEU%m and LIN%M features

Fig. 12  RSE values for imputation DDm and DDM features
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features. The best performance accuracy (93.75%) was 
achieved by the ANN algorithm. Hyper-parameters were 
tuned using grid search and the final architecture had 
two hidden layers with 10 neurons in the first layer and 

3 neurons in the second layer. A sigmoid function was 
used as the hidden layer activation function and stochas-
tic gradient as the optimizer with a constant learning rate 
and a regularization rate of alpha 0.01 was used.

Fig. 13  The comparative results of the DL (left-blue) and RF (right-black) models (Normal dataset)

Fig. 14  The comparative results of the DL (left-blue) and RF (right-block) models (SMOTE dataset)

Table 7  The proposed model (DL) is compared with other models

Algorithms Key performance indicators (KPI) algorithm

MPCD Recall F2 score Precision AUC​ Accuracy

DL 0.93 1 0.93 0.91 0.93 0.95

RF 0.88 0.95 0.89 0.9 0.89 0.93

SVM 0.77 0.91 0.87 0.85 0.87 0.89

ANN 0.78 0.89 0.9 0.87 0.88 0.90

XGBoost 0.81 0.93 0.94 0.90 0.90 0.91

LR 0.76 0.90 0.87 0.88 0.86 0.89



Page 14 of 18Guadiana‑Alvarez et al. BMC Medical Informatics and Decision Making           (2022) 22:78 

In [27], taken 197 patients’ data with confirmed 
COVID-19 were obtained from five USA health systems 
including 51.3% of male patients and the majority are 
between 30 and 80 years old. For each patient, 12 features 
were extracted and fed into the model. The XGBoost 
classifier was shown excellent performance including the 
following results: sensitivity (0.90) and specificity (0.58).

In [28], the dataset consists of 10,813 patients from 
52 Korean hospitals, using 51 variables for prediction. 
The ANN algorithm was used and got the following 
results accuracy = 95.98%, sensitivity = 81.25%, specific-
ity = 96.1% and AUC = 97%.

The study comprised 2,831 patients, 711 (25.1%) of 
whom died during hospitalization while the remaining 
were discharged. Two models were trained to calculate 
the mortality risk using lab test results and without. The 
missing values were imputation using.

KNN, more than 40% of missing features were 
excluded, and 95% confidence intervals were calculated 
using bootstrapping.

The model performance evaluated using laboratory 
values (AUC = 93.8%) and without laboratory test values 
(AUC = 90.5%) [29].

Yadaw et  al. [34] developed a mortality prediction 
model using the XGBoost algorithm. The database con-
sisted of 3,841 patients, 8.2% deceased with features age, 

SpO2 and type of patient. The best results were obtained 
(AUC of ROC = 91%).

Ji et al. [23] used 208 patients’ dataset and the average 
age of 117 is 44 (56.2%), 31 (14.9%) older than 60 years, 45 
(21.6%) and 40 (19.2%) patients. The clinical conditions 
deteriorated progressed during the observation period. 
Using the CALL score model, clinicians can improve the 
therapeutic effect and reduce mortality risk.

In [35], 641 hospitalized patients database was used 
with a median age of 60 years old, 40.1% female, 62% no 
critical illness, 30% were admitted to the ICU and 82 who 
expired. Five significant variables predicting.

ICU admissions were lactate dehydrogenase, procalci-
tonin, SpO2, smoking history, and LIN. The seven critical 
patients were deceased who have some other symptoms 
such as heart failure, procalcitonin, lactate dehydroge-
nase, chronic obstructive pulmonary disease, SpO2, heart 
rate, and old age. The mortality group uniquely contained 
cardiopulmonary variables. The risk score model (a mul-
tivariable regression model) yielded good accuracy with 
an AUC-ROC of 0.74 of the ICU admissions.

The dataset consisted of 284 X-ray images of which 
around 142 were positive of COVID-19. The VGG-6 
image classifier was used as the top layers of the model 
and then added 5 layers as part of the transfer learn-
ing methodology. The proposed model achieved a 

Table 8  Comparison of the proposed scheme with recently published ML models to predict COVID-19 patients’ mortality risk

Algorithm Input features dataset Key performance indicators (KPI)

MPCD Recall/sensitivity F2 score Precision AUC​ Accuracy

DL 48 Clinical data 0.93 1 0.93 0.91 0.93 0.95

RF 0.88 0.95 0.89 0.85 0.89 0.93

SVM 0.77 0.91 0.87 0.87 0.87 0.89

ANN 0.78 0.89 0.9 0.88 0.90

XGBoost 0.81 0.93 0.94 0.90 0.90 0.91

LR 0.76 0.90 0.87 0.88 0.86 0.89

SVM and KNN [21] 11 Clinical data – – – – – 0.80

ANN [24] 42 Clinical data – – – – – 0.90

ML [27] 12 Clinical data – 0.90 – – 0.866 –

DNN [28] 51 Clinical data – 0.8125 – – 0.97 0.9598

ML [29] 20 Clinical data – – – – 0.94 –

Multivariate Analysis [23] (Cox proportional regression) 4 Clinical data – 0.95 – – 0.91 –

ML [34] 3 Clinical data – – – – 0.91 –

Multivariate Regression model [35] 7 Clinical data – – – – 0.74 –

CNN and Deep Transfer Learning [30] RGB X-ray images – 0.9762 – – – 0.8810

CNN and Deep Transfer Learning [31] X-ray & CT-Scan images – 0.94 – 0.95 – 0.95

Deep CNN-LSTM [54] X-ray Images – 0.993 – – 0.999 0.994

CNN- Ensemble of Machine Learning [57] X-ray Images – 0.978 – 1 – 0.989

CNN-RNN [53] X-ray Images – 0.999 – 0.999 0.999 0.999

KNN [84] Clinical data 1.00 0.93 0.942 0.922 0.9374
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sensitivity of 97.62%, specificity of 78.57%, accuracy of 
88.10% and AUC-ROC of 88% [30].

In [31], proposed a CNN transfer learning model to 
diagnose the COVID-19 patients using X-ray and CT-
scan images, and the following results were obtained 
including precision = 95%, recall = 94%, F1 score = 95% 
and accuracy = 95%.

Islam et  al. [54], proposed deep CNN-LSTM algo-
rithms for the detection of novel COVID-19 using 
X-ray images. The CNN algorithm was applied to 
extract the features and the LSTM scheme was used to 
detect COVID-19. The recorded KPIs include accuracy 
of 99.4%, AUC of 99.9%, specificity of 99.2%, the sensi-
tivity of 99.3%, and the F1-score of 98.9%.

In [57], CNN and an ensemble of machine learning 
procedures were offered to detect the COVID-19 infec-
tion using X-ray images and the model performance 
is 98.91% accuracy, 100% precision, 97.82% recall, and 
98.89% F1-score have been shown.

In [53], CNN-RNN schemes based on transfer 
learning were introduced to diagnose the COVID-
19 infection using X-ray images and the authors also 
investigated four different methods using the same fea-
tures. The VGG19-RNN has been judged as the best 
scheme with 99.9% accuracy, 99.9% AUC, 99.8% recall, 
and 99.8% F1- score to detect COVID-19 cases. Hence, 
the proposed methods are quite better for the detection 
of COVID-19 infection using X-ray images.

Shanbehzadeh et  al. [84] evaluated different ML 
algorithms using 1224 hospitalized patients data with 
COVID-19. By comparing the performance of ML algo-
rithms according to various evaluation criteria, the 
KNN algorithm with the precision of 94.21%, accuracy 
of 93.74%, recall of 100%, F-measure of 93.2% and ROC 

of 92.23%, produced better performance comparatively 
other algorithms.

Discussion
In Fig.  7, the performance of the proposed model 
changes from dataset to dataset. This is expected because 
more features are used, as more information is needed to 
improve the behaviour of the system. However, the vari-
ability in the results is also increased as more samples 
were dropped, and more features were added, as shown 
in Table 5.

Figure  15 shows the original database class distribu-
tion on the left side, while the right side shows the DL 
predicted distribution. This indicates that the proposed 
model successfully models the dataset underlying dis-
tribution. The proposed DL model is capable of making 
an accurate prediction even on the unbalanced dataset. 
Further, analysing the proposed DL outcomes distribu-
tions is very close to the actual output distribution of the 
dataset.

In Fig. 8, the comparative results show that the SMOTE 
approach has a recall distribution that is closer to 1, but 
more variability in the precision metric. This is seen on 
the outlay of MPCD value around 0.95 which may imply 
a possible improvement in the model performance 
while introducing more training data. The same can be 
said about the final dataset, where the variability of the 
MPCD score is bigger, but outliers with very high MPCD 
values are also observed. Finally, the threshold value set 
by the SMOTE approach gets closer to 0.50 because the 
proportion between classes is close to one another. We 
observed a large variation in each evaluation metric, 
which is expected because of the high imbalance dataset.

The recall metric was further analyzed to quantify how 
good the predictions are. As we know the recall metric 

Fig. 15  The original database class distribution on the left side, while the right side shows the DL predicted distribution
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shows the proportion of the positive samples correctly 
classified. In Figs.  8, 9 and 10, the distribution of the 
recall metric of the dataset, the mean recall value is 0.92, 
which means that 92% confidence of correctly classifying 
any positive prediction. Additionally, we can see 10-folds 
where the recall value reaches 1.00, indicating that no 
positive samples were misclassified.

Figure  11 shows the boxplot graph of root square 
error (RSE) values of the 10-folds when imputation the 
NEU%m and LIN%M biomarkers, it can be seen more 
variance in the imputation values and have more error. 
Also, it can be observed that most of the patients classi-
fied differently when using imputation are above the 3rd 
quartile for the observed error distribution. This can rec-
ommend a lack of information in the current database to 
properly imputation these features.

Figure 12 shows that the overall RSE when imputation 
the DDm and DDM features are smaller, with very low 
variance and just a couple of outliers. Imputation of these 
features should yield a very similar result to the real fea-
ture value.

However, comparative analysis shows that the pro-
posed DL method yields substantially higher results for 
clinical and biomarker datasets. The proposed DL model 
can make an accurate prediction even on the unbal-
anced dataset. The proposed procedure can be applied to 
research areas such as manufacturing.

Conclusion and future work
There is still not much we understand about the COVID-
19 disease and its high reproduction rate calls on hospi-
tals to predict the evolution of the patient on admission 
to effectively manage hospital resources. A mortality risk 
calculator for COVID-19 patients is proposed based on 
the DL model, and the five different algorithms have been 
tested including RF, SVM, ANN, XGBoost, and LR to cal-
culate the risk of mortality of patients with COVID-19 
infection using the same features and datasets. Therefore, 
a mortality risk calculator must not only accurately clas-
sify patients with high mortality risk, but it is also work-
ing on the necessary features. This can enable hospitals 
to make early predictions even when only basic features 
are available while evaluating the benefits of later obtain-
ing more complex biomarker features. The proposed DL 
model was tested using only the most basic features had 
an average MPCD score of 0.75, while the best MPCD 
score was 0.86 obtained using 24 input features, 16 basic 
and 8 biomarker data (both the maximum and minimum 
values).

The proposed model DL shows significantly excellent 
results when evaluating each of the proposed datasets. 
Both over-sampling and data imputation approaches 
were analysed. The data imputation method based on 

the KNN algorithm was proposed and employed to 
improve the MPCD results. The proposed imputation 
strategy improved the MPCD (0.75) and recall (0.92) 
scores while only imputation 2 features. In addition, to 
predict the risk of death, falsely if a patient has a lower 
risk of death, it is far more critical than the other way 
around. Therefore, false negatives should be prioritized 
over false-positive predictions.

Both imputation results indicate that the model’s per-
formance can indeed benefit from the imputation of 
said biomarkers. The recall metric got an overall mean 
value of around 0.90 which outperforms the 0.87 of the 
models without any imputations, while also reaching 
recall values of about 0.95.

The analysis presented in this research project can be 
applied to other research areas, e.g., finance or manu-
facturing. In the defect detection or prediction prob-
lem in the manufacturing area, where the positive 
(defect) to negative (non-defective) ratio is also very 
unbalanced, the prediction problem can be analysed 
similarly.

Future work: Evaluate the effect of data imputation 
for complex biomarker data. Add other types of sta-
tistical representation for biomarkers time series data, 
by standardizing sampling frequency of both vital 
signs and lab test results. Test usage of a time series 
dedicated algorithm, i.e., Recurrent Neural Networks, 
ARMA models, etc. to predict patient’s evolution 
through time. Evaluate data imputation efficiency for 
every biomarker feature in a greedy way.
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