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Abstract 

Background:  Machine learning (ML) model is increasingly used to predict short-term outcome in critically ill 
patients, but the study for long-term outcome is sparse. We used explainable ML approach to establish 30-day, 90-day 
and 1-year mortality prediction model in critically ill ventilated patients.

Methods:  We retrospectively included patients who were admitted to intensive care units during 2015–2018 at a 
tertiary hospital in central Taiwan and linked with the Taiwanese nationwide death registration data. Three ML models, 
including extreme gradient boosting (XGBoost), random forest (RF) and logistic regression (LR), were used to establish 
mortality prediction model. Furthermore, we used feature importance, Shapley Additive exPlanations (SHAP) plot, 
partial dependence plot (PDP), and local interpretable model-agnostic explanations (LIME) to explain the established 
model.

Results:  We enrolled 6994 patients and found the accuracy was similar among the three ML models, and the area 
under the curve value of using XGBoost to predict 30-day, 90-day and 1-year mortality were 0.858, 0.839 and 0.816, 
respectively. The calibration curve and decision curve analysis further demonstrated accuracy and applicability of 
models. SHAP summary plot and PDP plot illustrated the discriminative point of APACHE (acute physiology and 
chronic health exam) II score, haemoglobin and albumin to predict 1-year mortality. The application of LIME and SHAP 
force plots quantified the probability of 1-year mortality and algorithm of key features at individual patient level.

Conclusions:  We used an explainable ML approach, mainly XGBoost, SHAP and LIME plots to establish an explain‑
able 1-year mortality prediction ML model in critically ill ventilated patients.
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Background
The long-term outcome is currently an emerging issue 
in critically ill patients due to increasing awareness of 
sequelae result from acute illness including coronavirus 

disease 2019 (COVID-19) infection [1–3]. Shankar-
Hari et al. conducted a meta-analysis with 43 studies to 
address the 1-year mortality in critically ill septic patients 
discharged from intensive care unit (ICU) and found that 
the post-ICU 1-year mortality was approximately 16% [1]. 
Similarly, the COVID-ICU study group recently reported 
a number of sequelae after ICU discharge, and the mor-
tality gradually reached approximately 31% (1298/4244) 
at 90 days after ICU admission for COVID-19 infection 
[3]. A number of recent studies, including our study 
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focusing on the long-term impact of early fluid balance 
on 1-year mortality in critically ill cancer patients, have 
identified factors associated with the long-term mortal-
ity in critically ill patients [4, 5]. These evidence highlight 
the essential need to explore early determinants and early 
risk stratification for long-term outcome in critically ill 
patients.

Artificial intelligence (AI) is increasingly used in a wide 
range of fields, but the black-box issue remains the major 
concern for the application of AI in the medical field, 
particularly in critical care medicine, given decision sup-
port system without rationale is somehow imprudent for 
the physician [6–8]. Recently, explainable AI, including 
our recently published studies using explainable machine 
learning (ML) model in patients with severe influenza 
infection and critically ill ventilated patients, have been 
increasingly applied to interpret the AI model based on 
the domain knowledge and post-hoc analyses; therefore, 
the black-box issue can be mitigated through explainable 
ML approach [9–12].

In the present study, we linked the critical care data-
base of Taichung Veterans General Hospital (TCVGH) 
with the death registration data of the National Health 
Insurance Research Database (NHIRD) in Taiwan to 
establish a critical care database containing data regard-
ing long-term mortality. We employed the explainable 
ML approach to establish a long-term outcome predic-
tion model and to address the distinct determinants for 
short-term and long-term mortality in critically ill venti-
lated patients.

Materials and methods
Ethical approval
The Institutional Review Board of Taichung Veter-
ans General Hospital has approved the present study 
(TCVGH: CE20249B). The data were retrieved from 
the electronic medical record (EMR) at TCVGH, and 
informed consent was waived due to that the data were 
anonymised before analyses.

Establishment of database
In the present study, the critical care database was 
established through retrieving data from the data ware-
house at TCVGH, a tertiary care referral hospital with 
1530 beds and six ICUs in central Taiwan. Patients 
who admitted to ICUs between 2015-July and 2018-
July were included in this study, and we used the first 
ICU admission as the index ICU admission. The date-
of-death was obtained from the death registration data 
of Taiwanese NHIRD, a single-payer and compulsory 
health insurance program with 99.9% coverage of the 
Taiwanese population in 2019, and the date-of-death 
should hence be accurate [13]. The dataset mainly 

consisted of the five clinical domains, including venti-
lation domain, fluid domain, physiology domain, lab 
domain, and severity score.

Machine learning models
We employed three machine learning (ML) models, 
including Extreme gradient boosting (XGBoost), Ran-
dom forest (RF), and Logistic regression (LR). In the 
setting of the key hyperparameters, the optimal values 
were determined by a grid search on potential value 
combinations of the parameters. Notably, we provided 
visualised explanation at domain-, feature- and indi-
vidual levels to mitigate the issue of black-box of ML 
models. For the interpretability of the ML models at 
the domain level, we quantified the cumulative feature 
importance of the aforementioned clinical domains. In 
this study, the score of feature importance was quan-
tified by the average gain across all splits of a feature 
used during the construction of the tree-based model. 
We then used SHAP and PDP for further visualise 
explanation at the feature level [14]. In brief, the SHAP 
summary plot was used to illustrate the strength as 
well as the direction of associations between key fea-
tures and 30-day, 90-day and 1-year mortality, and the 
partial dependence plot (PDP) was used to show the 
marginal effect of features on the predicted outcome of 
key features. For further explanation at the individual 
level, we used LIME and SHAP force plots to illustrate 
the impact of key features at the individual level [15]. In 
brief, LIME gives an explanation of a classifier through 
approximating the key features by applying a locally lin-
ear model. The exported output of LIME was the expla-
nation which represent the contribution of key features 
to the predicted outcome in an individual patient.

Statistical analysis
The continuous data were presented as means ± stand-
ard deviations, and categorical data were expressed as 
frequencies (percentages). Fisher’s exact test and Stu-
dent’s t-test and were used to measure the difference 
between the two groups. We divided the data into train-
ing dataset (80%) and testing dataset (20%) (see Addi-
tional file 1: Fig. S1 for the flow diagram of the study). 
We used the receiver operating characteristic (ROC) 
curve analysis, calibration curve and decision curve 
analysis to determine discrimination, accuracy and 
applicability of the predictive ML models in the test-
ing sets [16, 17]. Furthermore, we used DeLong’s test 
to determine the difference between two area under 
curves (AUCs) [18]. Python version 3.6 was applied in 
the present study.



Page 3 of 11Chan et al. BMC Medical Informatics and Decision Making           (2022) 22:75 	

Results
Demographic and ventilatory data
A total of 6994 critically ill patients requiring mechani-
cal ventilation were enrolled, and 160 features were used 
in the present study (Fig. 1). The mean age of them was 
64.1 ± 16.2  years, and 65.1% of enrolled subjects were 
male. We found that 34.4% (2405/6994) of patients 
died within 1  year after the index ICU admission. The 
non-survivors were more likely to be discharged from 
the medical ICU (50.0% vs. 18.8%, p < 0.01), to have 
a higher APACHE II score (26.3 ± 6.4 vs. 21.6 ± 6.6, 
p < 0.01), white blood cell counts (12,464.7 ± 14,292.0 vs. 
11,414.5 ± 4310.7, p < 0.01), level of blood urea nitrogen 
(37.5 ± 30.4 vs. 24.0 ± 20. 7, p < 0.01), level of creatinine 
(1.9 ± 2.0 vs. 1.5 ± 1.8, p < 0.01), whereas a lower level of 
haemoglobin (9.9 ± 1.8 vs. 10.9 ± 1.9, p < 0.01) and albu-
min (3.0 ± 0.9 vs. 3.4 ± 0.8, p < 0.01) compared with those 
in the survivor group (Table 1). Table 2 summarises the 
main ventilatory parameters, and we found that patients 
in the non-survivor group tended to have a higher 

Patients admitted to TCVGH 
between 2015-July and 2018-July

n=14,550

Patients admitted to TCVGH requiring mechanical 
ventilation between 2015-July and 2018-July, 

n=7,594

Critically ill ventilated patients who 
were eligible for survival analyses 

n=6,994

Exclusion patients without invasive 
ventilatory support (n=6,956)

Exclusion patients expired within 7 
days after ICU admission (n=600)

Fig. 1  Flowchart of subject enrollment. TCVGH Taichung Veterans 
General Hospital, ICU intensive care unit

Table 1  Characteristics of the 6994 critically ill ventilated patients categorised by 1-year mortality

Data were presented as mean ± standard deviation and number (percentage)

CCI Charlson comorbidity index, ICU intensive care unit, APACHE II acute physiology and chronic health evaluation II, BUN blood urea nitrogen

All Survivor Non-survivor p value
N = 6994 N = 4589 N = 2405

Demographic data

 Age (years) 64.1 ± 16.2 61.6 ± 16.1 68.7 ± 15.3 < 0.01

 Sex (male) 4550 (65.1%) 2919 (63.6%) 1631 (67.8%) < 0.01

 Body mass index 24.3 ± 4.7 24.8 ± 4.7 23.3 ± 4.6 < 0.01

CCI categories < 0.01

 CCI: 0 960 (13.7%) 863 (18.8%) 97 (4.0%)

 CCI: 1–2 4054 (58.0%) 2700 (58.8%) 1354 (56.3%)

 CCI ≧ 3 1980 (28.3%) 1026 (22.4%) 954 (39.7%)

ICU types < 0.01

 Medical ICU 2367 (33.8%) 1165 (25.4%) 1202 (50.0%)

 Surgical ICU 1480 (21.2%) 863 (18.8%) 617 (25.7%)

 Cardiac ICU 1441 (20.6%) 1209 (26.4%) 232 (9.6%)

 Neurological ICU 1706 (24.4%) 1352 (29.4%) 354 (14.7%)

APACHE II 23.3 ± 6.9 21.6 ± 6.6 26.3 ± 6.4 < 0.01

Laboratory data (day-1)

 White blood cell count (count/μL) 11,775.6 ± 9091.8 11,414.5 ± 4310.7 12,464.7 ± 14,292.0 < 0.01

 Hemoglobin (g/dL) 10.5 ± 1.9 10.9 ± 1.9 9.9 ± 1.8 < 0.01

 Platelet (103/μL) 185.40 ± 95.5 192.9 ± 90.9 170.9 ± 102.0 < 0.01

 Albumin (mg/dL) 3.3 ± 0.8 3.4 ± 0.8 3.0 ± 0.9 < 0.01

 BUN (mg/dL) 28.6 ± 25.3 24.0 ± 20.7 37.5 ± 30.4 < 0.01

 Creatinine (mg/dL) 1.6 ± 1.9 1.5 ± 1.8 1.9 ± 2.0 < 0.01

 Lactate (mg/dL) 16.0 ± 15.4 14.0 ± 13.4 19.9 ± 17.9 < 0.01

Outcome

 ICU-stay (day) 11.3 ± 10.7 9.2 ± 9.0 15.3 ± 12.4 < 0.01

 Ventilator-day 8.6 ± 10.6 6.3 ± 8.6 13.0 ± 12.5 < 0.01

 Hospital-stay (day) 27.3 ± 24.4 24.2 ± 23.5 33.3 ± 25.1 < 0.01
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FiO2, PEEP and Ppeak than those in the survivor group 
(Table 2).

Comparisons among XGBoost, RF and LR
We compared the performance among the three ML 
models to predict the 30-day, 90-day, and 1-year mortal-
ity. The XGBoost tended to have the highest accuracy, 
with the AUC value of using XGBoost to predict 30-day, 
90-day and 1-year mortality were 0.858, 0.839 and 0.816, 
respectively (Fig.  2) (see Additional file  1: Table  S1 for 
the detailed metric of the performance). The calibration 
curve showed fair consistency between the predicted val-
ues and the actual observed values (Additional file 1: Fig. 
S2). The decision curve analysis also demonstrated the 
good overall net benefits within a relatively wide range of 
threshold probabilities (Additional file 1: Fig. S3). Given 
that the accuracy in predicting mortality appeared to be 
similar among the three ML models, we used DeLong’s 
test to determine the difference of AUCs among the three 
ML models and found that XGBoost had slightly better 
accuracy in predicting mortality than those in LR and RF 
(30-day mortality XGBoost vs. RF p < 0.01, XGBoost vs. 
LR p = 0.06; 90-day mortality XGBoost vs. RF p = 0.70, 

XGBoost vs. LR p = 0.04; 1-year mortality, XGBoost vs. 
RF p = 0.20, XGBoost vs. LR p < 0.01).

Explanation of the model at the domain and feature level
We illustrated the ML model at the clinical-domain 
level, feature level, and individual level. With respect to 
domain-level explanation in the 1-year mortality predic-
tion model, we categorised the top 25 features by main 
clinical domains in accordance with clinical workflow 
for management among critically ill ventilated patients 
(Fig.  3). In the 1-year mortality prediction model, the 
cumulative feature importance of the ventilatory domain, 
fluid domain, physiologic domain, laboratory data 
domain, and APACHE II was 0.126, 0.211, 0.335, 0.180, 
and 0.147, respectively (Additional file  1: Fig. S4 and 
Additional file  1: Fig. S5 for 30-day and 90-day mortal-
ity prediction model). To further illustrate the model at 
the feature level, we employed SHAP summary plot to 
demonstrate how these features affect the probability of 
mortality (Fig.  4). Using SHAP summary plot, both the 
strength and direction of each feature were explicitly 
illustrated. For example, a higher APACHE II score was 
associated with a higher probability of 1-year mortal-
ity, whereas a higher level of hemoglobulin and albumin 
was inversely associated with mortality (Fig. 4 for 1-year 
mortality prediction model; Additional file 1: Fig. S6 and 
Additional file  1: Fig. S7 for 30-day and 90-day mortal-
ity prediction model). To further elucidate how each fea-
ture affects the probability of mortality in the ML model, 
we used PDP plot of the three crucial features, including 
APACHE II score, level of hemoglobulin and albumin. As 
shown in Fig. 5, APACHE II score higher than approxi-
mately 25, level of hemoglobulin lower than nearly 9 mg/
dL, level of albumin lower than 2.5–3 mg/dL were con-
sistently associated with an increased risk of mortality at 
the three time points (Fig.  5). Collectively, these visual-
ised interpretations at domain and feature level based on 
clinical workflow in critical care should provide intuitive 
explanations of the ML model to the physician.

Explanation of the ML model at the individual level
We next used LIME and SHAP force plots of crucial fea-
tures to illustrate the overall impact of key features on the 
1-year mortality prediction model in individual patients. 
As shown in Fig.  6, the overall predicted probability 
of mortality, incremental mortality effects of variables 
(green), and decremental mortality effects of variables 
(red) of two representative patients were illustrated in the 
LIME plot (Fig. 6). For example, in case-1, the predicted 
probability for 1-year mortality was relatively low (0.23) 
due to a number of decremental conditions, consisting of 
a low APACHE II score (19) and a high albumin (4.2 mg/
dL) as well haemoglobin (11.25  mg/dL), although a 

Table 2  Respiratory parameters of critically ill ventilated subjects 
categorised by 1-year mortality

Data were presented as mean ± standard deviation

PEEP positive end-expiratory pressure, VT tidal volume, PBW predicted body 
weight, Ppeak peak pressure

All Survivor Non-survivor p value
N = 6994 N = 4589 N = 2405

Day 1

 FiO2 (%) 47.1 ± 13.6 45.5 ± 12.2 50.2 ± 15.5 < 0.01

 PEEP 5.9 ± 2.3 5.7 ± 2.2 6.3 ± 2.4 < 0.01

 VT/PBW 8.7 ± 2.1 8.7 ± 2.0 8.8 ± 2.2 0.03

 Ppeak 22.8 ± 5.0 22.2 ± 4.8 23.9 ± 5.2 < 0.01

Day 2

 FiO2 (%) 41.6 ± 8.9 41.1 ± 8.1 42.6 ± 10.1 < 0.01

 PEEP 6.1 ± 2.5 5.8 ± 2.4 6.7 ± 2.7 < 0.01

 VT/PBW 41.6 ± 8.9 41.1 ± 8.1 42.6 ± 10.1 < 0.01

 Ppeak 22.4 ± 5.2 21.7 ± 4.9 23.8 ± 5.4 < 0.01

Day 3

 FiO2 (%) 40.4 ± 8.4 40.1 ± 7.8 41.0 ± 9.3 < 0.01

 PEEP 6.1 ± 2.4 5.7 ± 2.2 6.6 ± 2.7 < 0.01

 VT/PBW 8.7 ± 2.3 8.6 ± 2.2 8.8 ± 2.4 < 0.01

 Ppeak 22.1 ± 5.3 21.4 ± 5.0 23.5 ± 5.6 < 0.01

Day 7

 FiO2 (%) 39.3 ± 8.4 39.0 ± 7.5 39.7 ± 9.8 < 0.01

 PEEP 5.8 ± 2.0 5.5 ± 1.6 6.3 ± 2.4 < 0.01

 VT/PBW 8.7 ± 2.4 8.6 ± 2.3 8.8 ± 2.5 < 0.01

 Ppeak 20.9 ± 5.3 20.2 ± 4.8 22.4 ± 6.0 < 0.01
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slightly low systolic blood pressure on day-7 (109 mmHg) 
and high injected fluid on day-7 (1400  mL). The SHAP 
force plot illustrated similar findings of key features, 
including APACHE II score, albumin, haemoglobin, and 
systolic blood pressure on day-7 (Fig.  6A). In contrast, 
the probability of 1-year mortality in case-2 was appar-
ently high (0.71) due to a number of incremental condi-
tions, including a high APACHE II (28) and low albumin 
(2.1 mg/dL) as well as haemoglobin (7.6 mg/dL), despite 
a relatively normal blood temperature on day-2 (37.2 
Celsius) and feeding diet amount on day-6 (1730  mL). 
SHAP force plot showed similar findings with a succinct 
summary of the real data, whereas the cut-point of each 
features omitted (Fig. 6B). Taken together, these explana-
tions at the individual level were in line with the explana-
tion at the feature level and should be able to mitigate the 
black-box concern in the application in the field of medi-
cal AI.

Discussion
In the present study, we used an explainable ML approach 
to establish a long-term outcome prediction model in 
critically ill ventilated patients. We mainly employed 
XGBoost to establish the mortality prediction model 
with high accuracy and illustrated distinct determinants 
among models to predict short- and long-term mortal-
ity. We further used the SHAP summary plot and PDP 
for the post-hoc interpretation of the model at the fea-
ture level. Additionally, we used LIME and SHAP force 
plots to illustrate the prediction model at the individual 
level. These data demonstrated the application of a real-
world dataset and explainable ML approach to establish a 
physician understandable long-term mortality prediction 
model in critically ill ventilated patients. These findings 
are crucial for early risk stratification and intervention, 
such as the implementation of physical, nutritional and 
psychological support, in high-risk patients.

AI is increasingly employed in critical care medicine 
with a growing number of registered clinical trials [19, 
20], and the majority of studies aimed to predict the 
outcome, mainly short-term mortality, in critically ill 
patients [21]. Pirracchio et  al. using a composite ML-
based mortality prediction model, so-called Super ICU 
Learner Algorithm, among 24,508 patients in Medical 

Fig. 2  Receiver operating characteristic curves demonstrating the 
performance of the three machine learning models for predicting 
the mortality at 30-day (A), 90-day (B), and 1-year (C). Area under 
curve (A 30-day, XGBoost 0.858, 95% CI 0.830–0.886; RF 0.840, 95% CI 
0.811–0.869; LR 0.837, 95% CI 0.805–0.869) (B 90-day, XGBoost 0.839, 
95% CI 0.816–0.863; RF 0.837, 95% CI 0.813–0.861; LR 0.821, 95% CI 
0.795–0.847) (C 365-day, XGBoost 0.816, 95% CI 0.786–0.832; RF 0.809, 
95% CI 0.786–0.832; LR 0.795, 95% CI 0.771–0.819)
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Information Mart for Intensive Care (MIMIC) II data-
base, reported the accuracy to predict hospital mortal-
ity was 0.85 (95% CI: 0.84–0.85), whereas the accuracy 
of SOFA, a widely used conventional scoring system, 
was merely 0.71 (95% CI: 0.71–0.72) [22]. Similarly, Kong 
et al. focusing on 16,688 septic patients in the MIMIC III 
database, reported the accuracy to predict hospital mor-
tality of the least absolute shrinkage and selection opera-
tor (LASSO), RF, gradient boosting machine (GBM) and 
LR were 0.829, 0.829, 0.845 and 0.833, respectively [10]. 
Shillan et  al. recently summarised a total of 47 studies 
using ML models to predict hospital mortality in criti-
cally ill patients and found that the average AUC was 
nearly 0.83 among studies of 1000–10,000 patients, and 
the finding is consistent with our data that the AUC to 
predict 30-day mortality was approximately 0.85 using 
data from approximately 7000 patients (Fig.  3). Taken 

together, these evidence showed the similar accuracy of 
using ML models to predict short-term mortality and 
highlight the needs for predicting long-term mortality in 
critically ill patients.

The long-term outcome is currently an emerging 
research issue in critically ill patients given the much 
improved short-term outcome with the advance of 
critical care medicine in the past two decades [2, 23]. A 
number of studies including our previous studies focus-
ing on critically ill cancer patients and surgical patients 
have identified factors associated with long-term mortal-
ity in critically ill patients using a conventional statistical 
approach [4, 5, 24]. In line with our study, García-Gallo 
et al., linking 5650 patients with sepsis in the MIMIC-III 
database with the Social Security Administration Death 
Master File to obtain the Out-of-hospital mortality dates, 
recently reported that the accuracy of predicting 1-year 

Fig. 3  Cumulative relative feature importance of top 25 features categorised by main clinical domains in predicting 1-year mortality
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mortality through using day-1 data and the Stochastic 
Gradient Boosting (SGB) method was approximately 0.80 
[25]. Due to the comprehensive day-1 data is essential 
in aforementioned study focusing on using day-1 data, 
nearly 54% (8186/15,254) of critically ill septic patients 
were excluded due to incomplete day-1 data, and the pro-
posed model tended to predict the acute mortality given 
that merely 269 patients with hospital-stay shorter than 
24 h were excluded [25]. In the present study, we used the 
week-1 data including comprehensive ventilatory data 
to predict mortality after week-1; therefore, the dataset 
enables us to predict short-, medium- and long-term out-
come with interpretability among critically ill ventilated 

patients. Unlike a wide span of study year in MIMIC III 
(2001–2012), the dataset during 2015–2019 as we used in 
the present study appears to reflect current management 
and prognosis in critical care medicine. However, both 
our study and the study performed by García-Gallo et al. 
were single centre study, and prospective multi-centre 
studies are required to validate our findings.

In the present study, we provided interpretability at the 
domain and feature level. We found that the cumulative 
feature importance of the ventilatory domain decreased 
along with the prediction window, and the finding was 
consistent with the clinical condition that ventilatory 
condition mainly reflects acute/short-term outcome, 

Fig. 4  SHAP to illustrate the 1-year mortality prediction model at feature level. SHapley Additive exPlanation (SHAP)
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instead of long-term outcome (Fig.  3). Similarly, among 
features within the laboratory domain, acute parameters, 
including lactate level and platelet count, were associated 
with short-term mortality, whereas subacute parameters, 
including the level of haemoglobin and albumin, were 
associated with long-term outcome (Figs.  3, 5). Indeed, 
low albumin has been found to be associated with mor-
tality in critically ill patients [26–28]. Recent studies on 
COVID-19 infection also revealed that higher baseline 
albumin was associated with lower severity of COVID-
19 infection and fewer adverse outcomes, including the 
requirement of ICU admission, development of acute 
respiratory distress syndrome, incident venous thrombo-
embolism, and readmissions within 90  days [29, 30]. In 

line with our finding that anaemia appears to be a crucial 
determinant for 1-year mortality, Waner et  al. recently 
conducted a population-based study to address the prev-
alence and recovery from anaemia among 6901 critically 
ill patients [5]. Waner et al. found that the prevalence of 
anaemia at 3, 6 and 12 months post hospitalisation was 
56%, 52% and 45%, respectively. A higher hospital dis-
charge haemoglobin concentration was independently 
associated with decreased 1-year mortality (adjHR, 0.95 
per 1-g/dL increase; 95% CI, 0.90–0.99) [5]. Collectively, 
we used explainable machine learning to illustrate the 
key determinants for 1-year mortality in ML models, and 
the identified determinants are consistent with clinical 
evidence in critical care medicine.

Fig. 5  Partial dependence plot by SHAP value in predicting 1-year mortality with distinct time points. APACHE II score (A), haemoglobin (B), and 
albumin (C)
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Although AI technologies have been widely applied in 
numerous fields, but adoption of AI algorithms with the 
black-box issue in the critical care field remains uncom-
mon given that intensivist may not take action without 
realising the rationale behind the suggested decision [19]. 

Indeed, interpretability might not be required in the deci-
sion support system in a low-risk environment given that 
an error does not lead to serious consequences; however, 
interpretability is substantially required in decision with 
high stake for certain AI applications, including in critical 

Fig. 6  Local interpretable model-agnostic explanations (LIME) and SHAP force plots of two representative individuals. SHapley Additive exPlanation 
(SHAP)
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care medicine, criminal justice, and business judgment 
[7]. The goal of an explainable AI (XAI) system is to make 
a decision similar to human behaviours by providing 
explanations [31]; therefore, the explanation in medical 
XAI should be in line with the workflow of the physician 
as the main clinical domains we have shown in the pre-
sent study (Fig. 3). Notably, to directly open the black box 
is somehow difficult, and the currently proposed meas-
ures for explanation mainly analysed the model after 
training, so-called post-hoc interpretability [7, 31]. In the 
present study, we focused on the interpretability of ML 
model among individuals whose certainty of prediction 
was high, including patients with a high/low probability 
of mortality. In contrast, the explanation among indi-
viduals with an ambiguous probability of mortality could 
be irrational given that the prediction itself is uncertain. 
Additionally, the interpretability focused on the local 
explanation of key features instead of global model inter-
pretability with a detailed explanation of parameters and 
weights within the model [32]. Given that the aforemen-
tioned explanation of key features is independent of the 
underlying AI model, and this model-agnostic interpre-
tation method is hence increasingly employed among 
distinct ML models, particularly tree-based models [33, 
34]. In addition to explanations of the entire model and 
individual features using SHAP plots as we have shown in 
the present study (Figs. 4, 5), more studies are warranted 
to explore feature interaction effects [34]. Collectively, 
the goal of XAI in critical care medicine is to provide an 
intensivist-understandable and model-agnostic explana-
tion of the model, but not a comprehensive elucidation of 
the AI algorithm.

There are limitations in this study. First, this study is a 
single-centre study, and further validation study is war-
ranted to confirm our findings. However, the overall 
short- and long-term mortality rate is consistent with 
previous studies (Additional file 1: Fig. S8. survive curve 
of the enrolled subjects) [35]. Moreover, the data were 
retrieved from the dataset in a real-world setting; the 
concern with respect to generalisation should be largely 
mitigated. Second, the technology readiness level (TRL) 
of the present study might merely be TRL-4 [36], but we 
believe that TRL-5 can be achieved through integrat-
ing an optimal user interface given that the data in the 
present study were retrieved from structured EMR of 
real-world practice. Third, the observation nature of the 
present study, and the causal inference should be taken 
with caution. Therefore, the future practical application 
of the present study should tend to be a computer-aided 
triage. Fourth, the interpretability of the model tends 
to be a descriptive metric instead of a causal inference 
explanation. Additionally, the single imputation method 
by the average value could lead to a bias in this study.

Conclusions
We established a critical care dataset with long-term out-
come through linking a real-world critical care dataset 
with the death registry file of a nationwide database. We 
used three ML models, including XGBoost, RF and LR, 
to predict 30-day, 90-day and 1-year mortality. Further-
more, we employed clinical domain-based cumulative 
feature importance, SHAP plot as well as PDP plots for 
visualised interpretation at the feature level and SHAP/
LIME plot to illustrate key determinants at the individual 
level. We think these explainable ML approaches should 
largely mitigate the issue of black-box. Future prospective 
multi-centre studies are warranted for the validation and 
landing of the proposed model.
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