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Abstract 

Purpose:  Surface electromyography (sEMG) is vulnerable to environmental interference, low recognition rate and 
poor stability. Electrocardiogram (ECG) signals with rich information were introduced into sEMG to improve the recog-
nition rate of fatigue assessment in the process of rehabilitation.

Methods:  Twenty subjects performed 150 min of Pilates rehabilitation exercise. Twenty subjects performed 150 min 
of Pilates rehabilitation exercise. ECG and sEMG signals were collected at the same time. Aftering necessary preproc-
essing, the classification model of improved particle swarm optimization support vector machine base on sEMG and 
ECG data fusion was established to identify three different fatigue states (Relaxed, Transition, Tired). The model effects 
of different classification algorithms (BPNN, KNN, LDA) and different fused data types were compared.

Results:  IPSO-SVM had obvious advantages in the classification effect of sEMG and ECG signals, the average recogni-
tion rate was 87.83%. The recognition rates of sEMG and ECG fusion feature classification models were 94.25%, 92.25%, 
94.25%. The recognition accuracy and model performance was significantly improved.

Conclusion:  The sEMG and ECG signal after feature fusion form a complementary mechanism. At the same time, 
IPOS-SVM can accurately detect the fatigue state in the process of Pilates rehabilitation. On the same model, the 
recognition effect of fusion of sEMG and ECG(Relaxed: 98.75%, Transition:92.25%, Tired:94.25%) is better than that of 
only using sEMG signal or ECGsignal. This study establishes technical support for establishing relevant man–machine 
devices and improving the safety of Pilates rehabilitation.

Keywords:  Exercise fatigue, Surface EMG signal, Electrocardiogram signal, Feature fusion, Particle swarm optimization 
algorithm
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Introduction
Pilates is a combination of strength, flexibility, and bal-
ance exercises. It focuses on lumbopelvic stabilization, 
with the activation of the deep muscles of the trunk, and 
seeks a complete connection of body and mind [1]. The 
core muscles provide balance and strength for Pilates, so 
exercise plays an important role in women’s postpartum 

recovery [2], prevention of low back pain and rehabilita-
tion [3], spinal health correction [1, 4]. In the process of 
Pilates exercise, program-controlled human–computer 
interaction equipment, such as medical rehabilitation 
robot and exoskeleton robot, is to help patients complete 
the set movement. However, the muscle fatigue informa-
tion is rarely used as an influencing factor to adjust the 
rehabilitation process. That not only has a great impact 
on the recognition rate of patients’ motor intention but 
also tends to cause secondary injuries and reduce the 
rehabilitation effect.
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Common detection techniques for muscle fatigue 
include surface electromyography (sEMG) [5], muscle 
sound signal [6], muscle oxygen saturation [7], etc. When 
muscle activity or biochemical characteristics change, 
these signals change accordingly. Muscle sound signal 
and muscle oxygen saturation are expensive and difficult 
to obtain. So sEMG has many achievements in the field 
of online monitoring and processing of muscle fatigue. 
Gongfa Li et  al. [4, 8–10] studied the prosthetic hand 
grasps the object base on the forearm electromyography 
signal, and the result of surface EMG signal decoding is 
applied to the controller, which can improve the fluency 
of artificial hand control. Choi Chang et al. [5] developed 
a computer interface base on sEMG and virtual reality, 
which can be applied to spinal cord injury patients. They 
can control the cursor movement by adjusting the level 
of muscle contraction. Shahmoradi et  al. [11] collected 
the sEMG and Maximum Voluntary Contraction (MVC) 
data in the rehabilitation process as inputs of the fatigue 
state recognition model. The hidden Markov model and 
artificial neural network were studied for fatigue classi-
fication of sEMG. The results show the HMM has a bet-
ter recognition effect with an accuracy of 95.3%. Because 
fatigue is a complex phenomenon with characteristics 
of weakness, randomness and low frequency. When 
sEMG evaluates muscle fatigue under exercise, it is often 
affected by sweat, environment, heartbeat and so on, the 
sEMG classification method alone is not stable. Many 
scholars combine sEMG with other monitoring methods, 
such as electroencephalogram (EEG) and electrocardio-
gram (ECG) [12–15].

Compare with EEG, Electrocardiogram (ECG) is one of 
the most commonly used non-invasive diagnostic tools 
for recording the physiological activities of the heart over 
some time. The ECG data [16] contains much informa-
tion about the human motor function and is widely used 
in muscle state research and emotion estimation and so 
on. SEMG signals often have ECG characteristic signals. 
In the previous sEMG body state prediction, it is often 
necessary to eliminate the characteristic signals of ECG. 
But there is no accurate standard for this. It brings many 
difficulties to the evaluation research.

Considering the muscle fatigue characteristics of the 
sEMG and ECG, it is of great significance to establish the 
fatigue state recognition model of the Pilates rehabili-
tation process by the fusion sEMG and ECG [17]. Data 
fusion will produce high-dimensional data, so it is nec-
essary to extract fatigue related features from the fused 
data of sEMG and ECG, and improve the existing particle 
swarm classifier according to the data features.

The fatigue degree of the subjects after the Pilates 
rehabilitation was divided into 6–20 score ranges by the 
scale for Rating of Perceived Exertion (RPE scale) [18]. 

The segments from 6 to 10, 13–14, 17–18 scores in the 
table were identified as Relaxed, Transition, Tired. The 
ECG and sEMG signal at the tibialis anterior muscle and 
semitendinosus muscle of the lower limbs were collected 
while doing the established actions of Pilates. A series of 
preprocessing was performed to extract the feature vari-
ables, which were used as the improved particle swarm 
optimization support-vector. The input volume of the 
machine classifier, which achieves iterative optimiza-
tion of the fusion of complex signals, high-dimensional 
features, and accurate identification of the three motion 
states. The advantages and disadvantages of this method 
were analyzed by the recognition effect.

Methods
Data collection
In this section, the data collection will be described, and 
analysis methods will be explained in detail. The data 
has been obtained from 20 physical health subjects (22–
26 years old; 8 males, 12 females).

The experiments were conducted using Trigno Wire-
less Systems and Smart Sensors. The Trigno Wireless 
EMG system is a very popular device with simple and 
reliable performance. Each EMG sensor has a built-in tri-
axial accelerometer. Its signal can be transmitted in 40 m 
and can be detected continuously for 8  h. The system 
can transmit the data stream to EMGworks 4. Acquisi-
tion and analysis software for generating 16 EMG sensors 
(37 mm × 26 mm × 15 mm) and 48 accelerometer analog 
channels for integration with motion capture and other 
third-party data acquisition systems. The complete trig-
ger function further expands the possibility of integration 
with other measurement technologies. The sensor used 
can respond immediately to the interference detected on 
the skin surface.

The North Sichuan Medical College conducted this 
research project by the ethical code of the World Medi-
cal Association. It was also approved by the Ethics 
Committee of the North Sichuan Medical College (No. 
2020ER(R)017). This paper took 20 physical examiners as 
the research object. Selection criteria: full-time students 
majoring in Physical Education; aerobics as the main 
special sport; the subjects were in good physical condi-
tion, had no obvious disease, and had no damage to the 
lower limb muscles and knees. The subjects had an aver-
age height of 162.3 ± 1.2  cm, an average body weight of 
63.5 ± 2.3  kg, and an age of 21.2 ± 1.1  years. Before the 
experiment, the experimental process was explained to 
the subjects. All subjects voluntarily participated in the 
experiment and signed written informed consent. The 
test time was September 11–25, 2021.

According to the physiological structure of the human 
body, the ECG signal and the sEMG signal at the anterior 
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tibialis muscle and semitendinosus muscle were collected 
synchronously. The sampling frequency was 2  kHz. The 
sensor position is shown in Fig. 1. Ch-1 is the ECG sen-
sor, ch-2 and ch-3 are the sEMG sensors at the semiten-
dinosus muscle of the right leg and the anterior tibialis 
muscle of the left leg, respectively.

The subjects were divided into two groups of 10. The 
prescribed Pilates movement training was carried out 
according to the plan. It was stipulated that 15 min was a 
training cycle. Ten subjects completed one cycle of train-
ing in turn as a group of experiments. The duration of 
each experiment was 150  min, and a total of 40 groups 
of experiments were carried out. The first group finished 

the test, the second group continued the test, and the first 
group rested. In each training cycle, the subjects return a 
calm standing state every 30 s according to the RPE scale 
[18], report their feelings of fatigue state, and mark the 
fatigue state value at this time (relaxed: − 1, transition: 0, 
tired: 1).

The sEMG and ECG signal in three states were marked 
and saved, and the corresponding training time was 
recorded. 30 groups of sEMG and ECG signal were 
obtained in each group experiment. According to the 
corresponding fatigue value, each data was divided into 
three states, with a total of 90 sEMG and ECG data. After 
the experiment, 3600 sEMG and ECG data were col-
lected respectively. One set of experimental processes 
and obtained characteristic data are shown in Fig. 2. The 
signal acquisition and analysis process of all subjects were 
the same. Here, take one of them as an example.

Signal preprocessing and fatigue feature extraction
The original sEMG and ECG signal contains noise 
interference, which needs to be preprocessed. Firstly, 
the original ECG and sEMG signals were filtered by 
0–100 Hz and 0–500 Hz low-pass filters to remove high-
frequency interference. Secondly, 49.5–50  Hz adaptive 
notch filters were used to filter the power frequency 
and harmonic interference in the signal. Finally, empiri-
cal mode decomposition(EMD) and discrete wavelet 
transform(DWT) domains were used to reduce the noise 
[19]. which reduce the noise from the initial IMFs instead 
of discarding them completely thus yielding a relatively Fig. 1  Sensor placement

Fig. 2  A set of the experimental processes and the feature data obtained
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cleaner ECG signal [20]. MATLAB 2021a was used to 
analyze and process the collected data. The time-domain 
and frequency-domain data processing of ECG and 
sEMG are shown in Fig. 3.

The calculation method of specific parameters with an 
asterisk in the Table 1 is as follows [22]:

In the above relations, RRi is the duration of ECG inter-
val; M is the total number of periods.

(1)ECGmean =
1

M

M
∑

i=1

(RRi)

0
100
200
300

0 1 2 3 4
0

100
200
300

0
100
200
300

low pass filtered signal

EMD

DWT

raw signal

0
100
200
300

)
Vμ(

eula
V

Time (s)

a.

-40
0

40
80

-39
0

39
78

)
Vμ(

eula
V

-39
0

39
78

0 1 2 3 4

-39
0

39
78

Time (s)

raw signal

low pass filtered signal

EMD

DWT

b.

0.00

0.05

0.10 raw signal 

low pass filtered signal

EMD

DWT

0.00

0.05

0.10

0.00

0.05

0.10

edutilp
m

A

0 20 40 60 80 100 120 140

0.00

0.05

0.10

Frequency (Hz)

c.

0.000

0.005

0.010

edutilp
m

A

raw signal

low pass filtered signal

EMD

DWT

0.000

0.005

0.000

0.005

0 100 200 300 400 500 600
0.000

0.005

Frequency(Hz)

d.

Fig. 3  Example of signal preprocessing process. a Time-domain signal of ECG, b time-domain signal of sEMG, c frequency-domain signal of ECG 
and d. frequency-domain signal of sEMG
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where x(t) is the amplitude of the sEMG signal, x(k) is the 
amplitude of sEMG signal after discretization, Fs is sam-
pling frequency. N, N1, and N2 are the length of sEMG 
signal, P(f) is the power spectral density function [23].

Improved particle swarm optimization‑support vector 
machine (IPSO‑SVM) classifier
Traditional feature fusion with constant weights attempts 
to merge multiple feature vectors into a vector, which 
performs poorly in muscle fatigue recognition since fea-
ture weights cannot change with the testing object [24]. 
In this study, the multi-class support vector machines 
(SVMs) are constructed by feature fusion coefficients 
of particle swarm optimization (PSO) and one-vs-one 
(OVO) methods to improve the state classifier. The fusion 
coefficient based on PSO can well represent weight coef-
ficients and trust degrees of weight coefficients, and learn 
the fusion features via multi-class SVM to achieve state 
classification; accordingly, the fitness function can be 
established based on state recognition rate to perform 
adaptive iterative optimization on the fusion coefficient, 

(2)

sEMGR−IEMG =

∫ t+T

t
|x(t)|dt =

N2
∑

k=N1

|x(k)| ×
1

Fs

(3)
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√

1
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finally achieving effective fusion of fatigue characteristics 
and accurate state classification. The detailed process of 
fatigue estimation based on improved PSO-SVM (IPSO-
SVM) classifier is as follows:

Constructing the fused feature vectors
fi = [fi1, fi2, . . . , fia] , ei = [ei1, ei2, . . . , eib] , i = 1, 2, . . . , n 
are defined as the feature vectors of ECG and 
sEMG, where a,b are the vector dimension and n 
is the number of samples. d = [d1, d2, . . . , da+b] is 
defined as the fusion coefficient vector, the fused fea-
ture vector of ECG and sEMG can be denoted as 
xi = [d1fi1, . . . , dafia, da+1ei1, . . . , da+beib] , i = 1, 2, . . . , n . 
Using the fused feature matrix X = [x1, x2, . . . , xn]

T com-
posed of fused coefficient vector d, X can be divided into 
the training set Xp and the test set XT. Xp is used for train-
ing the classifier and XT is used for validating the classifi-
cation performance.

Constructing multi‑class SVM fatigue state classifier
SVM, as a kind of machine learning method based on 
statistics and the principle of structural risk minimiza-
tion, performs excellently in addressing nonlinear recog-
nition problems with a small set of samples [25]. Fatigue 
estimation based on ECG and sEMG can be regarded as 
a type of linear inseparable multi-class problem, which is 
exactly the field of expertise of the one-to-one method 
(OVO) [26]. On the classification of class 3 or more, 2 
classes are selected and then merged for classification. 
In this study, OVO was used for constructing 3 binary 
SVMs to achieve the effective classification of 3 states.

It is assumed that the training set Xp contains m sam-
ples, XP = [x1, x2, . . . , xm]

T , YP = [y1, y2, . . . , ym]
T , 

yi ∈ {−1, 0, 1} . yi can be classified into the following 3 
states—relaxed state, transition state, and tired state, with 
the values of − 1, 0 and 1, respectively. SVM attempts to 
seek an optimal classification function so that the dis-
tance of the function on the hyperplane and the support 
vector reaches the maximum. The kernel function φ(x) 
is used for mapping the sample set to high-dimensional 
space while satisfying the Mercer condition. The selec-
tion of φ(x) can directly determine the classification 
performance. Owing to favorable performance and appli-
cation range, radial basis function is selected as the ker-
nel function of SVM in this study,

In the case of positive definite φ(x,xi), the problem of 
seeking optimal hyperplane can be converted into the 
following convex quadratic programming problem:

(6)ϕ(x, xi) = exp

(

−�x − xi�
2

σ2

)

Table 1  Fatigue-related physiological features of ECG and sEMG 
[21]

Features Features description

ECGmean *Mean of the ECG interval sequence

ECGLF Interphase sequence low-frequency band power 
(0.04–0.15 Hz)

ECGLF/HF ECG interphase sequence with low/high band power ratio

sEMGR-IEMG sEMG of the musculus semitendinosus in the right leg

sEMGR-RMS *The mean square root of sEMGR-IEMG

sEMGR-MPF *The mean power frequency of sEMGR-IEMG

sEMGR-MF *The median frequency of sEMGR-IEMG

sEMGL-IEMG EMG of tibialis anterior in the left leg

sEMGL-RMS The mean square root of sEMGL-IEMG

sEMGL-MPF The mean power frequency of sEMGL-IEMG

sEMGL-MF The median frequency of sEMGL-IEMG
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where C and ξi are penalty factor and slack variable, 
respectively. By introducing the Language coefficient a, 
the convex quadratic programming problem can be con-
verted into the dual problem according to Eq. (7), and the 
optimal solution α*,η*, b*can thus be obtained by solving 
the dual problem:

Finally, the SVM classification function based on radial 
basis function can be expressed as:

where sgn is Step Function, The classifier can thus be 
constructed.

ECG‑sEMG feature fusion based on IPSO‑SVM
The detailed fusion process of ECG and sEMG signals 
was described as below.

a.	 Initialization of particle swarms. In this 
study, the random fusion coefficient matrix 
D =

[

d1, d2, . . . , dq
]T is defined as the initial parti-

cle swarm, in which dj =
[

dj1, dj2, . . . , dja+b

]

 denotes 
the fusion coefficient vector, 

∑a+b
k=1 djk = a+ b , j = 1, 

2, …, q. The maximum number of initialization itera-
tions, q denotes the size of particle swarm, c1 and c2 
learning factors, and ω denotes the inertia weight.

b.	 Training of SVM network and calculation of the 
particle fitness degree. The characteristic samples 
are fused with the corresponding fusion coeffi-
cients of particles to obtain the feature fusion matrix 
X =

[

XpXT

]

 , in which is used for network training to 
obtain the classification function *. The particle fit-
ness degree can thus be obtained by testing XT with 
f(x).

c.	 Update of particle swarm (optimization of fusion 
coefficient matrix D). For the fitness degree h(d) of 
each group of particles after the above step b, the 
optimal fitness degrees of both individual particle 
and population are calculated according to Eq.  (10), 
while both velocity vi+1 and position xi+1 of each par-
ticle to generate a new population, in which rand() 
denotes the random number within a range of [0, 1].

(7)

min
ω,b,ξ

1

2
�η�2 + C

N
∑

i=1

ξi s.t

{

yi(ω · ϕ(xi)+ b) � 1− ξi
ξi � 0 · i = 1, 2, . . . ,N

(8)b∗ = yi −

l
∑

i=1

yiα
∗ϕ

(

xi, xj
)

(9)f (x) = sgn

(

N
∑

i=1

α∗
i yiϕ(x, xi)+ b∗

)

(10)hp = max(h(d)), hg = max
(

hp
)

d.	 Step b and Step c are repeated until reaching the 
optimal fitness degree (hg ≥ he, also referred to as 
the expected fitness), where D denotes the optimal 
fusion coefficient matrix.

Fatigue estimation based on optimal fusion coefficient 
feature fusion
Using the optimal fusion coefficients, the feature vectors 
of unknown states are constructed and input to the well-
trained SVM network for recognition to achieve accurate 
classification of fatigue states. The feature fusion and 
fatigue estimation process was shown in Fig. 4.

In order to better evaluate the performance of the 
fatigue assessment method designed in this paper, the 
recognition rate is used as the evaluation index, and the 
expression is as follows:

Results
Analysis of ECG and EMG physiological features 
under different fatigue states
Figure  5 shows the ECG signal characteristics of differ-
ent subjects under different fatigue states. Relaxed and 
tired states can be easily separated based on ECG sig-
nal, but the signal characteristics under transition state 
overlap with those of the other two states. The charac-
teristics in frequency-domain were particularly inten-
sive than those in the time-domain. Figure  6 shows the 
sEMG features of the tibialis anterior muscle and sem-
itendinosus of the subjects under different fatigue states. 
Figure 7 shows sEMG signal features of the left anterior 
tibialis muscle under different fatigue statesThe sEMG 
values of muscle integration in the time-domain and 
root-mean-square (RMS) values show an obvious differ-
ence, mean characteristic power frequency and median 
frequency in frequency-domain overall show obvious 
tendency; however, the transition state shows a certain 
overlapping error with the other two states. Both time–
frequency characteristics of ECG and sEMG signals in 
the tired states show obvious fluctuations than those in 
the other states. Accordingly, the characteristics of ECG 
and sEMG signals are complementary to some degree. 
The combination of two types of signals can strengthen 

(11)

vi+1 = ω × vi + c1 × rand()×
(

hp(i)− xi
)

+ c2 × rand()×
(

hg (i)− xi
)

(12)xi+1 = xi + vi+1

(13)

recognition rate =
number of samples correctly identified

total number of test samples

× 100%
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the recognition performance of the classifier; however, 
interference also exists. The characteristic confidence 
degree, i.e., the fusion coefficient, should be judged and 
optimized.

Analysis of fusion coefficient optimization process
The fusion coefficient is the key to establishing the opti-
mal feature vector and enhancing the fatigue recogni-
tion rate. To prevent from falling into local optimum of 
particle fitness degree, the related parameters in PSO 
including the population size q = 2000, the learning fac-
tor c1 = 0.5 c2 = 0.5, the inertial weight ω = 0.8 and the 
expected fitness degree can be set as 95%, respectively. 
1200 groups of data sets (400 groups for each state) are 
selected from the collected data for pre-processing and 
feature extraction; next, the established IPSO-SVM clas-
sifier is trained and tested via Monte Carlo cross-valida-
tion (MCCV). Figure 8 shows the convergence process of 
the fitness degree of particle swarm. It can be found that 

the convergence rate is great for the population with a 
size of 2000 after 120 iterations.

Analysis of fatigue recognition results of using different 
methods
Some commonly-used classification methods for physi-
ological signals including IPOS-SVM, BP neural net-
work (BPNN), K-nearest neighbor (KNN), and linear 
discriminant analysis (LDA) were performed on sEMG 
and ECG signals for training and testing, as the results 
are shown in Fig.  9 (a. sEMG and b. ECG). It can be 
found that the IPOS-SVM algorithm showed obvious 
advantages in the classification of sEMG and ECG sig-
nals, with a mean recognition rate of 87.83%; BPNN, 
as a hotspot in current classification algorithms, was 
lower than IPOS-SVEM in mean recognition, with 
a mean recognition rate of 85.80%; KNN was close to 
LDA in classification performance, with a mean rec-
ognition rate of 80.55% and 79.01%. Overall, sEMG 
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showed a favorable fatigue classification performance 
than ECG, since sEMG data contained more fatigue 
state characteristics. ECG was poor in the recognition 
of transition state, which was consistent with previous 
research results. Through comparison, IPOS-SVM per-
formed well in fatigue state classification; however, the 
state recognition rate was still quite low (only 87.83%).

Aiming at exploring the enhancement of classification 
performance via data fusion, the classification models are 
constructed on sEMG signal, ECG signal and the combi-
nation of two signals based on IPOS-SVM, as the results 
are shown in Fig.  10. A violin plot is a boxplot with 
a rotated kernel density plot on each side. In Fig.  10, it 
includes a purple point for the average of the data. Over-
laid on this box plot is a kernel density estimation.

The recognition rates of relaxed, transition and tired 
states only with sEMG signal were 94.00%, 87.75% and 
89.5%, respectively, while the recognition rates of relaxed, 
transition and tired states only with ECG signal were 
88.5%, 80.00% and 87.25%, respectively. By contrast, 
sEMG was more sensitive to fatigue state and rich in 
fatigue state information. ECG showed a poorly recogni-
tion rate of the transition state (only 80%). After feature 
fusion of sEMG and ECG, the recognition rates of the 
relaxed state, the transition state and the tired state could 
be remarkably enhanced to 94.25%, 92.25% and 94.25%, 
respectively. The recognition rate of transition rate 
exceeded 90%, which can be explained by the following 
two reasons. Firstly, ECG features can contribute to rec-
ognizing interference variables and play the role of cor-
rection. Secondly, IPOS-SVM can perform distribution 
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Fig. 7  sEMG signal features of the left anterior tibialis muscle under different fatigue states, a. sEMGL-IEMG, b. sEMGL-RMS, c. sEMGL-MPF, d.sEMGL-MF
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based on the trust degrees of high-dimensional charac-
teristics after multiple iterative computations, which can 
assign appropriate weights in different cases.

Discussion
The fatigue produced in Pilates is a complex phenomenon 
in rehabilitation exercises. How to enhance the accuracy 
of fatigue estimation based on feature fusion of multi-
source physiological signals appears as an effective mean. 
However, due to the lack of uniform research paradigm 
and standards, many studies have been stuck on labora-
tory or special application scenarios. Both sEMG and ECG 
are nondestructive body monitoring signals abundant in 
physical information. Establishing the classification model 
or quantitative model based on the combination of sEMG 
and ECG shows huge potential. This study starts from the 
perspective of fatigue in Pilates and proposes a lower limb 
fatigue estimation method based on sEMG and ECG to 
achieve the classification of 3 states (relaxed, transition, 
and tired states) in the lower limb rehabilitation process. 
The classification model by integrating ECG and sEMG 
fatigue features into fatigue states is established with IPOS-
SVM. Results also confirm better classification perfor-
mances of IPSO-SVM than BPNN, KNN and LDA, i.e., the 
proposed IPSO-SWM is appropriate for the classification 

of fatigue states based on sEMG and ECG signals. IPSO-
SVM classification model based on surface electromyo-
graphy and ECG fusion features had good processing 
ability for high-dimensional feature information, and can 
well identify 3 fatigue states with the recognition rates of 
94.25%, 92.25% and 94.25%, respectively. The mean recog-
nition rate was 93.58%. Compared with the study report 
of Shangbin Li [27] (Reconition rate: 83.15–93.62%), the 
recognition rate of the model in this paper is improved. By 
comparison with the results based on pure sEMG and pure 
ECG signals, the model based on feature fusion shows bet-
ter recognition precision and performance. Conclusively, 
sEMG and ECG signals can be combined for feature fusion 
to achieve accurate fatigue detection during the Pilates 
rehabilitation process, which can lay a solid foundation for 
further constructing the related man–machine device and 
enhancing the safety of Pilates rehabilitation.

It must be admitted that there are deficiencies in this 
study. IPSO-SVM in the paper pays more attention to 
enhancing the recognition rates of different fatigue states. 
Compared with single detection means, the operability of 
operators and the complexity should be further optimized. 
Meanwhile, this study focused on the recognition of 3 dis-
crete states during the rehabilitation process. In future stud-
ies, our team will attempt to explore the mapping relations 

Fig. 9  Comparison of recognition results of different classification methods
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between continuous fatigue states and ECG/sEMG signals 
to establish a more accurate quantitative model of muscle 
state.
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