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Abstract 

Background:  MiRNA is a class of non-coding single-stranded RNA molecules with a length of approximately 22 
nucleotides encoded by endogenous genes, which can regulate the expression of other genes. Therefore, it is very 
important to predict the associations between miRNA and disease. Predecessors developed a new prediction method 
of drug-disease association, and it achieved good results.

Methods:  In this paper, we introduced the method of LAGCN to identify potential miRNA-disease associations. First, 
we integrate three associations into a heterogeneous network, such as the known miRNA-disease association, miRNA-
miRNA similarities and disease-disease similarities, next we apply graph convolution network to learn the embedding 
of miRNA and disease. We use an attention mechanism to combine embedding from multiple convolution layers. 
Unobserved miRNA-disease associations are scored based on integrated embedding.

Results:  After fivefold cross-validations, the value of AUC is reached 0.9091, which is higher than other prediction 
methods and baseline methods.

Conclusions:  In this paper, we introduced the method of LAGCN to identify potential miRNA-disease associations. 
LAGCN has achieved good performance in predicting miRNA-disease associations, and it is superior to other associa‑
tion prediction methods and baseline methods.
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Background
MicroRNAs (miRNAs) is small non-coding RNA, and 
it can influence the expression of their mRNA targets. 
MiRNA affects the expression of mRNA mainly by con-
trolling RNA cleavage or translation inhibition [1]. A lot 
of experiments confirmed that miRNAs are important 
in many biological processes, such as cell development, 
proliferation, differentiation, death, metabolism, aging, 
apoptosis, signal transduction, and viral infection [2]. 
According to the relevant biological studies, it has been 
shown that there is a complicated association between 

the disorder of miRNAs and the occurrence and devel-
opment of complex diseases. There has been a lot of evi-
dence about that miRNAs are important for the diagnosis 
of heart disease and eventually cure it [3], and other seri-
ous diseases like malignancies, cardiovascular, mental 
disorders and diabetes. So far, it has been confirmed that 
many microRNAs are associated with cancer. Identifica-
tion of miRNA-disease associations is of great signifi-
cance for the diagnosis of related diseases and eventually 
cure them. Hence, researchers have conducted a lot of 
experiments in order to develop better methods to pre-
dict associations between miRNA and disease in the 
future [4].
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In the past period, lots of studies have shown that there 
are some close associations between miRNAs and dis-
eases [5]. Recently, many miRNAs have been found in 
various living organisms [6]. But as the study progressed, 
the researchers found that previous methods were time-
consuming and expensive. Hence, researchers need more 
convenient and relatively cheaper research methods.

During the past few years, researchers have proposed 
a large number of methods for predicting miRNA and 
disease associations [7], and these methods are based on 
computational algorithms.

Liu et al. [8] developed a neighborhood-based comput-
ing model to predict the potential association between 
miRNA and disease. They used 50 miRNAs about breast 
cancer, esophageal cancer and colon cancer respectively, 
and which 48, 47 and 48 miRNAs were successfully con-
firmed. This shows that the method studied by Li et al. is 
feasible. They mainly used the K-nearest neighbor (KNN) 
method to improve the prediction accuracy of the asso-
ciations between miRNA and disease.

Shi et al. [9] proposed a new calculation method. This 
new method uses the association between miRNAs 
and disease genes to randomly walk through the pro-
tein–protein interaction network to calculate a specific 
value. They assessed the size of this value tod etermine 
the association between miRNA and disease. They set 
a threshold, and if this value exceeds the threshold, the 
corresponding miRNA is considered to be associated 
with the disease, otherwise, they are considered miRNA 
is not to be associatedw ith the disease.

Zeng et  al. [10] sorted out the existing calculation 
methods and divided them into two categories. The first 
method is the similarity measure-based prediction. A 
large number of the computational methods are based 
on the assumption that miRNAs with similar functions 
are more likely to be associated with phenotypically simi-
lar diseases and vice versa [2]. For example, predeces-
sors developed a new method about the random walk 
to infer potential miRNA-disease interactions. And this 
method achieves this goal by realizing a random walk on 
a network about miRNA similar functions [2]. Li et al. [1] 
developed a new method about similarity network fusion 
and inductive matrix completion to predict miRNA-dis-
ease associations. And the second method is machine 
learning-based predictions.

Both of these methods work well, but there are still 
some drawbacks. A lot of end-to-end methods have been 
presented due to the development of deep learning tech-
niques [11]. In order to get a better method. The novel 
prediction method is better than previous ones.

Graph convolutional networks have achieved good 
results in other fields. Chen et  al. [11] presented a new 
method for structure-aware protein solubility prediction. 

The method predicts protein solubility by combining GCN 
with the predicted contact graph, and this method works 
well. Fang et al. presented a method to discover non-small 
cell lung cancer complexity across data modalities impact-
ing IO benefit combined with GCN. It is an opportunity to 
use graph AI modeling for precision oncology [12]. Wang 
et  al. [13] presented a new prediction method for graph 
convolutional networks. Simulation results illustrate that 
the proposed method has high performance.

Ana B. O. V. Silva and E. J. Spinosa proposed a graph 
convolution auto-encoder to predict lncRNA-disease 
associations. This method has been shown that AUC-
ROC achieved 0.976, and this method is the most 
advanced method to solve the same problem [14]. Since 
graph convolutional network can achieve good results 
in lncRNA-disease associations prediction, it can also 
make some achievements in miRNA-disease association 
prediction.

Li et al. [15] proposed a method to identify the trans-
mission source of infectious diseases using a graph con-
volutional neural network. Graph convolutional network 
is a method that combines graphs with deep learning.

Wang et al. [16] proposed a method about graph con-
volutional network model (CGINet) in order to identify 
chemical gene interactions in synthetic polygraphs. CGI-
Net trains encoders and decoders mainly through end-
to-end and through known chemical-gene interactions, 
and it gets a good grade.

Although GCN has achieved good results in other 
areas, it is rarely used in miRNA-disease associations 
prediction.

Materials and methods
GCN overview
In this section, we present the methodology of our graph 
convolutional networks. Convolution neural networks 
(CNN) had a property called translation invariance, 
which does not apply to the non-matrix structure, so 
the convolutional network of this graph appears timely. 
Graph convolutional networks were first introduced to 
processing graph structure data. First, we can describe 
the graph as:

where V  represents the node-set of the graph and E rep-
resents the edge set of the graph. From the previously 
hidden layer to the next hidden layer, feature transforma-
tion is carried out on the nodes.

where X (l) is the feature of layer l, and A is the adjacency 
matrix. Expand Formula (2), and get Formula (3):

(1)G = (V ,E),

(2)X (l+1) = f
(

X (l),A
)

,
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where σ represents a nonlinear activation function, we 
use the ReLU(·) function here. W (l) is the weight matrix 
of layer l. b(l) is the intercept of layer l. Normalize For-
mula (3), and Formula (4) can be obtained.

where D is the degree matrix, and the process of normali-
zation is realized by the degree matrix. D−1A is the nor-
malization. Symmetric normalization is carried out in the 
basis of normalization, and Formula (5) is obtained.

Specifically, if we ignore the intercept, and we use the 
corresponding adjacency matrix G to construct a net-
work, and we set the layerwise propagation rule of GCN 
as:

By deploying GCN on the constructed heterogene-
ous map to combine node similarity and directly linked 
association information, we construct an encoder based 
on GCN to learn the low-dimensional representations of 
diseases and miRNAs.

Therefore, we define µ as penalty factor, and we use it 
to control the contribution of similarity to GCN propaga-
tion [17]. The input graph we set is:

(3)X (l+1) = σ

(

AX (l)W (l) + b(l)
)

,

(4)X (l+1) = σ

(

D−1AX (l)W (l) + b(l)
)

,

(5)X (l+1) = σ

(

D− 1
2AD− 1

2X (l)W (l) + b(l)
)

(6)X (l+1) = σ

(

D− 1
2AD− 1

2X (l)W (l)
)

(7)A =

[

µ ∼ Sm N

NT µ ∼ Sd

]

,

where µ is a penalty factor. Sm is the similarity matrix 
of miRNA and Sd is the similarity matrix of disease. N is 
the miRNA-disease associations matrix.

And we initialize X as:

Then, we define the first layer formula of the GCN 
encoder as:

where X (1) is the first layer embedding of miRNA and 
disease nodes in heterogeneous networks. And W (0) is 
the W (l) , which we put forward in Formula (3). In For-
mula (9), l = 1, it represents the first layer embedding of 
heterogeneous networks. In the process of embedding, 
after many experiments, we finally decided to adopt 
three-layer convolution layers, and the input of each layer 
is the output of the previous layer.

The pseudocode is shown in Table 1.

Optimization
In our datasets, we set the number of miRNAs to A and 
the number of diseases to B. Then we take the miRNA- 
disease association data as positive examples and the oth-
ers as negative examples. However, due to the influence 
of miRNA and the number of disease associations, no 
association was observed in miRNA-diseases, so we set 
the weighted cross-entropy as the loss function. The loss 
function is:

where (i, j) represents the pair of miRNAs mi and disease 
dj . And y+ represents the positive instances sets and y− 

(8)X (0) =

[

0 N

NT 0

]

(9)X (1) = σ

(

D− 1
2AD− 1

2X (0)W (0)
)

,

(10)Loss = −
1

A× B

(

�×
∑

(i,j)∈y+
log a′ij +

∑

(i,j)∈y−
log

(

1− a′ij

)

)

,

Table 1  The pseudocode

Input:
miRNA–miRNA similarities matrix, disease–disease similarities matrix, adjacent matrix A;

Construct the input graph G = (V,E)

Output:
Initialize embedded dimension, learning rate, training epoch, dropout rates;

Initialize embeddings;

Iterate according to the layerwise propagation rule of GCN;

Introduce an attention mechanism;

Combine other embeddings and obtain final embeddings of miRNAs and diseases;

Obtain the Loss function
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represents the negative instances sets. �=|y−|
|y+|

 , and it can 

limit the influence of data imbalance.

Layer attention
Attention mechanism is a broad concept, which means 
that people or machines selectively pay attention to infor-
mation with different degrees of importance and pro-
cess the information. Attention mechanism has different 
functions, types and scope of application.

Starting from the working mechanism of attention 
mechanism, attention methods can be summarized into 
two categories: selective attention mechanism and self-
attention mechanism.

Selective attention mechanism is an explicit attention 
method, which obtains the attention weight by predict-
ing the importance of each part of the data to the task 
optimization goal. Then the attention weight is used to 
explicitly enhance the important components of the data 
and suppress the components of the data that have noth-
ing to do with the task optimization objectives.

Selective attention mechanism is widely used in the 
processing and analysis of language signals, visual sig-
nals and other information, which greatly improves the 
nonlinear expression ability of neural network and the 
abstraction ability of high-level semantics. The selective 
attention mechanism takes the data itself as input, uses 
neural network learning to generate an attention mask as 
a result of predicting the importance of each part of the 
data, next uses the attention mask to enhance or suppress 
the feature.

Self-attention mechanism is an attention method that 
aligns internal information observation with external 
information observation so as to improve the accuracy 
of local feature expression. The core of the self-attention 
mechanism is the idea of "non-local average, that is, we 
first find the feature expression that is close to the tar-
get position in the non-local region, next make use 
of the similarity between the target location informa-
tion expression and other non-local region information 
expression to achieve information transmission in the 
non-local region by weighted addition, and modify the 
information expression of the target location.

The introduction of attention mechanism improves 
the data processing and analysis ability of the model. It 
is of great significance to improve the performance of the 
model.

Next, we will introduce layer attention graph convolu-
tional network (LAGCN), such as in Fig. 1.

As shown in Fig. 1, triangles represent miRNA, squares 
represent disease. We first use the known associations 
between miRNA and disease, the known association 
between miRNA-miRNA and the association between 

disease-disease to build heterogeneous networks, next 
through a series of operations such as coding and decod-
ing to get new miRNA-disease associations.

MiRNA and disease build three networks. Next these 
three networks form a heterogeneous network. After 
through process of encoding and decoding, we can get 
the association between miRNA and disease.

Datasets
Our integrated datasets contain 5430 miRNA-disease 
associations between 495 miRNA and 383 diseases. 
Detailed datasets on miRNA and disease can also be 
downloaded from HMDD. HMDD is a database that 
collects evidence of a link between human microRNA 
(miRNA) and disease supported by experiments.

At present, there are 572 miRNA genes, 378 diseases in 
HMDD v2.0. In this paper, our datasets are from HMDD 
v2.0. Our associated data sets are from [18, 19].

We define MSI as the miRNA functional similarity. For 
details on the definition and description of the related 
formulas of MSI , please read the reference [20].

Next we make use of a directed acyclic graph (DAG) 
to represent diseases, and DAG structure can be used to 
calculate the similarities between diseases.

For a disease d, we set DAG(d) = (E(d), e(d)) to rep-
resent a hierarchical relationship. For details on the 
definition and description of the related formulas of the 
semantic of disease and semantic similarity, please read 
the reference [20].

For details on the definition and description of the 
related formulas of similarities between miRNAs and dis-
eases, please read the reference [18, 21].

Results
In our experiment, a fivefold-cross-validation(5-cv) 
method is used to predict the performance of this 
method. First of all, we randomly divide the known 
miRNA-disease association into five subsets of equal size, 
each subset takes turns as the test set, and the remaining 
four subsets as the training set, and the process of cross-
validation is repeated five times. Although we introduce 
many evaluation criteria, for the accuracy of the results, 
we use AUC as the main evaluation criteria, because the 
metric can evaluate the superiority of the model without 
any specific threshold. Of course, several other metrics 
are also within our consideration.

Next, we will introduce some hyperparameters in the 
layer attention graph convolutional network, emb_dim 
represents embedded dimension, lr represents the 
initial learning rate of the optimizer, epoch represents 
the training epochs of the layer attention graph convo-
lutional network, adjdp represents the node dropout 
which is one of the two dropout rates, and dp represents 
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the other, and the other is a regular dropout. We also 
introduce the penalty factor simw in heterogeneous net-
works. In order to get better results, we have carried out 
many experiments and repeatedly adjusted the values 
of various parameters. Finally, select the value of each 
hyperparameter as follows: dp ∈ {0.1, 0.2, 0.3, 0.4, 0.5} , 
adjdp ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} simw ∈ {2, 4, 6, 8} , 
At last, we set epoch = 250 , emb_dim = 64 , lr = 0.01 , 
adjdp = 0.6 , dp = 0.4 , simw = 6 . At this time, 
AUC = 0.9091, recall = 0.5421, accuracy = 0.9689. The 

reason for epoch = 250 is that the values of AUC are 
relatively better at this time, and the results of other 
indicators are also not bad.

LAGCN make uses the heterogeneous network of 
miRNA-disease to construct a predictive model. we can 
train the layer attention graph convolutional network on 
different heterogeneous networks according to different 
miRNA-miRNA similarities. Next, we discuss the effect 
of these miRNA-miRNA similarities on the performance 
of LAGCN.

Fig. 1  The workflow of LAGCN
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Through 5-cv of heterogeneous networks with miRNA-
miRNA similarities, the evaluation of LAGCN model 
is completed, and it is concluded that LAGCN is reli-
able regardless of similarity measurement and miRNA 
characteristics.

We try to construct a network only by miRNA-disease 
associations, so we construct a stripped-down LAGCN 
based on the network. After many experiments, we find 
that the simplified LAGCN has lower AUC scores than 
the original model, which indicates that miRNA-miRNA 
similarities and disease-disease similarities in heteroge-
neous networks are useful for this method and lead to the 
improvement of LAGCN performance.

Evaluation metrics
In this paper, we decide to use AUC, recall and accuracy 
as metrics to evaluate the prediction performance of the 
model.

The number of positive samples predicted correctly is 
expressed by TP, the number of correctly predicted nega-
tive samples is expressed by TN, the number of predicted 
incorrectly positive samples is expressed by FP, and the 
number of predicted incorrectly negative samples is 
expressed by FN.

The calculation formula for various evaluation metrics 
are as follows:

AUC represents the area under the receiver–operating 
characteristic curve [18].

We have adjusted the values of each parameter sev-
eral times, and when the epoch takes different val-
ues, emb_dim = 64 , lr = 0.01 , adjdp = 0.6 , dp = 0.4 , 

(11)recall =
TP

TP + FN

(12)accuracy =
TP + TN

TP + TN + FP + FN

simw = 6 . The values of each evaluation metric are 
shown in Fig. 2.

As we can be from Fig.  2, with the increase of the 
epoch, the values of AUC and accuracy increase slightly 
though the impact is not significant, while the value of 
recall decreases with the increase of epoch. Because the 
higher the value of epoch in the program, the greater 
the running time and memory consumption, so we 
chose the value of epoch value of 250 for subsequent 
experiments.

When the lr takes different values, epoch = 250 , 
emb_dim = 64 , adjdp = 0.6 , dp = 0.4 , simw = 6 , the val-
ues of each evaluation metric are shown in Fig. 3.

We can find that with the increase of lr,the value of 
recall increases, but the values of AUC and accuracy 
decrease greatly. Therefore, in order to optimize the final 
results, we finally decide to take a smaller value of lr.

When the simw takes different values, epoch = 250 , 
emb_dim = 64 , lr = 0.01 , adjdp = 0.6 , dp = 0.4 , the val-
ues of each evaluation metric are shown in Fig. 4.

We can find that with the increase of simw , the val-
ues of AUC and accuracy change little, but the value of 
recall increases. Therefore, in order to optimize the final 
results, we finally decide to take a higher value of simw.
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epoch=250 epoch=500 epoch=750 epoch=1000

Fig. 2  The value of evaluation metrics when epoch takes different 
values
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Fig. 3  The comparison of evaluation metrics when lr takes different 
values

0

0.2

0.4

0.6

0.8

1

1.2

simw=2 simw=4 simw=6 simw=8

sc
or

es

the value of simw

AUC

accuracy

recall

Fig. 4  The value of evaluation metrics when simw takes different 
values



Page 7 of 8Han et al. BMC Medical Informatics and Decision Making           (2022) 22:69 	

When the dp takes different values, epoch = 250 , 
emb_dim = 64 , lr = 0.01 , adjdp = 0.6 , simw = 6 , the 
values of each evaluation metric are shown in Fig. 5.

Among the multiple metrics, the value of AUC is the 
most important, so we take AUC as the main metric.

We conducted many experiments and finally selected 
the relatively optimal result.

Then, we use the Tensorboard tool to visualize the net-
work structure of our model (Fig. 6.).

Discussion
In order to evaluate the performance of LAGCN, we 
chose six state-of-the-art methods for comparison. These 
methods are the best methods in the direction of disease 

association prediction at present. Next, we compare the 
proposed method with other methods. The compari-
son methods used in the experiment include HGIMDA, 
RLSMDA, HDMP, WBSMDA, RWRMDA and ICFMDA 
[22]. The values of various methods are shown in Table 2.

In addition, it can still be used in other datasets. For 
example, Zhou et  al. used similar methods to achieve 
good results in drug correlation experiments.

Conclusions
In this paper, we introduced the method of LAGCN to 
identify potential miRNA-disease associations. Different 
from the existing methods of using the bipartite graph, 
LAGCN captures the topological information of heteroge-
neous networks composed of miRNA-disease association, 
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Fig. 5  The value of evaluation metrics when dp takes different values

Fig. 6  The network structure

Table 2  The AUC of various methods

Method AUC​

LAGCN 0.9091

HGIMDA 0.8077

RLSMDA 0.6953

HDMP 0.7702

WBSMDA 0.8031

RWRMDA 0.7891

ICFMDA 0.8519
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miRNA-miRNA similarities and disease-disease similari-
ties. By adaptively combining embedding and attention 
mechanisms at different convolution levels, LAGCN has 
achieved good performance in predicting miRNA-disease 
associations, and it is superior to other association predic-
tion methods and baseline methods.

We think that find an appropriate way to predict the 
potential associations between miRNAs and diseases is 
important, which can improve our understanding of the 
disease and humans themselves, and promote the cure of 
the disease in some ways.

LAGCN is a good method for predicting miRNA-disease 
similarities, but it also has some problems, such as over-
smoothing. we will continue studying and finding some 
ways to solve these problems.
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