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Abstract 

Background:  An aging population with a burden of chronic diseases puts increasing pressure on health care 
systems. Early prediction of the hospital length of stay (LOS) can be useful in optimizing the allocation of medical 
resources, and improving healthcare quality. However, the data available at the point of admission (PoA) are limited, 
making it difficult to forecast the LOS accurately.

Methods:  In this study, we proposed a novel approach combining network analytics and machine learning to 
predict the LOS in elderly patients with chronic diseases at the PoA. Two networks, including multimorbidity network 
(MN) and patient similarity network (PSN), were constructed and novel network features were created. Five machine 
learning models (eXtreme Gradient Boosting, Gradient Boosting Decision Tree, Random Forest, Linear Support Vector 
Machine, and Deep Neural Network) with different input feature sets were developed to compare their performance.

Results:  The experimental results indicated that the network features can bring significant improvements to the 
performances of the prediction models, suggesting that the MN and PSN are useful for LOS predictions.

Conclusion:  Our predictive framework which integrates network science with data mining can forecast the LOS 
effectively at the PoA and provide decision support for hospital managers, which highlights the potential value of 
network-based machine learning in healthcare field.

Keywords:  Length of stay, Machine learning, Multimorbidity network, Network analysis, Patient similarity network, 
Point of admission
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Background
With a rapidly aging population, the incidence of chronic 
diseases has increased dramatically, which imposes seri-
ous social and economic burdens on countries around 
the world [1, 2]. It has been estimated that over 75% of 
the elderly have more than one chronic condition [3]. 
Multimorbidity in old age (i.e., the co-existence of two or 
more chronic diseases in one individual) has become a 

prominent problem worldwide, resulting in greater medi-
cal demands, greater healthcare utilization, and higher cost 
[4, 5]. Early prediction of length of stay (LOS) for patients 
with chronic diseases, especially the elderly with multi-
morbidity, can help hospital managers to allocate limited 
resources, control patient costs effectively, and improve 
the quality of medical services [6, 7]. Early prediction has 
therefore received increasing attention from researcher.

Machine learning has been widely applied to forecast 
the LOS due to its outstanding nonlinear fitting ability and 
superior predictive ability. Xie et al. [8] developed a bagged 
regression trees model to predict the LOS using insurance 
claim data and found that the medical data (e.g., diagnosis 
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codes) contributed more to the LOS predictions than demo-
graphic data. Daghistani et al. [9] adopted Random Forest 
(RF), Artificial Neural Networks (ANNs), Support Vector 
Machine (SVM), and Bayesian Network (BN) to forecast 
the LOS for cardiac patients. Their results indicated that the 
RF has the best performance and good interpretability. To 
date, despite the use of a growing number of machine learn-
ing models to forecast LOS, most studies have focused on 
patients with specific diseases, such as heart failure [10], 
cardiovascular disease [11], and strokes [12], which limit 
their practicability and scope of application.

Moreover, relatively few studies have predicted LOS at 
the point of admission (PoA), which is more meaningful 
than later clinical stages, because it can provide an essen-
tial component for service and resource planning in patient 
and family counseling [13]. The prediction of LOS at the 
PoA is a challenging task due to the limited data available at 
such an early stage of treatment. Typically, at the PoA, the 
inpatient ward has limited data such as the primary patient 
information, hospital characteristics, and diagnostic data 
(i.e., principal diagnosis and comorbid conditions). Due to 
the value of diagnostic data for forecasting LOS at the PoA, 
prior studies have attempted to use features extracted from 
the Charlson Comorbidity Index (CCI) and Elixhauser 
Comorbidity Index (ECI) to predict LOS [14, 15]. How-
ever, CCI and ECI only cover a limited number of diseases, 
which did not take full advantage of all the diagnostic infor-
mation available, resulting in limited powers of LOS pre-
diction. Furthermore, some studies have tended to ignore 
the historical hospitalization data on patients, which is a 
significant factor in predictive models [6, 16, 17]. Extracting 
features from patients’ historical records may improve the 
performance of LOS prediction models [18, 19].

So far, growing evidence shows that comorbid condi-
tions have a significant impact on the LOS [10, 20, 21]. 
However, how to reasonably transform comorbid con-
ditions into features is still a challenge for researchers. 
Simply encoding comorbid conditions as features using 
one-hot encoding would generate thousands of features 
and result in the curse of dimensionality and expensive 
training time. Recent research into network medicine 
development provides a new approach to understanding 
the complex interrelations between diseases. In a Pheno-
typic Disease Network, also known as a Disease Co-occur-
rence Network (DCN) [22], links between diseases are 
based on their significant co-occurrence. Such networks 
provide an overview of the co-occurrence of multiple con-
ditions in a network structure and have been used to study 
the multimorbidity patterns underlying depression [23], 
heart failure [24], and chronic obstructive pulmonary dis-
ease (COPD) [25]. Meanwhile, some researchers have tried 
to use the results of DCN analysis for predictive purposes. 
Srinivasan et al. [26] extracted two network features from 

DCN (high-cost propensity and community membership 
scores) and applied tree-based models to predict high-cost 
patients. They found that the network features could sig-
nificantly improve the model’s performance. Xu et al. [27] 
developed a Diagnoses to Vector model (Dx2Vec) based 
on DCN to predict individual self-harm behavior. Their 
results showed that the DCN could excavate multimorbid-
ity patterns and further enhance the model’s accuracy. Sid-
eris et al. [28] clustered the DCN constructed from Electric 
Health Record (EHR) data to reduce the data dimensional-
ity and applied the cluster information as features to pre-
dict diabetes readmission prediction. The results indicated 
that, compared with CCI and ECI features, the predictive 
accuracy was improved by 4.65–5.75% using network fea-
tures. However, few studies have explored the predictive 
ability of disease network features in LOS prediction, and 
the potential has yet to be excavated.

Moreover, the Patient Similarity Network (PSN), where 
nodes represent patients and edges represent the similari-
ties between pairwise patients, has also received extensive 
attention in recent years. Valuable features are extracted 
through the PSN using network analysis for various health 
prediction tasks. Lu et  al. [29] constructed a PSN using 
disease co-occurrence and extracted node centrality to 
predict the risk of type 2 diabetes mellitus (T2DM). Guo 
et al. [30] created a generic framework called Patient simi-
larity based on Domain Fusion (PsDF), which performs 
patient similarity assessments on each available domain 
data separately, and then integrates the affinity informa-
tion over various domains into a comprehensive similarity 
metric. Their experimental results showed that the PsDF 
facilitated prediction of outcome of incident cases of end 
stage kidney disease (ESKD) and severe aortic stenosis 
(AS). Therefore, we propose to extract valuable features 
from the PSN to predict the LOS.

In this paper, we contribute to the existing body of 
knowledge by developing a novel approach to forecasting 
the LOS for elderly patients with chronic diseases at the 
PoA using network analytics and machine learning mod-
els. The main contributions are summarized as follows:

1.	 A predictive framework combining Multimorbidity 
Network (MN), PSN, and machine learning was pro-
posed to predict hospital LOS at the PoA.

2.	 A space-friendly and high-efficiency development 
algorithm was presented for constructing MN on 
large datasets.

3.	 A PSN was constructed that utilizes the label infor-
mation from a patient’s neighbors to enrich the fea-
ture representation of patients.

To the best of our knowledge, this is the first study 
that integrates MN and PSN with data mining models to 
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effectively predict LOS in elderly patients with chronic 
diseases at the PoA. Our proposed approach is not only 
suitable for predicting LOS in elderly patients with a single 
disease, but also for patients with multimorbidity, which 
expands the scope and practical ability of the model. We 
believe that our predictive framework has a universal 
scope and can be used in other health prediction areas.

Methods
Overview of the research framework
An overview of the current study is shown in Fig. 1. Our 
methods can be summarized as follows. The first phase 
involved obtaining the original dataset, including patient-
level data, hospital-level data, and the diagnoses at the 
PoA. An MN and a PSN were then developed for feature 
engineering. Four feature sets, including the baseline, his-
torical, MN and PSN features, were extracted to form the 
modeling dataset. In the second phase, the dataset was 
randomly split into a training set (80%) and testing set 
(20%). Reduction via Linear Discriminant Analysis (LDA) 
was performed to compress MN features as much as pos-
sible while retaining the most representative information. 
In the third phase, we applied five machine learning mod-
els to predict LOS. These were: eXtreme Gradient Boost-
ing (XGBoost), Gradient Boosting Decision Tree (GBDT), 
RF, LinearSVM, and Deep Neural Network (DNN). A grid 
search was utilized to seek optimal model parameters and 
select the best models on the training set. Subsequently, 
we applied mean absolute error (MAE), root mean square 
error (RMSE), and coefficient of determination (R2) to 
evaluate the models’ performances on the testing set.

Data
In the present study, we used the Hospital Discharge 
Records (HDR) for the urban areas of Chengdu, China, 
which contains 10.7 million records from 678 hospitals 
and covers the period from January 1, 2015 to December 
31, 2019. Each record consists of patient-level data (e.g., 
anonymized identity, age, sex, the date of admission, and 
the date of discharge), hospital-level data (e.g., hospital 
level, hospital address, and hospital affiliation), discharge 
diagnoses (including a principal diagnosis and up to 15 
secondary diagnoses), and the corresponding flag vari-
able which represents whether the disease is diagnosed at 
the PoA. All diagnoses are specified by the ICD-10 codes 
(International Classification of Diseases, 10th Revision) at 
the three-digit level. The present study was approved by 
the Ethics Committee of the Health Information Center of 
Sichuan Province. The requirement of obtaining informed 
consent was waived because of the secondary nature of the 
de-identified data in the retrospective study design.

In order to meet the requirements of the present study, 
several inclusion criteria were applied as follows. (1) The 

LOS was not null, and the date of admission was between 
2015 and 2019. (2) The patient was alive during the 2015 
to 2019 period. (3) The age of the patient was 65 years or 
older. (4) To eliminate the outliers of the LOS, we regarded 
those LOS which were greater than a 99% quantile (58 days) 
as the outliers. Hence, the LOS needed to be less than or 
equal to 58 days. (5) Since the MN only included chronic 
diseases, each record must have at least one chronic disease 
at the PoA. The criteria for judging the chronic diseases 
came from a previous study [31]. For the patients aged 
65 years or older in our dataset, there were 685 chronic dis-
eases in total. The proportion of chronic diseases and the 
average number of chronic diseases were 95.56% and 6.5 
respectively, indicating that the patients suffered from a 
heavy burden of chronic diseases. Finally, 2.5 million hos-
pitalization records and about 1.1 million individuals were 
retained. Descriptive statistics on the main variables are 
shown in Table 1. The data from 2015 to 2017 were used 
to construct the MN and the data from 2018 to 2019 were 
applied to develop the PSN and our predictive models.

Due to the time of admission or discharge is only exact 
to the day in our dataset, we defined the LOS as the num-
ber of days between the admission date and discharge date. 
The distribution of the LOS is shown in Fig. 2. Almost 50% 
of the LOS are between 8 and 15 days, and the mean of the 
LOS is about 12.3 days, which is much higher than previ-
ous studies due to the elderly having a more extended LOS.

Multimorbidity network construction
The MN was developed based on 1,235,017 hospitalization 
records and 661,324 individuals from 2015 to 2017, so the 
MN is a kind of DCN and only contains chronic diseases. 
The Relative Risk (RR) was adopted to measure the distance 
among comorbidities. The RR of observing a pair of dis-
eases i and j affecting the same patient is given by Eq. (1).

In Eq. (1), the Cij is the number of patients with both dis-
eases, N is the total number of patients in the population, 
and Ci and Cj are the numbers of patients with disease i and 
disease j [22]. The 99% confidence intervals of RR were esti-
mated using the Katz et al. method [32], as shown in Eqs. (2) 
and (3).

For convenience, a two-dimensional patient-disease 
matrix was constructed to calculate the RR, as shown in 

(1)RRij =
Cij ∗ N

Ci ∗ Cj

(2)
[

RRij × exp
(

−2.58σij
)

,RRij × exp
(

2.58σij
)]

(3)σij =
1

Cij
+

1

CiCj
−

1

N
−

1

N 2
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Fig. 3. It is almost impossible to load such a massive matrix 
with 661,324 rows and 685 columns into computer mem-
ory, which makes it harder to construct an MN on large 
datasets. Also, the density of the matrix is only 0.86%, 
which results in much spatial redundancy. To address 
this problem, we performed some space optimization and 
efficiency optimization to make it easier to build the MN 
on large datasets, as summarized in Algorithm 1. Sparse 
matrix technology was applied as the compressed sparse 
column matrix (csc_matrix) is efficient for column slicing 

and matrix multiplication. There are some other efficiency 
optimization details worth noting, such as using matrix 
multiplication in line 12 rather than counting directly the 
co-occurrences of pairwise diseases, which can save time 
when the dimensions of the matrix are very high. After 
applying Algorithm  1, an undirected weighted MN with 
683 nodes and 35,860 edges was obtained. A network vis-
ualization is shown in Fig. 4. The MN can represent the 
complex and implicit inner relationships between diseases 
that may or may not appear at the PoA. For example, a 

Fig. 1  Flowchart of proposed predictive model
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patient was diagnosed with essential hypertension (I10) 
at the PoA. The diagnoses during the hospitalization were 
chronic kidney disease (N18) and type 1 diabetes mellitus 

(E10). Such co-occurrence relationships can be easily 
found and quantified in the MN, and can be extracted as 
features to help predict downstream tasks.
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Patient similarity network construction
Experimental results of the Unified Message Passag-
ing model (UniMP) [33] have shown that considering 
the label information on neighbors can bring significant 
improvements to prediction tasks. Therefore, inspired by 
the label propagation method of UniMP, we constructed 
a PSN to excavate extra information for the LOS predic-
tion, with the assumption that similar patients would 
have similar LOS in the network.

In the PSN, nodes represent patients (training samples) 
and edges represent the similarities between patients. We 
used Jaccard index to measure the similarity, as defined 
in Eq. (4).

In Eq.  (4), patient i and patient j must be of the same 
gender g(·) and the same age group a(·) (as shown in 
Table 1), while d(i) represents the diagnosed diseases of 
patient i at the PoA. The similarity network considers 
gender, age and disease information to evaluate patient 
similarity comprehensively. For each patient, however, 
we only consider the most similar 100 neighbors in the 
training set because of the impossibility of calculating 
all potential similarities among millions of patients. We 
therefore applied an approximate nearest neighbor algo-
rithm called NMSLIB [34] to conduct heavy kNN com-
putations, which can use an approximation algorithm to 
find k nearest neighbors with superior recall and queries 
per second accelerate [35]. The method took only 15 min 
to find the 100 most similar neighbors for each patient in 
the entire dataset. The average similarity in each group is 
shown in Fig. 5.

Feature engineering
In order to make full use of the limited data available, 
four feature groups were extracted from the existing 
data. These were the baseline features, historical features, 
MN features, and PSN features. Detailed information 
on feature extraction and feature grouping are shown in 
Table 2. The baseline features make full use of the patient, 
hospital, and date information. The diagnostic informa-
tion at the PoA was extracted as the ECI related features. 
This is a method generally applied in the literature to 
quantify diagnostic information. The historical features 
were extracted to indicate the histories of the patients’ 
physical health. Two kinds of features, eigenvector cen-
trality features and disease risk features, were extracted 
from the MN. The PSN features are derived from the 
PSN.

(4)

similarity
(

i, j
)

=

∣

∣d(i) ∩ d
(

j
)∣

∣

∣

∣d(i) ∪ d
(

j
)∣

∣

where g(i) = g
(

j
)

&&a(i) = a
(

j
)

Table 1  Descriptive statistics of main variables in our dataset

Category Counts (proportion) Mean (std) 
of the LOS

Total – 2,543,758 (100.00%) 12.3 (7.5)

Gender Male 1,237,624 (48.65%) 12.4 (7.6)

Female 1,306,134 (51.35%) 12.2 (7.4)

Years 2015 260,745 (10.25%) 13.2 (8.0)

2016 423,586 (16.65%) 12.6 (7.6)

2017 550,686 (21.65%) 12.4 (7.5)

2018 610,795 (24.01%) 12.2 (7.5)

2019 697,946 (27.44%) 11.9 (7.4)

Age group 65–69 594,045 (23.35%) 11.8 (7.3)

70–74 645,257 (25.37%) 12.1 (7.3)

75–79 575,939 (22.64%) 12.3 (7.3)

80–84 416,941 (16.39%) 12.6 (7.5)

85–89 228,725 (8.99%) 13.4 (8.4)

90 +  82,851 (3.26%) 13.9 (9.1)

Ethnic group Han 2,533,984 (99.62%) 12.3 (7.5)

Minority 9,774 (0.38%) 12.6 (7.8)

Fig. 2  Distribution and descriptive statistics of the LOS

Fig.3  Patient-disease matrix (entries indicate whether a patient has 
a disease)
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Eigenvector centrality (EVC) features
The EVC score is a measure attribute of diseases (nodes) 
in the MN, representing the importance of the disease 
and influenced by neighbor diseases. For a given graph 
G : (V ,E) with |V | vertices, let A =

(

av,t
)

 be the adja-
cency matrix. The relative centrality x as the score of ver-
tex v can be defined as Eq. (5).

In Eq. (5), N (v) is a set of the neighbors of v and � is a 
constant. With a small rearrangement this can be rewrit-
ten in vector notation as the eigenvector equation Eq. (6).

The eigenvector xmax corresponding to the largest 
eigenvalue �max is the EVC. The vth component of the 
xmax then gives the relative centrality score of the ver-
tex v in the network. Hence, we can obtain a EVC score 
for each disease in the MN. Finally, the EVC scores were 
transformed as EVC features. For example, considering 
that a patient may have several chronic diseases at the 
PoA, multi-hot encoding was used to map these diseases 
to a vector (which only contains one and zero, and the 
one represents the corresponding observed disease). 

(5)xv =
1

�

∑

t∈N (v)

xt =
1

�

∑

t∈G

av,txt

(6)Ax = �x

Then, the one was replaced with the EVC score that 
uniquely corresponds to the disease. Overall, 653 EVC 
features were obtained. It is worth noting that the num-
ber of EVC features is less than the number of network 
nodes since some diseases do not appear in 2018 and 
2019.

Disease risk features
In the MN, different diseases have different effects on 
LOS. We therefore use disease risk features to quantify 
the differences between diseases. The mean of the LOS of 
the disease can be calculated by Eq. (7).

In Eq.  (7), v is a node in the MN; d(v) is the disease 
corresponding to node v ; pi and pj represent different 
patients; D

(

pj
)

 is the disease set of the patient pj at the 
PoA, and the LOS(pi) is the LOS of the patient pi . Dis-
ease risk score and features can then be obtained by 
Eqs. (8) and (9).

(7)

los_mean(v) =
1

∣

∣{pj|d(v) ∈ D
(

pj
)

}
∣

∣

∗
∑

pi∈{pj |d(v)∈D(pj)}

LOS(pi)

(8)disease_risk_score(v) = EVC(v) ∗ los_mean(v)

Fig. 4  Visualization of the MN (only the edges with RR greater than 30 are reserved for visualization purpose). The nodes represent chronic disease; 
The colors of nodes represent 18 disease chapters according to the ICD-10, and the size of nodes is positively correlated with the degree of nodes; 
The edges represent the co-occurrence relationship between pair-wise diseases
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In Eq.  (8), EVC(v) is the EVC of node v . The disease 
risk score takes into account both the EVC of the dis-
ease and the influence of the disease on LOS. In Eq. (9), a 
patient may have several chronic diseases as the PoA, and 
several aggregation functions agg(∗) are used to quan-
tify the distribution of the patient’s disease risk scores, 
which include counts, maximum, mean, and summation 
functions.

PSN features
Based on the assumption that similar patients would have 
similar LOS, we can also extract statistics of the neigh-
bors’ LOS as features from the PSN, as shown in Eq. (10).

In Eq.  (10), given a patient, 100 neighbors can be 
found from the PSN, and their LOS can be also obtained. 

(9)

disease_risk_feature(pi)

= agg
{

disease_risk_score(v)|d(v) ∈ D(pi)
}

(10)PSN_feature(pi) = agg
{

LOS
(

pj
)

|pj ∈ N (pi)
}

Fig. 5  The average Jaccard index similarity in each group. The 
similarity of the female is generally less similar than that of the male. 
The similarity increased with age, because the older the patient, the 
more diseases the patient has

Table 2  Feature descriptions

a The N and D represent the numerical feature and discrete feature, respectively. One-hot encoding will be used for the discrete features

Feature name Descriptions Typesa Number

Baseline features 69

 Date features The year, month, and day of the week of admission N 3

 Gender Male or Female D 2

 Age Age of the patient N 1

 Hospital affiliation The affiliation of the hospital N 1

 Admission status 1. Danger 2. Urgent 3. General N 1

 Patient’s and Hospital’s address code The smaller the value, the closer to the city center N 2

 Address flag Whether the patient’s address code is equal to the hospital’s address code N 1

 Hospital levels Measuring hospital quality N 2

 Number of diseases Number of diseases at the PoA N 1

 Hospital admission source 1. Emergency treatment 2. Outpatient service 3. Transferred from Other medical institu-
tions 4. Others

D 4

 Ethnic group Han or minority D 2

Job The occupation of the patient D 13

 Marital status 1. Spinsterhood 2. married 3. Divorce 4. Missing D 4

 Elixhauser comorbidity index [36] Including AIDS HIV, alcohol abuse, blood loss anemia, and so on D 31

 Elixhauser comorbidity score [37] A mapping score to represent one’s health condition N 1

Historical features 8

 Descriptive statistics of historical LOS Extract the counts, mean, standard deviation, median, min, and a max of these LOS N 6

 Last discharge interval The days between the last discharge date and the date of current admission N 1

 Last LOS The LOS of the last hospital admission N 1

MN features 657

 Eigenvector centrality features For each chronic disease in the MN, extracting its eigenvector centrality value as 
features

N 653

 Disease risk features Extract the counts, maximum, mean, and sum of disease risk scores N 4

PSN features 5

 Descriptive statistics of neighbor’s LOS Extract the mean, standard deviation, median, min, and a max of these LOS N 5
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Several agg(∗) functions, including the mean, standard 
deviation, median, min, and max functions, were used to 
extract statistics of the neighbors’ LOS.

There were a few missing values among some fea-
tures. Therefore, we used zero for the missing value. For 
these category features, we regarded them as numerical 
features if there were ordinal relations between them, 
which could significantly reduce the features’ dimen-
sions. Otherwise, one-hot encoding was used to encode 
the category features. To ensure that the time window 
for feature extraction was consistent with the historical 
features, we only looked back on the past three years of 
historical records. For instance, the date of admission 
of one patient was June 1, 2018. Those records whose 
dates of admission were between June 1, 2015 and May 
31, 2018 were considered to represent the patient’s his-
torical records. Some patients (nearly 35%) may not have 
any admission records during the past three years; zero 
was then adopted as the missing value. The EVC features 
were calculated from the MN, and LDA reduction was 
applied to decrease the feature dimensions. In addition, 
five features of the neighbor’s LOS were obtained from 
the PSN to provide additional information to aid the LOS 
forecast.

Linear discriminant analysis
As the numbers of EVC features were up to 653, fea-
ture reduction was performed to save computational 
time, reduce information noise, and retain representa-
tive information as much as possible. LDA, as proposed 
by Fisher [38], is a supervised method that computes the 
linear discriminant by maximizing the distance between 
classes and minimizing the distance within classes [39]. 
If the dataset has K classes, the LDA can reduce dimen-
sions up to K − 1. In this paper, the LOS is discrete and 
LDA can be applied to reduce dimensionality. We used 
the validation set’s performance to select the best num-
ber of dimension reductions; the best number has the 
lowest evaluation error in the validation set. In a prelimi-
nary experiment, we reduced the dimensions of EVC fea-
tures from 653 to 32 by using LDA. We used the reduced 
EVC features to complete the following experiments.

Model
To evaluate the proposed framework, we compared the 
performances of five machine learning models which 
used five different feature subsets. The five combinations 
of input features were as follows: Baseline, Baseline + His-
tory, Baseline + MN, Baseline + PSN, and Baseline + His-
tory + MN + PSN. The five machine learning models were 
XGBoost [40], GBDT [41], RF [42], LinearSVM [43], 
and DNN. To evaluate the framework’s accuracy and 

efficiency on our large-scale dataset, the five machine 
learning models were applied to predict the LOS.

The XGBoost, GBDT, and RF models are tree-based 
ensemble models, which have superior nonlinear fitting 
ability, robustness, and interpretability. As for SVM, we 
did not use a radial basis function kernel since it is inef-
ficient and unsuitable to apply to millions of datasets. We 
therefore chose a linear kernel as the kernel function for 
the SVM. Standard normalization was adopted for the 
datasets before training the LinearSVM model.

DNN is also a common model in the LOS area [9]. The 
network architecture can highly affect the generaliza-
tion ability of the model. In the current research, we tried 
several architectures and finally chose an architecture of 
six layers with “118-400-200-100-50-1”. The activation 
function was ReLU, and mean square error was adopted 
as the loss function. We used an Adam optimizer with 
lr = 0.0005 to train our model, with the weight decay set 
to 0.00001. Batch normalization and dropout were used 
to avoid model overfitting. The batch size was 4096 and 
epochs were 200, the numbers being determined by the 
grid search strategy.

To evaluate the generalization abilities of the five 
models, the dataset was randomly split into a training 
set (80%) and a testing set (20%). Since there were more 
than a million samples in the training set, we randomly 
divided 20% of them to form a validation set, which was 
applied to evaluate model performance in the parameter 
tuning process using the grid search strategy. All experi-
ments used Python 3.7.3 on a Linux server with 48 Intel 
Xeon E5-2678 processors. A Pandas 0.24.2 toolbox and 
an sklearn 0.23.0 toolbox were used for data preproc-
essing and model training, respectively. Torch 0.3.0 was 
applied to train the DNN model.

Evaluation
To evaluate the performance and generalization abilities 
of the different models, MAE, RMSE, and R2 were used, 
as shown in Eqs.  (11), (12), and (13), where y and ŷ are 
the observed and the predicted LOS, respectively; ymean 
is the mean of y ; and n is the size of the dataset. The MAE 
and R2 are standard metrics that have been widely used 
in the LOS prediction task. The MAE show the average 
deviation between the observed and the predicted val-
ues. The R2 indicate whether the model is better than the 
mean forecast model; the more excellent the value of R2, 
the better the performance of the model. Multiple cri-
teria can help to create a comprehensive evaluation of a 
model’s generalization performance.

(11)MAE
(

y, ŷ
)

=

∑n
i=1

∣

∣yi − ŷi
∣

∣

n
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Results
Comparison of models on different feature subsets
The reduced EVC features were obtained after the LDA 
reduction. Parameter tuning using grid search was then 
applied to each model to select optimal hyper-parame-
ters. The comparison of the predictive performances of 
XGBoost, GBDT, RF, LinearSVM, and DNN on different 
feature subsets are listed in Table  3. The R2 of our pro-
posed approach (Baseline + History + MN + PSN) was 
0.375 for XGBoost, 0.374 for GBDT, 0.347 for RF, 0.285 
for LinearSVM, and 0.330 for DNN, suggesting that the 
XGBoost outperforms the other models. For the other 
feature subsets, the R2 of XGBoost was 0.250 for Baseline, 
0.316 for Baseline + History, 0.304 for Baseline + MN, 
and 0.316 for Baseline + PSN, which means using his-
torical features or MN features or PSN features alone 
could significantly enhance model performance com-
pared with the Baseline. Furthermore, the Baseline + His-
tory + MN + PSN experimental results show the best 
performance for all the models under all the evaluation 
criteria compared with the performance of other feature 
subsets. Notably, the R2 of XGBoost on Baseline + His-
tory + MN + PSN was improved by 18.7% compared with 
the R2 of XGBoost on Baseline + History, indicating that 
adding network features bring significant improvements 
to the model’s performance.

Feature importance
The feature importance was calculated and all the fea-
tures aggregated into four disjoint feature subsets by sim-
ply summing them up for simplified purposes, as shown 
in Fig. 6. The historical features have the highest feature 
importance, closely followed by PSN features. The two 
kinds of features are both label-related features, where 
the former utilized the patient’s historical LOS informa-
tion while the latter used the patient’s neighbors’ LOS 
information. In addition, the MN features also have rela-
tively high feature importance, representing the disease 
information at the PoA. To summarize, the ranking of 
the four feature subsets is: Historical features > PSN fea-
tures > MN features > Baseline features.

The top ten features for each model are listed in 
Table  4. Almost all top ten features belong to histori-
cal features, MN features, and PSN features. The mean 

(12)RMSE
(

y, ŷ
)

=

√

∑n
i=1

(

yi − ŷi
)2

n

(13)R2
(

y, ŷ
)

= 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ymean)

2

of the neighbors’ LOS has the highest feature impor-
tance among XGBoost, GBDT, and RF. Some other PSN 
features, including the std of neighbors’ LOS, and the 
median of neighbors’ LOS, are also essential factors. 
Additionally, the descriptive statistics of historical LOS, 
such as mean, median, and maximum, are important 
and intuitive factors in predicting the future LOS of 
patient.

Error analysis
The MAE of XGBoost using Baseline + His-
tory + MN + PSN was 4.024 in the testing set. To explore 
this model’s predictive ability on different LOS, the MAE 
of each LOS for several subgroups, such as gender and 
age, was calculated as shown in Fig.  7. From the full 
data curve in Fig.  7a, it can be seen that the more hos-
pitalization records for a specific LOS, the smaller is 
the MAE of the model. The MAE firstly decreases from 
8.224 (LOS = 1) to 1.915 (LOS = 11), and then main-
tains an approximate upward trend until MAE = 24.660 
(LOS = 58). When the LOS of a patient is equal to one 
day, the model’s predictions show a significant deviation. 
When we investigated the discharge information, which 
is not available at the PoA, we found that only 53% of 
patients were discharged from the hospital when medi-
cally ordered to leave. The rest might have transferred to 
another hospital or left the hospital due to lack of money, 
suggesting that those LOS are hard to predict. For those 
LOS between 5 and 30  days, this model can make rela-
tively accurate predictions. For the LOS > 30  days, the 
model has poor predictive ability because the hospi-
talization records of the LOS gradually decrease and the 
forecasts of their leaf nodes will be averaged in the deci-
sion tree. For example, a sample with LOS = 55 falls into 
a leaf node, which has five samples with an LOS of 20, 
25, 30, 35, and 55, respectively. The prediction value of 
the leave node is the average of those LOS, which is 33 
and accounts for 22 deviations. Due to the hard predic-
tion for small and large LOS, some studies have avoided 
the problem by regarding the regression task as a classi-
fication task such as prolonged LOS (≥ 14) or short LOS 
(< 14) [44, 45], which has poorer practicability than the 
regression task. Consequently, these problems still await 
a direct solution and deserve further exploration.

As regards gender, there is no significant differ-
ence between the male and female curves. In contrast, 
with increases in age, the model’s MAE errors become 
increasingly smaller when the LOS is longer than 20 days. 
The older the patient, the more comorbidities they have, 
resulting in a higher similarity in the PSN, as shown in 
Fig.  5, which is conducive to improving the model’s 
performance.



Page 11 of 15Hu et al. BMC Medical Informatics and Decision Making           (2022) 22:62 	

Discussion
This study has proposed a novel approach to extracting 
creative and representative network features for early 
LOS prediction due to the limited data available at the 
PoA. To the best of our knowledge, this is the first time 
that features have been extracted from MN and PSN on 
such a large dataset for LOS prediction.

Comparison with the other studies of the present literature
Several similar studies that have applied machine learn-
ing methods to predict LOS at the PoA are listed in 
Table  5 for comparison purposes. Due to differences in 
the data sources, we compare our work with existing 
studies mainly from the aspects of feature composition 
and model performance. As shown in Table 5, most exist-
ing studies were confined to a single disease and the sizes 
of their datasets were much smaller than ours, which 
affects the utility, generalization, and reliability of the 
model. Moreover, few studies have considered historical 
features. They tend to calculate only the mean and counts 
of the LOS of historical records which means that the 
potential has not been fully realized. We found that other 
descriptive statistics of historical LOS also impact signifi-
cantly the LOS predictions as listed in Table  4, such as 
the median and the maximum. None of the existing stud-
ies used the MN and PSN features, which are essential 
factors in predicting LOS. The historical features, MN 
features, and PSN features are relatively independent and 
can enhance model performance from different perspec-
tives, as shown in Table 5. The means of LOS differ from 
each other, and the truncation strategies for the LOS 
also vary. Some studies considered the qualified LOS of 
less than 30 days [17] or truncated at the 98% percentile 
[46], whereas other studies did not take any action, which 
accounts for prediction results that are not compara-
ble and vary widely. However, a review study concluded 
that a model has a strong predictive ability for the LOS if 
R2 > 0.36 [47], which implies that our proposed approach 
has a superior predictive ability with R2 = 0.375.

Table 3  The comparison of predictive performance of XGBoost, GBDT, RF, LinearSVM, and DNN on different feature subsets

The experiment was repeated ten times, and the mean and standard deviation were calculated

Models Metrics Baseline Baseline + History Baseline + MN Baseline + PSN Baseline + History + MN + PSN

XGBoost MAE 4.528 ± 0.006 4.276 ± 0.007 4.300 ± 0.007 4.241 ± 0.007 4.024 ± 0.006

RMSE 6.419 ± 0.013 6.130 ± 0.015 6.182 ± 0.013 6.128 ± 0.013 5.859 ± 0.013

R2 0.250 ± 0.002 0.316 ± 0.002 0.304 ± 0.001 0.316 ± 0.001 0.375 ± 0.002

GBDT MAE 4.531 ± 0.007 4.280 ± 0.006 4.306 ± 0.006 4.251 ± 0.009 4.026 ± 0.006

RMSE 6.422 ± 0.014 6.136 ± 0.013 6.189 ± 0.012 6.139 ± 0.013 5.861 ± 0.011

R2 0.249 ± 0.002 0.314 ± 0.002 0.302 ± 0.001 0.314 ± 0.001 0.374 ± 0.001

RF MAE 4.553 ± 0.008 4.343 ± 0.007 4.343 ± 0.006 4.297 ± 0.008 4.106 ± 0.007

RMSE 6.468 ± 0.014 6.229 ± 0.015 6.256 ± 0.013 6.226 ± 0.014 5.987 ± 0.015

R2 0.238 ± 0.002 0.293 ± 0.002 0.287 ± 0.002 0.294 ± 0.001 0.347 ± 0.002

Linear SVM MAE 4.982 ± 0.007 4.697 ± 0.006 4.714 ± 0.006 4.571 ± 0.007 4.366 ± 0.006

RMSE 7.004 ± 0.011 6.622 ± 0.013 6.710 ± 0.011 6.549 ± 0.012 6.265 ± 0.013

R2 0.107 ± 0.001 0.201 ± 0.002 0.180 ± 0.001 0.219 ± 0.001 0.285 ± 0.001

DNN MAE 4.595 ± 0.053 4.371 ± 0.043 4.390 ± 0.036 4.302 ± 0.043 4.152 ± 0.046

RMSE 6.518 ± 0.022 6.250 ± 0.020 6.343 ± 0.015 6.223 ± 0.025 6.066 ± 0.034

R2 0.226 ± 0.004 0.289 ± 0.004 0.267 ± 0.003 0.295 ± 0.004 0.330 ± 0.006

Fig. 6  The distribution of feature importance in XGBoost, GBDT, and 
RF on four feature subset
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Limitations and potential future works
The present study has some limitations. First, we adopted 
zero to fill missing values, which might influence the 
predictive ability even though the tree-based models are 
not sensitive about a fill strategy. An appropriate miss-
ing value filling strategy, such as k-nearest neighbor [51], 
might achieve better LOS predictions. Second, although 
we made full use of the historical LOS information, other 
historical data was not taken into account, such as histor-
ical medication use and historical comorbidities. In addi-
tion, we used a fixed time window of three years, whereas 
multi-scale time windows such as going back six months, 
one year, and three years are likely to be helpful in 
improving model performance [17]. Third, we extracted 
the EVC features and disease risk features from the MN 
to improve prediction accuracy. The potential of the 
MN can be further excavated, such as network cluster-
ing information [28]. Moreover, since the validity of the 

PSN has been proven by the PSN features, future work 
could develop a Graph Neural Network (GNN) to use the 
structural information of PSN, such as Graph SAmple 
and aggreGatE (GraphSAGE) [52] and Graph Attention 
Network (GAT) [53], which can construct an end-to-
end model by using both network topology information 
and a node’s feature vectors. In addition, the skewness of 
LOS results in poor prediction ability of the model when 
LOS higher than 30 days, as shown in Fig. 7. Some resa-
mpling techniques can enhance the number of the tail 
LOS data, which may bring extra improvement for our 
proposed methods [54]. Despite these limitations, our 
proposed approach has sufficient robustness to predict 
with a certain level of accuracy the hospital LOS for the 
elderly with chronic diseases at the PoA. Future work will 
explore the directions indicated above to further improve 
accuracy.

Table 4  Top ten features in tree-based models

a RI is the relative importance of using min–max normalization. The LDA-1 represents the first component after LDA reduction for network features

XGBoost RIa GBDT RI RF RI

mean of neighbors’ LOS 1 mean of neighbors’ LOS 1 mean of neighbors’ LOS 1

median of historical LOS 0.56 mean of historical LOS 0.74 mean of historical LOS 0.57

max of historical LOS 0.38 last LOS 0.45 median of neighbors’ LOS 0.41

mean of historical LOS 0.28 median of neighbors’ LOS 0.3 median of historical LOS 0.39

LDA-1 0.24 std of neighbors’ LOS 0.25 max of historical LOS 0.16

std of neighbors’ LOS 0.23 last discharge interval 0.21 last LOS 0.14

last LOS 0.21 median of historical LOS 0.19 last discharge interval 0.13

median of neighbors’ LOS 0.2 max of historical LOS 0.19 LDA-1 0.13

last discharge interval 0.17 hospital address 0.16 std of neighbors’ LOS 0.12

LDA-2 0.16 LDA-1 0.13 hospital address 0.1

Fig. 7  The error distribution of MAE of XGBoost using Baseline + History + MN + PSN on the testing set. The green bars are the LOS distributions on 
the testing set. The results of different subgroups are shown: a full data and gender subgroups, b age subgroups



Page 13 of 15Hu et al. BMC Medical Informatics and Decision Making           (2022) 22:62 	

Conclusions
This study proposed a novel approach integrating net-
work science with machine learning for making early 
predictions of hospital LOS in elderly patients with 
chronic diseases. A space-friendly and high-efficiency 
development algorithm of MN was presented, making it 
possible to build MN with millions or even tens of mil-
lions of data volumes. The EVC features were extracted 
from the MN, and the LDA was then performed to 
reduce the number of EVC features, which can speed up 
training efficiency and enhance the model performance. 
Besides, we adopted NMSLIB to construct the PSN to 
utilize the patient’s neighbor’s information. The experi-
ment results showed that the network features, could 
significantly improve model performance across various 
models. Especially, the R2 of XGBoost on Baseline + His-
tory + MN + PSN was improved by 18.7% compared with 
the R2 of XGBoost on Baseline + History. To sum up, our 
proposed approach has enough power to make early LOS 
prediction for elderly patients, which can offer effective 
decision support for hospital managers.
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