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Abstract 

Liver cancer is a malignant tumor with high morbidity and mortality, which has a tremendous negative impact on 
human survival. However, it is a challenging task to recognize tens of thousands of histopathological images of liver 
cancer by naked eye, which poses numerous challenges to inexperienced clinicians. In addition, factors such as long 
time-consuming, tedious work and huge number of images impose a great burden on clinical diagnosis. Therefore, 
our study combines convolutional neural networks with histopathology images and adopts a feature fusion approach 
to help clinicians efficiently discriminate the differentiation types of primary hepatocellular carcinoma histopathology 
images, thus improving their diagnostic efficiency and relieving their work pressure. In this study, for the first time, 73 
patients with different differentiation types of primary liver cancer tumors were classified. We performed an adequate 
classification evaluation of liver cancer differentiation types using four pre-trained deep convolutional neural net-
works and nine different machine learning (ML) classifiers on a dataset of liver cancer histopathology images with 
multiple differentiation types. And the test set accuracy, validation set accuracy, running time with different strategies, 
precision, recall and F1 value were used for adequate comparative evaluation. Proved by experimental results, fusion 
networks (FuNet) structure is a good choice, which covers both channel attention and spatial attention, and sup-
presses channel interference with less information. Meanwhile, it can clarify the importance of each spatial location by 
learning the weights of different locations in space, then apply it to the study of classification of multi-differentiated 
types of liver cancer. In addition, in most cases, the Stacking-based integrated learning classifier outperforms other 
ML classifiers in the classification task of multi-differentiation types of liver cancer with the FuNet fusion strategy after 
dimensionality reduction of the fused features by principle component analysis (PCA) features, and a satisfactory 
result of 72.46% is achieved in the test set, which has certain practicality.
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Introduction
Liver cancer has developed into one of the most com-
mon and fatal malignancies due to its high incidence and 
mortality rate, which endangers human health seriously 
[1]. According to the latest global cancer burden data, in 
2020, it is estimated that there were 19.3 million new can-
cer cases and 10 million deaths from cancer worldwide, 
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of which 830,000 were from liver cancer, making liver 
cancer the most common cause of cancer death after 
lung cancer [2]. According to the WHO classification 
system, the differentiation status of tumor cells between 
malignant and normal cells can be better determined by 
analyzing the differentiation type of tumor, so that the 
malignancy degree and growth cycle of patients can be 
better evaluated, and the best treatment plan for patients 
can be clarified. According to research, it is known that 
liver cancer patients are prone to different prognosis due 
to their different differentiation degrees, and liver cancer 
with Poorly differentiation tends to be more aggressive, 
and treatment plans differ greatly from those of well and 
moderate differentiated tumors, which have poor prog-
nosis and often lead to a lower survival rate [1]. When 
facing tumor patients with different differentiation 
degrees, it is especially important to efficiently evaluate 
the differentiation degree of liver cancer patients so as 
to adopt timely and effective treatment plans. Therefore, 
this study has important clinical significance for explor-
ing different types of differentiation of primary liver 
cancer.

Imaging modalities such as computed tomography, 
ultrasound, magnetic resonance imaging, and various 
preoperative laboratory tests can be an important refer-
ence in cancer detection for diagnosis and staging [3]. 
However, histopathological image analysis (HIA) is the 
gold standard for tumor qualitative and clinical diagno-
sis. HIA is a key step in achieving the goals of early detec-
tion, diagnosis, and treatment of liver cancer [4], which is 
usually performed by pathologists through visual obser-
vation, but this process is time-consuming, tedious, and 
easily limited by the experience of pathologists them-
selves. Therefore, it is more necessary to implement an 
automated HIA for liver cancer which can improve the 
accuracy and efficiency of diagnosis [5].

Currently, the availability of a large number of 
medical images has made it possible to automatically 
analyze computer-assisted liver cancer images and 
accelerate the diagnostic efficiency of pathologists [1]. 
This is a very challenging task when less experienced 
physicians analyze thousands of medical images, which 
are prone to misses and misdiagnosis. Therefore, it is 
very difficult to rely solely on physicians for visual 
analysis. However, computer-aided diagnostic methods 
have the advantages of saving time, speed, and objec-
tive results compared to physicians’ visual discrimina-
tion methods. Inevitably, however, computer-aided 
methods still have many drawbacks: image information 
such as histological features used to express lesions is 
rich in meaning, which makes texture descriptors and 

statistical feature descriptors require autonomous set-
ting by computer personnel with specialized knowledge 
if more comprehensive information is to be obtained 
from the images themselves [3, 6–8], and are suscep-
tible to personal subjective judgment in feature extrac-
tion. Traditional machine learning models are bulky 
when facing with different types of data. They cannot 
be adaptive to learn features because of the inconsist-
ency of important features among different types of 
datasets. In addition, there are many types of classifi-
ers with their own unique classification characteristics, 
so the same dataset still shows different classification 
effects with different models.

With the rapid development of deep learning tech-
niques, both adaptive feature learning and auto-
mated medical image analysis have been substantially 
improved [9–11]. Numerous researchers have used 
CNNs to automatically extract image features, which 
abandon the aforementioned traditional and tedious 
hand-designed feature extraction methods, and the 
trained models can almost efficiently identify experi-
mental objects with sufficient amount of data, and 
even the objective diagnostic results obtained by some 
excellent researchers can reach a level comparable 
to the results of diagnostic experts [1]. However, the 
automated analysis of digital histopathology images is 
still a challenging task in the following aspects: First, 
the number of available public medical image datasets 
with complete markers is very small. Second, there are 
significant color differences and size variation between 
some images. Third, it’s also affected by some extra-
neous objective factors such as noise, the use of patch 
level and whether all tumor regions are in image levels 
[12]. In order to address the above issues with better 
extend the automated research work on HIA of liver 
cancer, numerous researchers have conducted targeted 
exploratory experiments. Wang et al. tried to combine 
the whole slide images (WSIs) and machine learning 
methods, and proposed a patch-based convolutional 
neural network based on 60 liver tumor WSIs to bet-
ter predict normal or tumor categories. In addition, 
they designed four sets of experiments to obtain the 
best classification effect [13]. Sun et  al. noticed the 
problems of histopathological image analysis (HIA) 
in the early diagnosis of liver cancer. In order to solve 
these problems, they proposed a method for liver can-
cer histopathological image classification using only 
global labels. This study solved the problems of insuf-
ficient training samples of liver cancer histopatho-
logical image and large-scale image processing. Using 
transfer learning and multi-instance learning methods, 
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patch-level features and image-level features are 
obtained, which can effectively distinguish abnormal 
or normal liver cancer histopathological images, thus 
providing help for the early diagnosis of liver cancer 
[3]. Wang et al. proposed a one-dimensional convolu-
tional neural network based on the hyperspectral data 
obtained on hepatocellular carcinoma (HCC) sam-
ple slices, and used a weighted loss function to better 
improve the performance of the model. This method 
achieved a good classification effect on their data set, 
in which the area under receiver operating character-
istic curve, sensitivity and specificity all reached more 
than 85% [14].

With the advent of deep learning, the research of digi-
tal pathology is advancing. In the past research work, we 
have witnessed many new methods for feature extraction 
based on deep learning pre-trained convolutional neural 
networks. Their wide application in different research 
is also similar to the recent ones in liver cancer, cervi-
cal cancer, Alzheimer’s disease, new coronary pneumo-
nia, prostate disease and breast cancer diagnostics, even 
involving the identification of flower species and the clas-
sification of underwater images. In addition, we summa-
rized relevant research papers published in recent years, 
and the results are shown in Table 1.

In view of the insufficient available public image data 
resources and complex clinical features of liver cancer 
histopathology images, this study uses a collected his-
topathology image dataset of liver cancer with multi-
ple differentiation types and adopts a classification 
method based on pre-trained model feature fusion for 
liver histopathology images with multiple differentia-
tion types. Feature learning was carried out using all 
and some of the convolutional bases in the pre-trained 
model separately for comparison experiments, and the 
method was applied to its own histopathology images 
of liver cancer. Then the features were fused using 
serial fusion to form image-level features for classifi-
cation to achieve an automatic analysis process. The 
advantages of the method are as follows: With the help 
of two experienced pathologists, our method identi-
fies tumor regions with specific manifestations in tis-
sue sections first, and then the PRECICE 500B digital 
pathology imager was used to scans the tumor regions 
at 40 times. A complete whole slide images (WSIs) can 
contain more than 100,000 × 100,000 pixels, which 
is very challenging to analyze such images directly 
[3]. Therefore, in this study, only tissue within the 
tumor region was selected six histopathology images 
were extracted for imaging using a non-overlapping 
approach, thus ensuring that our own histopathology 

image dataset of liver cancer was composed of sepa-
rate images of the whole tumor region. (2) To ensure 
the adequacy of the study, according to the research, 
we used the more common data enhancement meth-
ods (translation, rotation, flip) to expand the training 
set of histopathology images tenfold in an attempt to 
attenuate the effects of overfitting phenomena and to 
better address the problem of insufficient training data 
in the histopathology image dataset of liver cancer. (3) 
We use pre-trained CNN models to extract image fea-
tures from liver cancer data and employ feature fusion 
to explore the complementarity of feature learning 
between models in an attempt to find the best image 
feature fusion method. In addition, we also cross-sec-
tionally compare the different generalization perfor-
mance with six classifier models, and finally find the 
best combination approach with the most suitable per-
formance parameters.

Materials and methods
This section presents information specific to the data sets 
included in the study and the specific methods and evalu-
ation Indicators used in the experiments.

Data collection
The dataset used in this study was provided by the 
Affiliated Cancer Hospital of Xinjiang Medical Uni-
versity to classify patients with primary liver cancer 
of three differentiation types: poorly differentiated, 
moderate differentiated and well differentiated. The 
relevant data included in this study were reviewed 
and approved by the Medical Ethics Committee of 
the Affiliated Cancer Hospital of Xinjiang Medical 
University and informed consent was obtained from 
the patients. All cases were liver tumor tissues diag-
nosed between 2010 and 2020. The dataset contained 
a total of 24 poorly differentiated, 27 moderate dif-
ferentiated, and 22 well differentiated liver tumor 
histopathology image (all patients were confirmed by 
pathological findings and therefore included in the 
study). It is worth noting that in the context of medi-
cal imaging, marking the location of each lesion must 
be performed by experienced pathologists, which is a 
time-consuming and expensive process [21]. The his-
topathological images in this study were stained with 
hematoxylin and eosin staining (HE staining), and two 
experienced pathologists from our institution manu-
ally diagnosed the type of differentiation of tumor 
areas in patients with liver cancer and identified the 
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tumor areas with specific manifestations in this tissue 
section. To enhance the generalization performance 
of the model, in this study, each sample was scanned 
at up to 40 times the power of the tumor region using 
a PRECICE 500B digital pathology imager according 
to the size of the region within the tumor [22], and 
finally only 6 histopathological images were extracted 
by selecting only the tissues within the tumor region 
in a non-overlapping manner, resulting in a total of 
438 histopathological images collected. which were all 
stored at 1665 × 1393 pixels [23]. The alterations in the 
morphology of the nuclei with the three differentiation 
types are shown in Fig. 1, and the relevant information 

for all patients is presented in Table 2. The data set of 
this study was randomly divided in the ratio of 7:3 to 
generate the training set and the test set, thus ensuring 
the relative independence of the test set.

Image preprocessing
It has been found that we are increasingly con-
cerned about the negative impact of color differences 
between images, mainly in terms of limiting the accu-
rate interpretation of tissue images by inexperienced 
pathologist, in addition, affecting the generalization 
performance improvement of the model. Therefore, in 
order to avoid the problem of image information loss 

Fig. 1  Randomly selected samples from the liver cancer datasets for demonstrate image processing. a Images of poorly differentiated, moderate 
differentiated and well differentiated tissues before the transformation. b Transformed images from (a) after AHE image processing. c Transformed 
images from (b) after Gaussian filtering operation
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due to the presence of excessive brightness in some 
regions of the image, this study used the adaptive his-
togram equalization algorithm(AHE) to effectively 
mitigate the problems such as color inconsistencies 
existing between images [3], which better adapts to 
the contrast of images due to unbalanced pixel value 
distribution by performing histogram equalization of 
responses to local regions, thus better preserves image 
details, improves the local contrast of the image and 
does not affect the overall image contrast. In addition, 
this study also explores various preprocessing methods 
to find a preprocessing method that better shows the 
image details. Firstly, Gaussian filtering is used to miti-
gate the negative effects of noise, as one of the efficient 
low-pass filters, mainly by replacing the pixel value at 
that point with the weighted average of the pixels in 
its neighborhood to better achieve noise reduction at 
the global scale [3, 12].Besides, we also compared the 
pathologized images after simulated motion blur-
ring in a cross-sectional manner and showed separate 
images based on them with inverse filtering, Wiener 
filtering, images after adding noise, and inverse filter-
ing with Wiener filtering after adding noise. The images 
after the two image pre-processing operations of adap-
tive histogram equalization and Gaussian filtering are 
shown in Fig. 1. The methods other than the above two 
data processing methods are shown in Figs. 2, 3 and 4. 
From Fig. 1, it can be seen that the images after the two 
preprocessing operations show smoother details and 
significant improvement in color differences, thus bet-
ter preparing us for the subsequent study.

Data augmentation
It has been found that analytical studies carried out 
on medical images are often subject to the occurrence 

of overfitting due to insufficient number of images 
[3]. Tables  3 and 4 summarize the review of data 
enhancement methods used in several different stud-
ies, from which it can be seen that several of the most 
commonly used strategies are rotation (4/18), flip-
ping (4/18), cropping (4/18), cutting in the interior 
of the tissue block (6/18). According to the research, 
it was found that the performance was significantly 
improved when the models were trained using data 
enhancement, which verified the universality and 
wide applicability of data enhancement methods in 
the field of small samples of medical images from 
the side. To overcome this limitation, in this study, 
three different data enhancement strategies (rotation, 
translation and flip), which are more common, were 
used to generate liver tumor histopathology image 
datasets that could improve the size and quality of the 
training dataset and alleviate the overfitting problem 
[24]. The image enhancement rotation operations are 
done by rotating the images clockwise and counter-
clockwise by 45°, 60°, 90°, 210°, 240°, etc. Image flip 
is used to flip the image horizontally and vertically. 
Image translation is done by panning 10 pixels in 
each of the four direction: top, bottom, left and right 
[25]. Tables 5 and 6 show the dataset before and after 
data enhancement.

CNNs
At present, with the structural improvement of CNNs, 
CNNs methods have been gradually applied to various 
tasks and fields, including image classification, target detec-
tion, face recognition, natural language processing and 
other related fields with remarkable effects. So far, modern 
CNNs network architectures consist of five main compo-
nents: convolutional layer, pooling layer, activation func-
tion, discard rate(optional), and fully connected layer [44].

Table 2  Clinical profile of 73 liver cancer patients involved in the study

Table entries are either the number of patients or the number of digital pathology images (percentage distribution in parentheses). There is one person in the well-
differentiated type who has not yet clarified gender and age, so it is not shown in the table

Characteristics Complete dataset Liver cancer differentiation

Poorly differentiated Moderate differentiated Well differentiated

No. of patient 73 24 (32.88%) 27 (36.99%) 22 (30.14%)

No. of images 438 144 162 132

Mean age 59.88 58.85 49.04

Gender

Male 60 (83.33%) 17 (70.83%) 24 (88.89%) 19 (90.48%)

Female 12 (16.67%) 7 (29.17%) 3 (11.11%) 2 (9.52%)
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When dealing with small medical image datasets, this 
paper adopts an efficient and commonly used approach: 
pre-trained CNNs models [45]. In this paper, the Ima-
geNet dataset with a sufficiently large and general data 
volume (1.4 million labeled images, 1000 different clas-
sification categories) is selected, and the model performs 
feature learning on the huge number of ImageNet data-
sets, preserving the general features extracted from the 
underlying convolutional layer. It is found that applying 

the model pre-trained on the ImageNet dataset to the 
medical image domain often achieve better visual per-
formance as well. Therefore, four more classical CNN 
architectures: VGG16, ResNet50, DensNet201, and 
InceptionRensNetV2 were selected and applied to their 
own dataset of liver tumor histopathology images [45]. 
The pre-trained network is used either: (a) as a feature 
extractor, or (b) for fine-tuning [46]. In this form of learn-
ing, the pre-trained model extracts features for solving 

Fig. 2  The images of poorly differentiated liver tumor tissue images after other processing methods are shown. From top to bottom and from left 
to right in the arrow refers to the content are: the pathologized images after simulated motion blur, and the detailed images after inverse filtering, 
wiener filtering, adding noise, adding noise after inverse filtering and wiener filtering are shown on their basis
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the target problem [46]. Feature extraction is the use of 
the representations learned in the previous network to 
extract interesting features from new samples. The fea-
tures are then fed to a new classifier and trained from 
scratch.

Introduction to image features
This section elaborates on the process of extracting liver 
cancer features from the pre-trained neural network. 

Generally, different convolutional layers encode different 
aspects of the input image. The layers closer to the bot-
tom of the neural network model can often extract more 
local and universal feature maps (such as corners, colors), 
the middle layer is easier to capture textures and shapes, 
and the layers closer to the top can extract more abstract 
and representative features [18]. In order to explain the 
differences in the features extracted between different 
levels in more detail, we take ResNet50 as an example to 

Fig. 3  The images of Moderate differentiated liver tumor tissue images after other processing methods are shown. From top to bottom and from 
left to right in the arrow refers to the content are: the pathologized images after simulated motion blur, and the detailed images after inverse 
filtering, wiener filtering, adding noise, adding noise after inverse filtering and wiener filtering are shown on their basis



Page 10 of 27Dong et al. BMC Medical Informatics and Decision Making          (2022) 22:122 

display the feature vectors of each level which is shown 
in Fig. 5. Due to the large differences between the data-
set of multiple types of liver cancer and the original Ima-
geNet dataset, this study attempts to find the similarities, 
degenerations and complementarities between features 
by exploring the fusion of feature vectors of different pre-
training models and different levels [47]. We hypothesize 
that combining features from different training models 

and different levels can form a stronger and more repre-
sentative image representation.

Thus we decided to do exploratory research with the 
following different fusion strategies: (1) On the basis 
of different pre-training models, we use all convolu-
tional layers to realize feature extraction and fusion, 
as shown in Fig.  6, fusion strategy 1 [48]. (2) On the 
basis of the aforementioned strategy, we abandon 

Fig. 4  The images of well differentiated liver tumor tissue images after other processing methods are shown. From top to bottom and from left 
to right in the arrow refers to the content are: the pathologized images after simulated motion blur, and the detailed images after inverse filtering, 
wiener filtering, adding noise, adding noise after inverse filtering and wiener filtering are shown on their basis
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Table 3  Summary of data enhancement methods

Study Method

Equalization Cropping Rotations Flipping Panning Gray-scale 
processing

Random segmentation 
(select the image block)

Image segmentation 
(screening\ filtering)

All 1 4 4 4 1 2 6 2

[26] X

[27]

[28] X X X

[29]

[30] X X

[31] X

[32]

[33] X

[34] X X X

[35] X

[36] X X

[37] X

[38] X

[39] X

[40] X X X X

[41]

[42]

[43] X X X

Table 4  Summary of data enhancement methods

Study Method

Zooming Color normalization 
(LAB\HSV\Other)

Color segmen-
tation

Noise filtering processing Image 
Normalization

Other

ALL 4 5 2 5 0

[26] LAB

[27] 40X(boost)

[28] 40X(boost) Gaussian filtering
Convolutional edge-enhanced filtering

[29] X

[30]

[31] HSV Denoise

[32] Denoise (Gaussian filtering)

[33] X

[34] X

[35] X SVD

[36]

[37] Denoise (Gaussian filtering)

[38] Denoise (Combining the median filter and 
the Gaussian filter)

[39]

[40]

[41] X

[42] X

[43] X
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InceptionRensENetV2 as the feature extractor, and use 
the partial convolutional layers of the other three pre-
training models to extract and fuse features, as shown in 
Fig. 6, fusion strategy 2. (3) By using the feature output of 
the convolutional layer closer to the bottom, we explore 

the difference in classification results between the afore-
mentioned three strategies, as shown in Fig. 6, the fusion 
strategy 3. (4) Considering that ResNet50 has 5 convo-
lutional blocks, the output of the first two blocks does 
not encode any top-level abstract information, so we 

Table 5  Number of images without data augmentation

Images without data augmentation

Class Training set Test set

Poorly differentiated Moderate 
differentiated

Well differentiated Poorly differentiated Moderate 
differentiated

Well differentiated

Number 102 108 90 42 54 42

Table 6  Number of images with data augmentation

Images with data augmentation

Class Training set Test set

Poorly differentiated Moderate 
differentiated

Well differentiated Poorly differentiated Moderate 
differentiated

Well differentiated

Number 1020 1080 900 42 54 42

Fig. 5  Feature vector displays each convolutional layer of ResNet50
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recommend fusing the output of the last three blocks to 
take advantage of mid-level and high-level features. We 
extracted the output of the last residual unit of the 3th, 
4th and 5th blocks, and merged them as feature vectors 

after maximum pooling, then explored the fusion of the 
deep network based on the output feature vectors of the 
previous convolutional layer. Whether the latter convolu-
tional layer can form a more representative feature vector 

Fig. 6  Extracting features from different layers in the different network and merge them
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representation is shown in Fig. 7 [18]. (5) In addition, we 
also pay attention to the attention mechanism that helps 
to capture most of the fine-grained features. The atten-
tion mechanism is beneficial to the research of computer 
vision tasks, and has been widely used in image classi-
fication, semantic segmentation, and so on. Therefore, 
this research proposes the FuNet model, which covers 
channel attention and spatial attention, and better sup-
presses channel interference with less information [49]. 
At the same time, the importance of each spatial position 
is clarified by learning the weight of different positions 
in the space [50]. It can be better applied to the classifi-
cation research of the multi-differentiated types of liver 

cancer. The composition diagram of Channel attention 
block and Spatial attention block is shown in Fig. 8, and 
the structure diagram of FuNet is shown in Fig.  9. The 
classification results of the above experimental strategies 
will be reported in Sect. 3. It is worth noting that due to 
the limitation of external conditions such as memory, we 
added a maximum pooling layer of different specifica-
tions to the feature output layer for down-sampling. The 
number of channels of the feature vectors of different lev-
els with different pre-training models finally extracted is 
shown in Table 7 shows. The number of box girder chan-
nels with different fusion strategies is shown in Table 8.

Fig. 7  Extracting features from different layers in the ResNet network and merge them
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Classifier
Support Vector Machine(SVM) is an algorithm devel-
oped gradually with the support of statistical theory, 
which has been widely used to solve problems in major 
fields, and has now developed into one of the mainstream 
machine learning algorithms [51]. SVM strives to achieve 
the lowest training error and testing due to its avail-
ability in the choice of classification models and model 
parameters [52]. The main goal of SVM is to find the 
"maximum interval" division hyperplane suitable for clas-
sifying samples [53], which makes the model generalize 
more and classify better. When dealing with small sample 
problems, SVM often shows unique classification perfor-
mance compared to artificial neural networks. Besides, 
the existence of the kernel function implicitly defines the 
existence of a feature space in which we expect the sam-
ples to be linearly differentiable, so the choice of the ker-
nel function becomes one of the variables affecting the 
classification performance of the support vector machine 
classifier. If an inappropriate kernel function is chosen, 
the samples are often mapped to an inappropriate feature 
space resulting in poor classifier performance. Therefore, 
this study investigates the different classification perfor-
mance of the SVM classifier with the action of four kernel 
functions.

We also horizontally compared the classification per-
formance between the KNN classifier and the random 
forest classifier. In addition, we use ensemble techniques 

(stacking, boosting and gradient boosting) to combine 
the classifiers together [54], which improves the classi-
fication accuracy by merging the classifiers in sequence 
[55, 56].

Evaluation criteria
To better evaluate the reliability and generalization abil-
ity of models, in this paper, we use the receiver operating 
characteristic (ROC) curve to judge the performance of 
our built classification models and the area under ROC 
curve (AUC) to verify the generalization ability of the 
models in a more intuitive way [12, 48].

We combine the samples according to their true cat-
egories and the predicted categories of the learner, and 
the confusion matrix is composed of four main aspects: 
true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN). Finally, the horizontal 
and vertical axes of the ROC curve are calculated, where 
the horizontal axis is the "false positive rate"(FPR) and 
the vertical axis is the "true case rate"(TPR), which are 
defined as Eqs. (1) and (2), respectively.

(1)FPR =
FP

TN + FP

(2)TPR =
TP

TP+ FN

Fig. 8  Components of the channel attention block and spatial attention block
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Fig. 9  Extracting from the different layers of this network and the resulting combined FuNet are also shown
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Besides, Precision, Recall, F1 value, etc. are various 
different Indicators to measure the performance of the 
classifier according to different calculation methods, 
and the formulae are shown in Table 9 [56].

Results and discussion
Experimental conditions
All relevant code for this study was developed in the 
python language, and we implemented the above steps 
using Keras under Tensorflow 2.0.0, a popular Python 
framework for deep learning [46]. The size of the original 
patch was 1665 × 1393 pixels and the patch was resized 

to 224 × 224 pixels to match the number of inputs of 
each neural network input layer [57]. All our subsequent 
experiments are to divide the expanded training set into 
a training set and a validation set to train the model, and 
then use an independent test set to test the classification 

Table 7  Using different levels of convolutional bases as the level 
name and feature size of the feature extractor

Numbering Combined content Feature length

A1 ResNet50(full convolutional basis) 2048

A2 DenseNet201(full convolutional basis) 1920

A3 VGG16(full convolutional basis) 512

A4 InceptionRenseNetV2(full convolutional 
basis)

1536

B1 ResNet50(conv4_block6_out) 1024

B2 DenseNet201 (conv4_block6_out) 1792

B3 VGG16 (block4_pool) 512

C1 ResNet50(conv3_block4_out) 512

C2 DenseNet201 (conv3_block12_concat) 512

C3 VGG16 (block3_pool) 256

Table 8  The final feature vector size with different fusion 
strategies

(∪ Denotes the serial fusion feature)

Fusion strategy Combined content Feature length

Fusion strategy1 A1 ∪ A2 ∪ A3 ∪ A4 6016

Fusion strategy2 B1 ∪ B2 ∪ B3 3328

Fusion strategy3 C1 ∪ C2 ∪ C3 1280

Fusion strategy4 Res 3 ∪ Res 4 ∪ Res 5 3584

FuNet B1 ∪ B2 ∪ B3 (Contain atten-
tion block)

7040

Table 9  Model evaluation indicators

Evaluation index Calculation formula

Accuracy TP+TN

TP+TN+FP+FN

Recall TP

TP+FN

Precision TP

TP+FP

F1 2∗Precision∗Recall

Precision+Recall

Table 10  Using full convolutional basis with different networks for feature extraction and fusion classification performance

A1, A2, A3, and A4 are the feature vectors after maximum pooling with the pre-trained neu-ral network models ResNet50, DenseNet201, VGG16 and 
InceptionRenseNetV2, respectively

Meaning: Test acc/Validation acc (unit: %)

Strategie Classifer

A1 A2 A3 A4

Sigmoid-SVM 44.20/63.33 62.32/73.17 54.33/73.00 39.13/36.00

Rbf-SVM 62.32/98.67 58.70/91.83 55.80/87.00 39.86/36.33

Poly-SVM 58.70/99.38 57.97/94.67 54.35/92.00 44.93/43.67

Linear-SVM 39.13/36.00 55.07/49.33 39.13/36.00 39.13/36.00

RF 59.42/100.00 64.49/100.00 59.42/89.67 42.75/73.33

KNN 41.30/100.00 57.25/97.00 55.07/92.00 32.61/62.00

Strategie Classifer

A1 ∪ A2 A1 ∪ A3 A2 ∪ A3 A1 ∪ A2 ∪ A3

Sigmoid-SVM 57.25/79.67 58.70/78.67 60.87/83.33 57.25/84.00

Rbf-SVM 60.87/92.67 55.80/89.67 61.59/94.33 63.04/93.67

Poly-SVM 60.87/94.67 57.25/93.00 64.49/95.00 63.04/96.00

Linear-SVM 39.13/36.00 39.13/36.00 39.13/37.00 41.30/38.33

RF 61.59/95.00 59.42/92.67 39.13/36.00 61.59/95.00

KNN 50.00/97.33 53.62/95.00 57.25/96.67 50.00/96.67
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Fig. 10  Classifier performance with three strategies. Note: A1, A2, A3 are the feature vectors after using full convolutional basis of the pre-trained 
neural network models ResNet50, DenseNet201 and VGG16, respectively as the feature extractor (∪ Denotes the serial fusion feature)
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performance of the model. The ensemble techniques 
(stacking, boosting and gradient boosting) used in this 
research are all from scikit-learn learning pants.

Performance analysis: CNN feature analysis with full 
convolutional base
As can be seen from Table 10, the classification effect of 
a single feature extracted from a single model is poor, 
and the accuracy of the test set is around 50% mostly. 
Besides, when two single features are fused, the test set 
effect does not improve significantly and somehow even 
decreases. It indicates that when two single image fea-
tures are fused, they may not complement each other 
well, which would cause feature redundancy and inap-
parent accuracy improvement. However, we can see 
that compared with the single feature extraction method 

of A1, A2, and A3, the validation set accuracy of the 
fusion model of A1 ∪ A2 ∪ A3 achieves 90% except for 
the Linear-SVM model and Sigmoid-SVM model, which 
is a satisfactory result. Meanwhile, the test set result 
achieves 63.04% with the fusion model of A1 ∪ A2 ∪ A3, 
which proves from the side that there is singularity in the 
extracted features when using a single pre-trained neural 
network model with a full convolutional basis as the fea-
ture extractor. And when fusing the feature vectors with 
multiple well-performing pre-trained neural networks, it 
improves the feature representation capability and effec-
tively prevents having risk of poor performance of the 
single features extracted from a single model.

In addition, we selected three types of feature vec-
tors that performed well in the CNN feature analy-
sis with the full convolutional basis, which were A2, 
A1 ∪ A2 and A1 ∪ A2 ∪ A3. Then we applied them 
with the top-performing Rbf-SVM, Poly-SVM and RF 

Fig. 11  RF Classifier performance with three strategies. Note A1, A2, A3 are the feature vectors after using full convolutional basis of the pre-trained 
neural network models ResNet50, DenseNet201 and VGG16, respectively as the feature extractor (∪ Denotes the serial fusion feature)
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classifiers, respectively. We compared the accuracy, 
recall and F1 values with multiple strategies in the test 
set, and the comparison results are shown in Fig.  10. 
From Fig. 10 and Fig. 11, it can be seen that the fused 

features of the A1 ∪ A2 ∪ A3 strategy have the best 
complementarity, and the model has better generali-
zation performance. It shows the best results in terms 
of precision rate, recall rate, and F1 value in the test 

Table 11  Classifier performance with A1 ∪ A2 ∪ A3 fusion strategy

Classifier Strategies

A1 ∪ A2 ∪ A3

Stacking Test acc/validation acc (unit: %) 63.04/94.67

Images of precision, recall and F1 values

Bagging Test acc/validation acc (unit: %) 51.45/78.33

Images of precision, recall and F1 values

Gradient-boosting Test acc/validation acc (unit: %) 57.97/88.33

Images of precision, recall and F1 values
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set, thus indicating that the strategy of fusing the fea-
tures of the pre-trained neural network model adopted 
in this study is reasonable. It is demonstrated that the 
features extracted by the pre-trained neural network 
VGG16, ResNet50 and DenseNet201 models are more 
complementary with the full convolutional basis, and 
the fused features improve the feature representation 
ability. Thus it can better extract the more complex 
image features among different liver tumor differentia-
tion types.

In addition, we also explored the classification 
results of the fused features with the top-performing 
A1 ∪ A2 ∪ A3 strategy with the integrated learning 
classifier, and the experimental results are shown in 
Table  11, from which can be seen that the Stacking 
integrated learning model has the best classification 
results.

FuNet and performance analysis with different fusion 
strategies
We used different pre-trained models with different lay-
ers for feature extracting and fusing different fusion 
strategies as shown in Table 12. The FuNet fusion model, 
which combines the channel attention mechanism and 
the spatial attention mechanism, shows the best classifi-
cation results with the Stacking integrated learning clas-
sifier in terms of validation set accuracy, test set accuracy, 
and time factor. It gets 72.46% accuracy in the test set and 
94.33% accuracy in the validation set. In addition, to show 
the classification performance with FuNet fusion model, 
we also compared the accuracy, recall, and F1 value with 

different fusion strategies of the four models with excel-
lent performance, Rbf-SVM, Poly-SVM, RF, and Stack-
ing, and the length of time spent with different feature 
extraction and fusion strategies, and the experimental 
results are shown in Figs. 12, 13, and 14, respectively. We 
can see that with the stacking integrated learning model, 
the FuNet model obtains higher values in poorly differ-
entiated, moderate differentiated, and well differentiated, 
which has better classification performance. The experi-
mental results show that the FuNet model with fused 
channel attention and spatial attention extracts more 
complete and representative features of liver cancer tis-
sue images, making the final Stacking classification model 
better to capture the subtle gaps in histopathological 
images of different differentiated types of liver cancer and 
achieve satisfactory results in classification accuracy.

ROC curve analysis
In this experiment, the scikit-learn module was used 
to calculate the ROC curves and AUC values, and two 
evaluation models, macro-average and micro-average, 
were specifically used. Macro-average focuses more 
on the performance of the classification model on the 
whole dataset but lacks in analyzing the performance of 
a specific category. Therefore, to reflect the model perfor-
mance comprehensively, we also incorporate micro-aver-
aging as a valid metric.

We select the classification models with excellent clas-
sification performance with the fusion strategy: the ROC 
curves and confusion matrix of Poly-SVM, Stacking and 

Table 12  Classification accuracy of the fusion model (full convolutional basis)

Meaning:Test acc/validation acc (unit: %)

Strategie Classifer

Fusion strategy 1 Fusion strategy 2 Fusion strategy 3 Fusion strategy 4 FuNet

Sigmoid-SVM 59.42/77.67 65.22/74.33 63.77/62.66 57.97/68.33 66.67/81.67

Rbf-SVM 60.87/94.00 63.04/92.67 62.32/78.67 59.42/91.33 64.49/92.67

Poly-SVM 62.32/96.00 65.94/95.67 55.07/89.00 60.15/97.67 64.49/96.33

Linear-SVM 41.30/38.33 39.13/36.00 39.13/36.00 39.13/36.00 39.13/36.00

RF 60.87/94.00 62.32/94.33 58.70/94.00 60.15/94.67 63.77/95.67

KNN 50.00/96.67 46.38/91.67 42.75/93.33 42.75/91.63 42.75/93.00

Stacking – 64.49/93.67 57.97/92.67 60.15/95.00 72.46/94.33
Bagging – 73.19/72.67 43.48/44.67 56.52/76.00 71.01/80.00

Gradient boosting – 65.22/88.00 52.17/82.00 64.49/87.00 60.87/91.00
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Fig. 12  Classifier performance with four fusion strategies. Please refer to Table 8 and Fig. 7 for the specific name correspondence
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Fig. 13  Classifier performance with four fusion strategies. Please refer to Table 8 and Fig. 7 for the specific name correspondence
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Bagging classifiers with the FuNet model are shown in 
Fig.  15. The gap in the ROC curves of each model is not 
particularly large, and just minor differences. But it is grati-
fying to see that the AUC values of the FuNet model for the 
Poly-SVM, Stacking and Bagging classifiers are all above 
0.8. In addition, by observing the confusion matrix, it can 
be seen that in the recognition results of poorly differenti-
ated and highly differentiated categories, the recognition 
performance of the Stacking classifier is better than that 
of the Poly-SVM classifier. For the Bagging classifier with 
moderate differentiation of the category, the recognition 
result is better and the recognition accuracy is higher. In 
summary, through the comprehensive evaluation of both 
ROC curve and confusion matrix, the features extracted 
by the FuNet model have obtained the best classification 
results in the Stacking classifier, which is our best choice.

Conclusion
In summary, we incorporated histopathological images 
of multi-differentiated subtypes of liver cancer and pro-
posed a classification method for differentiation types of 
liver cancer based on Stacking classifier with deep feature 
integration of FuNet deep convolutional neural network. 
In our proposed framework, we used four pre-trained 
deep convolutional neural networks, ResNet50, VGG16, 
DenseNet201, and InceptionResNetV2, to extract deep 
features at different levels from histopathological images 
of multi-differentiated types of liver cancer. The extracted 
deep features are compared horizontally by multiple ML 
classifiers. Then the combinations of depth features that 

perform well on multiple ML classifiers are selected to 
stitch into a depth feature set and output the final clas-
sification results. In our experiments, we performed an 
adequate classification evaluation of liver cancer differ-
entiation types using four pre-trained deep convolutional 
neural networks and nine different ML classifiers on a 
dataset of liver cancer histopathology images with multiple 
differentiation types. And the test set accuracy, validation 
set accuracy, running time with different strategies, accu-
racy, recall, F1 value, ROC curve and confusion matrix 
were used for adequate comparative evaluation. Our 
experimental results show that in the comparison experi-
ments with different pre-trained neural network models 
using full convolutional bases, (1) the features extracted 
by VGG16, ResNet50 and Densenet201 models with full 
convolutional bases are more complementary, and the 
fused features of the three models improve the feature 
representation capability. As for running time, the fused 
A1UA2UA3 is a better choice when compared to the fea-
tures fusing of InceptionResNetV2. (2) FuNet fusion strat-
egy is a good choice, which covers both channel attention 
and spatial attention, and suppresses channel interference 
with less information. Meanwhile, it can clarify the impor-
tance of each spatial location by learning the weights of 
different locations in space, then apply it to the study of 
classification of multi-differentiated types of liver cancer. 
In addition, in most cases, the Stacking-based integrated 
learning classifier outperforms other ML classifiers in the 
classification task of multi-differentiation types of liver 
cancer with the FuNet fusion strategy after dimensionality 
reduction of the fused features by PCA features. In sum-
mary, our proposed new FuNet feature integration method 
helps to overcome the limitations of individual CNN mod-
els and outperforms feature fusion approaches at differ-
ent levels with superior robust performance. These results 
suggest that our proposed method based on FuNet deep 
feature fusion and Stacking classifier is suitable for the 
classification of multi-differentiated types of liver cancer. 
Although the performance of our proposed FuNet model 
is promising, we still need to do further research to reduce 
the size and thus improve the classification performance 
of the model. To better target the automatic classification 
of liver cancer histopathological images, we will continue 
to collect liver cancer tissue samples from different insti-
tutions in our subsequent studies to further enhance our 
relevance in medical image classification tasks.

Fig. 14  Time consuming of features extracting
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