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Abstract 

Background:  Evaluation of new treatment policies is often costly and challenging in complex conditions, such as 
hepatitis C virus (HCV) treatment, or in limited-resource settings. We sought to identify hypothetical policies for HCV 
treatment that could best balance the prevention of cirrhosis while preserving resources (financial or otherwise).

Methods:  The cohort consisted of 3792 HCV-infected patients without a history of cirrhosis or hepatocellular car-
cinoma at baseline from the national Veterans Health Administration from 2015 to 2019. To estimate the efficacy of 
hypothetical treatment policies, we utilized historical data and reinforcement learning to allow for greater flexibility 
when constructing new HCV treatment strategies. We tested and compared four new treatment policies: a simple 
stepwise policy based on Aspartate Aminotransferase to Platelet Ratio Index (APRI), a logistic regression based on 
APRI, a logistic regression on multiple longitudinal and demographic indicators that were prespecified for clinical 
significance, and a treatment policy based on a risk model developed for HCV infection.

Results:  The risk-based hypothetical treatment policy achieved the lowest overall risk with a score of 0.016 (90% 
CI 0.016, 0.019) while treating the most high-risk (346.4 ± 1.4) and the fewest low-risk (361.0 ± 20.1) patients. Com-
pared to hypothetical treatment policies that treated approximately the same number of patients (1843.7 vs. 1914.4 
patients), the risk-based policy had more untreated time per patient (7968.4 vs. 7742.9 patient visits), signaling cost 
reduction for the healthcare system.

Conclusions:  Off-policy evaluation strategies are useful to evaluate hypothetical treatment policies without imple-
mentation. If a quality risk model is available, risk-based treatment strategies can reduce overall risk and prioritize 
patients while reducing healthcare system costs.
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Background
Health system stressors occur in multiple medical con-
texts and can be exacerbated by limited resources (e.g., 
limited capacity or budget). This issue has become 

particularly apparent during the COVID-19 pandemic 
when resources such as personal protective equipment, 
intensive care unit capacity, and treatments have been 
in high demand but under limited supply [1–3]. Dur-
ing these situations, health systems must determine 
the most efficient and effective way to allocate scarce 
resources within the constraints of their health system, 
often to large populations of patients [3]. Some health 
systems take a first-come-first-serve approach, whereas 
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others prioritize patients according to their risk of dis-
ease progression or complications. Allocation of care 
fairly and equitably is essential, particularly considering 
historic inequities with high barriers to care and worse 
health outcomes among racial and ethnic minorities and 
patients of low socioeconomic status. These policies have 
far-reaching effects and must be guided by the medi-
cal ethics [3–6]. Unfortunately, it is difficult to evaluate 
various approaches until after implementation. Although 
simulation modeling can be used to evaluate theoretical 
decision paths in advance, they are based on assump-
tions that may fail to provide unbiased evaluations of the 
hypothetical treatment policy [7]. These issues highlight 
a need for better methods to evaluate proposed policies 
before clinical implementation.

Herein, we used hepatitis C virus (HCV) treatment 
with direct-acting antivirals (DAA) as a case study on 
which to develop a reinforcement learning approach to 
evaluate proposed treatment policies before implemen-
tation using historical data. Reinforcement learning pro-
vides a framework to utilize data that is longitudinal in 
nature and contains feedback from decisions made over 
time, such as assessment of a patient’s health status and 
decision to start treatment and thus evaluate new treat-
ment strategies or policies in medicine [8–14]. HCV is a 
valuable case study as it has traditionally been one of the 
most common risk factors for cirrhosis and liver-related 
mortality in the United States and Europe. The availabil-
ity of DAA therapies in 2015 offered a cure for HCV and 
has helped mitigate HCV-related morbidity and mortal-
ity over the last decade. If patients are treated early before 
the onset of cirrhosis, HCV therapy can halt disease pro-
gression and significantly reduce the risk of cirrhosis and 
liver-related mortality. Patients treated after the onset 
of cirrhosis have improved quality of life and prognosis. 
However, they have a persistent risk of hepatocellular 
carcinoma and liver-related complications, warranting 
continued observation.

Despite the documented benefits of early treatment of 
HCV, the initial high cost of DAAs resulted in many pay-
ers limiting access to treatment. Some of these policies 
included restricted access to DAAs based on (1) fibrosis 
stage (e.g., presence of significant fibrosis or cirrhosis); 
(2) sobriety from alcohol and illicit substances; or (3) pre-
scriber specialty. This was particularly true for Medicaid 
plans, which are responsible for covering low socioeco-
nomic status groups and often racial and ethnic minor-
ity communities, thus exacerbating disparities in access 
and care—violating the ethical principle in equal access 
to care [4]. These policies led to institutional, geographic, 
and temporal variation in HCV treatment policies, 
including who is eligible and/or prioritized for treatment, 
thus creating historical treatment data and a natural case 

study to develop an approach to evaluate proposed treat-
ment policies before implementation.

The purpose of this study was to evaluate hypothetical 
policies for HCV treatment before clinical implemen-
tation using techniques from reinforcement learning, 
leveraging historical data collected under an existing 
treatment policy. With this historical data, we can evalu-
ate new hypothetical treatment policies under the para-
digm of reinforcement learning by comparing them with 
the resulting rewards (lower risk) of the existing treat-
ment policy. In this setting, we wish to evaluate hypo-
thetical treatment policies that could potentially replace 
the standard-of-care policy. With HCV as our case study, 
we used a previously published risk prediction model 
[15] to measure a patient’s risk over time. This published 
model was the basis for patients’ risk estimates and the 
hypothetical risk-based treatment policy. This risk esti-
mates combined with the treatment decisions made for 
each patient and associated longitudinal and demo-
graphic variables allowed us to compare additional hypo-
thetical treatment policies for HCV treatment allocation.

Methods
Data collection and study population
The cohort was collected from the Veterans Health 
Administration (VHA) Corporate Data Warehouse, an 
electronic repository of clinical and demographic data 
for Veterans served by the VHA health care system. All 
patients with a history of HCV (defined by the pres-
ence of at least one positive HCV RNA during the study 
period) were identified from January 2015 to January 
2016, with follow-up through 2019. The original cohort 
study was obtained from a previous publication whose 
original study date was from January 2000 to January 
2016 and had the following exclusions: patients with 
less than two AST-to-platelet ratio index (APRI) scores, 
patients with a history of cirrhosis or hepatocellular car-
cinoma at baseline, and those with baseline APRI > 2.0, 
and finally excluded those patients who received antivi-
ral treatment regimens but lacked RNA tests to docu-
ment whether sustained virologic response (SVR) was 
achieved. The resulting dataset consisted of 169,339 
patients. From this dataset and given that the focus of our 
study was DAA receipt, we excluded patients seen before 
January 2015 (n = 164,835) and those that were only 
treated with older non-DAA interferon-based regimens 
(n = 34). We also excluded patients that were treated with 
DAAs but did not achieve sustained virologic response 
(SVR, i.e., HCV cure) (n = 397); and patients that needed 
to be treated with more than one antiviral regimen 
(n = 138); finally, we excluded any patients whose treat-
ment occurred before study enrollment (n = 143). This 
led to 3792 patients in the final dataset.
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Study variables
Predictors of interest were selected a priori based on 
prior work, [15, 16] biological plausibility [15–17], and 
clinician input. Demographic variables included age 
at cohort entry, sex, race, and ethnicity. SVR, i.e., HCV 
cure, was modeled as a step function of time whereby the 
variable remains 0 until SVR is achieved, at which point 
it becomes 1. Laboratory variables included aspartate 
aminotransferase (AST) ratio, alanine aminotransferase 
(ALT) ratio, AST/ALT ratio, albumin, total bilirubin, cre-
atinine, blood urea nitrogen, glucose, hemoglobin, plate-
let count, white blood cell count, sodium, potassium, and 
chloride. We used all available laboratory measurements 
for each patient. Patients with more than one measure-
ment for a particular variable on a single day were aver-
aged for that day. For each patient, treatment information 
is also available (if they were treated), including the type 
of drug, treatment date, and treatment length. This allows 
us to create longitudinal patient trajectories and treat-
ment decisions over time.

Reinforcement learning algorithm approach for treatment 
policies
Reinforcement learning is an area of machine learning 
that studies how actions are taken over time affect cur-
rent and downstream outcomes [8–14, 18]. An exam-
ple is a physician who is considering different treatment 
options for a specific condition, which may require 
updating based on a patient’s response and any adverse 
events. Reinforcement learning can help determine a 
policy of action best for patients on average. This differs 
from traditional machine learning, where temporality 
is not taken into effect, and decisions cannot vary over 
time.

Reinforcement learning can be used to both evalu-
ate sequential decision-making and identify and evalu-
ate new policies in medicine. In the original cohort data 
(Fig.  1), treatment decisions are made in a sequential 
context: the patient is evaluated, and information, or 
the patient’s state, is collected. The clinician then evalu-
ates this state and makes a treatment decision. This cycle 
then restarts as the patient’s state is measured again, and 
the clinician updates the treatment decision based on 
this new information. The process continues for a series 
of time points until the patient does not return for more 
visits or the end of the follow-up period is reached. In 
this setting, we wish to evaluate hypothetical treatment 
policies that could potentially replace the standard-
of-care policy; ideally, a hypothetical treatment policy 
would have a lower overall risk to patients. Reinforce-
ment learning offers a framework to encode this process 
quantitatively.

In general, this requires a multi-step approach: (1) A 
feature representation is created for the states, actions, 
and risks for each patient in the dataset, (2) an off-
policy evaluation method is constructed as a way to 
compare hypothetical treatment policies, and (3) hypo-
thetical clinical policies are tested utilizing the off-pol-
icy evaluation method.

1.	 Feature Representation for States, Actions, and Risks

A set of longitudinal states, actions, and risks is 
derived from the cohort data for each patient. A meas-
urement time point for each patient is defined as a day 
of record for the patient in the cohort data, i.e., if the 
patient has a recorded longitudinal measurement on 
that day.

States: The state for each patient at each time point 
is a vector of the following variables: sodium, cre-
atinine, chloride, total protein count, alkaline phos-
phatase, APRI, potassium, glucose, platelet count, AST 
ratio, INR, white blood count, bilirubin, albumin, ALT 
ratio, AST/ALT ratio, FIB4 score, SVR status, demo-
graphic group (Hispanic, White, or Other), and sex. 
For the demographic information and sex, the variable 
is coded as 1 for True and 0 for False (demographic is 
split into three separate variables). Those values are 
constant over time for the patient. For missing values, 
the last known value carried forward is used. When a 

Fig. 1  Modeling approach for reinforcement learning and off-policy 
evaluation. The historical cohort dataset consists of patients (1), 
whose state, i.e., longitudinal and demographic information is 
measured (2). Given these measurements, the risk to the patient 
progressing to cirrhosis is then evaluated (3). Finally, following the 
usual care treatment policy (4), a clinician makes a treatment decision 
(5) for the patient. The cycle then continues until the patient no 
longer returns for follow-up or the follow-up period concludes
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measurement is missing for the patient at all measure-
ment time points, the overall median of that variable 
across all patients is used.

Actions: For the HCV cohort, we consider a binary 
treatment decision. The action variable at each time 
point is 1 if the treatment is currently occurring. If 
there is no measurement time point on the first day of 
treatment, we define the action at the previous meas-
urement time point as 1. This is done so that the time 
at which a treatment decision is made is correctly 
recorded, i.e., during a defined measurement time 
point.

Risks: The treatment decision under consideration 
is whether or not to treat with a DAA regimen. The 
patient’s risk is defined as the estimated risk of cirrhosis 
after 1-year. We calculated patient risk at each measure-
ment time point using a predefined model from Beste 
et  al. [15], which used a multivariate time-varying Cox 
process to predict the risk of cirrhosis within 1-year from 
the current time point and was specifically adapted to 
use longitudinal lab data and to account for treatment 
and SVR status. The coefficients of the time-varying Cox 
Model were previously published in Beste et  al. (2020) 
and found in Additional file 1: Table S1 [15].

2.	 Off-Policy Evaluation

Off-policy evaluation in this paper is based on the 
reinforcement learning framework to evaluate the hypo-
thetical scenarios rather than learn a new policy using 
historical data [19–22]. To adequately describe this tech-
nique, we first introduce some notation. As described 
in the previous section, we obtain for each patient a 
sequence of triplets consisting of actionsai , statessi , 
and risksri , H = [(a1, s1, r1), . . . (aT , sT , rT )] . We math-
ematically define a treatment policy π as a probability 
distribution over the possible action space, given a par-
ticular state, so that in our case π(1|s)  is the probabil-
ity of treatment with a DAA given the patient states, and 
π(0|s) = 1− π(1|s) . Given this treatment policy π , we 
are interested in estimating the overall risk to patients 
over time: where  γ ∈ [0, 1) is a discount parameter that 
encodes how much we care about past risk as opposed to 
current risk of the patient, and rt are the risks observed 
when implementing the treatment policy π at time t. 
If enough data is collected under the policy of inter-
est,  then it is straightforward to estimate Eq. 1 by sim-
ply using the empirical weighted average of the resulting 
risks for each patient. However, as we wish to use his-
torical cohort data to evaluate π, we resort to a different 
approach. In particular, we utilize a statistical technique 
called importance sampling, which reweights the data to 
estimate risk under the policy of interest (6).

Let πe  be the treatment policy we wish to evaluate. 
Similarly, we define πb  as the baseline treatment policy 
under Eq. 2, which the data was collected. Then, for each 
patient i and each time t, we can define the importance 
weight: where   (a(i)j , s

(i)
j )   is the action-state pair for 

patient i at time j

Estimation of πb : To calculate the importance weights, 
it is necessary to access both πe and πb for all possible 
actions and states. Since πe is the hypothetical evaluation 
policy, for every possible state s we know the probabil-
ity of a treatment decision πe(s) . For πb , however, these 
probabilities must be estimated from the data.

Since the treatment decision is binary, estimating the 
baseline treatment policy πb can be done by fitting a 
probabilistic classifier to the actions and states and using 
the posterior probabilities of an action a (output of the 
classifier) given the state s (input to the classifier). Logis-
tic regression was chosen for this task as it has worked 
well and was a reasonable choice. To account for the fact 
that DAA treatment regimens are fixed and would not 
change with implementing a new treatment policy, the 
learning of πb was split into two phases: pre-treatment 
π
pre
b  and post-treatment πpost

b  . All action-state pairs from 
all patients that occurred before treatment or were on the 
treatment decision day were used for the pre-treatment 
phase.

For the post-treatment phase, we set 
π
post
b (a|s) = π

post
e (a|s)   for all hypothetical treatment 

policies πe and for all possible treatment decisions and 
states. Note that, regardless of the estimated post-treat-
ment policyπpost

b (a|s) , the importance weight ρ(i)
t = ρ

(i)
t∗    

for any t ≥ t∗ , where t∗ is the initial treatment time; it is, 
therefore, unnecessary to estimate πpost

b (a|s) directly.
After estimating the baseline policy πb and calculating 

the importance weights for each patient, a weighted esti-
mator can then assess the overall average risk of the new 
treatment policies. For off-policy evaluation, we use a 
variant of the per-horizon weighted importance sampler 
found in Doroudi et al. & Raghu et al. [19, 21] and shown 
in Eq. 3.

(1)Risk(π) = E

[

T
∑

t=0

γ t rt

]

(2)ρ
(i)
t =

t
∏

j=0

πe(a
(i)
j |s

(i)
j )

πb(a
(i)
j |s

(i)
j )

(3)

V̂PHWIS =
∑

l∈L

Wl
1

∑

τi|Ti=l ρ
(i)
Ti

∑

τi|Ti=l

ρTi

Ti−1
∑

t=0

γ t r
(i)
t
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 γ is a discount parameter, L is the set of different 
lengths of action-state-reward triplets, Wl is the frac-
tion of l-length triplets in the dataset, and finally ρTi is 
the importance weight. This estimator allows for different 
length patient trajectories, which is critical in our case.

We utilize a simple bootstrap sample of 100 samples 
each and report the mean and 90% confidence interval of 
the overall risk estimate for each hypothetical treatment 
policy, defined in the next section.

3.	 Construction and Evaluation of Hypothetical Clinical 
Policies

We constructed four hypothetical treatment poli-
cies to evaluate to demonstrate the off-policy evaluation 
method. The first two treatment policies were based on 
the AST to Platelet Ratio Index (APRI). APRI is a vali-
dated predictor of hepatic fibrosis in chronic HCV rou-
tinely used in clinical care. Past work has used two APRI 
scores greater than 2.25 as a surrogate outcome for cir-
rhosis [16].

Policy 1—Piecewise Treatment Policy: The first treat-
ment policy is a piecewise function (Fig. 2a), where treat-
ment probability increases with APRI score (Eq. 4):

Policy 2—Logistic Regression (APRI only): The second 
treatment policy is a data-driven treatment policy using 
logistic regression with APRI as a single feature. The out-
come is a positive diagnosis of cirrhosis (Fig.  2b). The 
data points used to fit the logistic regression are the last 
APRI score recorded per patient before a diagnosis of 
cirrhosis (for positive outcome), or the last APRI score 
recorded for the patient (for negative outcome), taken 
from an expanded dataset where the outcome of cirrhosis 
was identified using liver elastography. The class prob-
abilities are then used as treatment probabilities for the 
policy.

Policy 3—Logistic Regression (All Variables): The third 
treatment policy is a logistic regression on all available 
state variables, with the same process as the previous 
treatment policy, and fit on the same expanded dataset as 
described above.

Policy 4—Risk-Based Policy: The final treatment policy 
is based on the risk measure used as the evaluator of 
patient risk. This policy is included to demonstrate the 
utility of incorporating each patient’s risk in the treat-
ment decision. In particular, the probability of treatment 
πe(s) is based on a logistic function, i.e., 

(4)P(Treat|APRI) =











0.2 APRI < 1.5

0.5 1.5 ≤ APRI < 2.5

0.8 2.5 ≤ APRI < 4

1.0 APRI > 4

πe(s) =
ek(r(s)−r0)

1+ek(r(s)−r0)
  , where πe(s) is the probability of 

treatment given the state and r(s) is the calculated risk 
given the current state. For the policy in the results with 
the reported risk, r0 was set to r0 = 0.003 , and k was set 
to 1000. These parameters were chosen as they were local 
minimal for the risk through a grid search. An investiga-
tion of how risk behaves as these parameters change is 
also explored in the results.

Evaluation of treatment strategies using monte Carlo 
simulation
In addition to evaluating the estimated risk of each 
hypothetical policy, we also used a Monte Carlo simula-
tion on the data to find the number of patients that the 
policies would treat. To avoid counterfactual evaluations, 
the Monte Carlo simulation is only performed on meas-
urement time points for which the treatment has not 
started or has started at that time point. For each hypo-
thetical treatment policy, we record the average number 

Fig. 2  Treatment probabilities as a function of APRI score for the 
(a) piecewise treatment policy and (b) logistic regression (APRI 
only) policy. The first treatment policy is a piecewise function where 
treatment probability increases with APRI score (a). The second 
treatment policy is a data-driven treatment policy using logistic 
regression with APRI as a single feature, and the outcome being a 
positive diagnosis of cirrhosis (b)
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of patients treated, as well as the number of time points 
that were not treated. The latter can be thought of as one 
of many surrogates for cost savings, as delayed treatment 
implies a delayed expenditure for the hospital. Patients 
were separated into the low, medium, and high-risk cate-
gories by their maximum risk score overall measurement 
time points. Patients with a risk score above the 90th 
percentile (r = 0.015) were considered high-risk patients. 
Patients between the 90th percentile and 50th percentile 
(r = 0.0029) were considered medium risk, and those in 
the bottom half of the maximum risk scores were con-
sidered low risk. There were 380 high-risk patients, 1530 
medium-risk patients, and 1882 low-risk patients used by 
the Monte Carlo simulation.

Results
Feature representation for actions, states, and risks
Figure  3 shows three example traces for patients. Fig-
ure  3a shows treatment decisions over time. Figure  3b 
shows the associated drop in the risk of developing cir-
rhosis. Figure  3c shows an example of an untreated 
patient. Note that the risk of cirrhosis drops significantly 

as treatment starts; even before SVR is achieved, many 
patients’ longitudinal measurements (including APRI) 
improve rapidly after the start of treatment. This is evi-
dent in Fig. 4a, which compares the risk scores of treated 
vs. untreated patients; the median risk of treated patients 
is 69% lower than untreated patients (median 0.0007 vs. 
0.0022, respectively). Note that the absolute scale of the 
risk is not important, rather the relative scale. Figure 4b 
shows the median risk as a function of the time after the 
treatment start date. As expected, the risk of develop-
ing cirrhosis decreases after treatment and continues to 
decrease after the end of DAA treatment.

Off‑policy evaluation and hypothetical clinical policies 
testing
Table 1 shows the results from the off-policy evaluation 
of the proposed policies. The risk-based policy has the 
lowest average risk of all the policies tested, with a boot-
strap 90% confidence interval of (0.016, 0.019), with the 
full state logistic regression policy following behind. Pol-
icy 1 and Policy 2 are statistically nearly identical, as their 
treatment probability curves were shown to be similar in 

Fig. 3  Three example traces for patients. Treatment decisions over time (a), SVR status (b), and risk score for development of cirrhosis and APRI/300, 
where 300 was chosen to place risk and APRI on similar scales (c) are displayed
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Fig.  2. Interestingly, although the risk-based policy has 
the lowest average risk of the tested policies, it also treats 
the least low-risk patients and the highest and medium-
risk patients, showing that it can prioritize patients based 
on estimated risk. The nearest competitor, Policy 3, also 
has significantly fewer untreated time points, signaling 
that the risk-based policy is better at finding higher-risk 
patients at a lower cost to the health system.

Figure  5 shows the sensitivity of the risk-based policy 
to r0 and k . As r0 increases, risk also increases for a fixed 
k (Fig. 5a), and as k increases, r0 decreases but stabilizes 
for a fixed r0  (Fig. 5b). Note that the Monte Carlo num-
ber of patients treated increases as risk decreases, and 
the number of untreated time points decreases with risk, 
as expected.

Discussion
This study aimed to demonstrate the effectiveness of 
a reinforcement learning framework for the evalua-
tion of hypothetical treatment policies using histori-
cal data. Through the case study of HCV treatment, we 

demonstrated that off-policy evaluation could be helpful 
to compare different intervention strategies in advance. 
Using this approach, we found that a risk-based policy 
had the best estimated average risk score and thus best 
prioritized treating medium- and high-risk patients over 
low-risk patients compared to other hypothetical treat-
ment policies. The clinical implication in implementing 
a risk-based policy is more efficient treatment allocation. 
Therefore, this approach could have helped prioritize 
short-term access and costs but also could have helped 
save dollars to avert downstream cirrhosis-related man-
agement and complications for large health systems.

This type of evaluation approach can be helpful for 
other disease states where similar policy comparisons are 
needed and can be used as a generalized methodological 
tool for evaluating treatment strategies without waiting 
for outcomes from a clinical study. For example, this can 
be applied to other diseases with high-cost conditions 
such as cancers [23].

These results also imply that, under financial limi-
tations or treatment scarcity, systematic treatment 
policies could improve average patient outcomes, as 
measured by a reduced risk in cirrhosis. While outside 
of the scope of this paper, we believe that more com-
plicated policies could further improve the average 
outcome without requiring immediate treatment of all 
enrolled patients. Indeed, for HCV, more complex clas-
sification models could also be extended to create new 
treatment policies.

While the technique of off-policy evaluation is only 
applied in this study to treatment policies for HCV, the 
methodology is applicable in many different scenarios. 
The key ingredients necessary for policy evaluation here 
are a predefined risk/reward measurement or model, 
a well-defined action space, and a series of states. The 
careful construction of these components is essential, 
as different design decisions regarding the construction 
of these variables will significantly affect the overall out-
come. Other work has considered these techniques in the 
cases of sepsis treatment [21], and more applications of 
this type are sure to follow. Although simulation mod-
eling can be used to evaluate theoretical decision paths 
in advance, they are based on assumptions that may fail 
to provide unbiased evaluations of the hypothetical treat-
ment policy [7]. Future studies will focus on the clinical 
validation of these results.

Limitations
This approach has several important limitations; first, 
the methodology assumes that the treatment action is 
based solely on the state at that particular time and not 
the past trajectory of the patient. This is not how clini-
cians operate in practice, although we find it a reasonable 

Fig. 4  Analysis of risk scores. a Comparison of risk scores in the 
dataset separated between treated and untreated measurement 
timepoints. As expected, the untreated timepoints have a higher risk 
score on average. b Median risk (with 50% percentile interval) striated 
across amount of time after treatment start date. As expected, risk 
continues to decrease after initial treatment
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approximation here. The second limitation is that missing 
data were imputed by using the last observation carried 
forward. Other potential imputation methods could have 
been utilized that produce less bias in the final policy 
estimates. Both the baseline and each of the hypothetical 
treatment policies are assumed to be randomized, i.e., the 

treatment decisions made at a particular time point are 
stochastic. This can prove troublesome in implementing 
these policies in a real-world environment, where hard 
treatment thresholds are usually favored. Some adjust-
ments can allow for deterministic policies, but this gener-
ally requires more data to represent the joint state-action 
space properly; we leave this to future work. Another 
important limitation of this method is that although we 
reported treatment quantity, this work does not explicitly 
allow for a budget constraint on the amount of treatment 
given, either in total or over time. An important addi-
tional limitation in this work concerns the robustness and 
generalizability of the technique. From a methodological 
perspective, a more sophisticated means of determining 
the parameters would be better to ensure the optimal-
ity of the policy. A final limitation of this study is that 
patients treated with DAAs but do not achieve SVR are 
excluded from this study. Although this is a small pop-
ulation of treated patients, our current technique can-
not account for this outcome. In addition, we note that 
a more generalizable and externally validated risk model 
would give the method presented in this paper more 
empirical credibility to inform policy decisions.

Conclusion
New hypothetical treatment policies for HCV were 
evaluated using a reinforcement learning framework 
using historical data collected from the VHA. A risk-
based policy was shown to prioritize high and medium-
risk patients more effectively while reducing the cost to 
healthcare systems. The methodology used in this study 
could be of interest for a better understanding of treat-
ment policies for other diseases.

Table 1  Expected risk of baseline and evaluation policies

Risk score 90% Bootstrap CI Number 
of patients 
treated

High risk 
(n = 380)

Medium risk 
(n = 1530)

Low risk 
(n = 1882)

Untreated 
timepoints

Policy 1: Piecewise 
Policy

0.028 (0.027, 0.033) 2018.5 + − 17.8 307.2 + − 6.9 893.9 + − 13.8 817.4 + − 15.7 7040.8 + − 127.5

Policy 2: Logistic 
Regression (APRI 
Only)

0.026 (0.024, 0.031) 1914.4 + − 18.6 316.2 + − 4.7 919.6 + − 16.7 672.3 + − 12.4 7742.9 + − 141.9

Policy 3: Logistic 
Regression (Full 
State)

0.023 (0.022, 0.029) 1637 + − 15.8 311.2 + − 5.8 850.2 + − 9.7 475.6 + _ 8.8 8877.4 + − 97.9

Policy 4: Risk-
Based Policy

0.016 (0.016, 0.019) 1843.7 + − 16.5 346.4 + − 1.4 1121.7 + − 13.8 361.0 + − 20.1 7968.4 + − 110.4

b. 

Fig. 5  Risk sensitivity for k and r0 . Sensitivity of the risk-based policy 
to r0 andk . As r0 increases, risk also increases for a fixed k(a), and as k 
increases, r0 decreases but stabilizes for a fixed r0(b)
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