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Abstract 

Background: In this study, we determine the feasibility of using electronic medical record (EMR) data to determine 
obesity prevalence at the census tract level in El Paso County, Texas, located on the U.S.-Mexico border.

Methods: 2012–2018 Body Mass Index (BMI kg/m2) data from a large university clinic system in was geocoded and 
aggregated to a census tract level. After cleaning and removing duplicate EMR and unusable data, 143,524 patient 
records were successful geocoded. Maps were created to assess representativeness of EMR data across census 
tracts, within El Paso County. Additionally, maps were created to display the distribution of obesity across the same 
geography.

Results: EMR data represented all but one El Paso census tract. Representation ranged from 0.7% to 34.9%. Great-
est representation were among census tracts in and around clinics. The mean EMR data BMI (kg/m2) was 30.1, this is 
approximately 6% less than the 36.0% estimated for El Paso County using the Behavioral Risk Factor Surveillance Study 
(BRFSS) estimate. At the census tract level, obesity prevalence ranged from 26.6 to 57.6%. The highest obesity preva-
lence were in areas that tended to be less affluent, with a higher concentration of immigrants, poverty and Latino 
ethnic concentration.

Conclusions: EMR data use for obesity surveillance is feasible in El Paso County, Texas, a U.S.-Mexico border commu-
nity. Findings indicate substantial obesity prevalence variation between census tracts within El Paso County that may 
be associated with population distributions related to socioeconomics.
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Background
Obesity prevalence has reached an epidemic level across 
the United States, significantly increasing since the 1990’s 
[1–3]. This major risk factor for many chronic health 
conditions, such as diabetes and certain cancers, dispro-
portionately affecting Latino populations [4, 5]. While 
these trends have been well-documented, little success 

has been made in mitigating community or individual 
level risk factors.

Obesity surveillance has been typically conducted 
using the Center for Disease Control and Prevention 
(CDC) programs such as the National Health and Nutri-
tion Evaluation Study (NHANES) and the Behavioral 
Risk Factor Surveillance System (BRFSS) [6, 7]. These 
and other data sources utilize national cross-sectional 
health survey methods to collect data on lifestyle behav-
iors among other health-related metrics. From these 
data sources, food environment, built environment, 
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segregation, poverty and other contextual risk factors for 
obesity have been well-established for Latino and other 
health disparate communities [8–13]. Though this large-
scale study design is highly beneficial for national, state, 
and county level surveillance, it is still limited in provid-
ing insight into context of obesity at a smaller geographic 
scale, i.e. within county or city levels. As place matters 
in the context of an individual’s health, the more spe-
cific the unit of analysis, the better community-based 
prevention initiatives are able to target high rise areas 
within cities and counties [14, 15]. Relying on county-
level data that is available can make prevention efforts for 
under-resourced communities futile, since they provide 
aggregated estimates, not taking into account important 
variations within a county or city.

Classically, surveillance at a more granular level like 
census tracts have been conducted in efforts to contain 
infectious disease spread, such as most recently during 
the COVID-19 pandemic [16]. GIS and other geographic 
tracking technologies have been used to track infectious 
disease within communities across international con-
texts [16]. These technologies have provided infectious 
disease researchers and public health departments on-
the-ground and real-time information that has guided 
intervention and prevention programming to curb 
existing trends within the communities that they serve 
[17, 18]. In some cases, public health departments have 
been able to act on real time information and prevent 
mass exposure to influenza and other viruses. A local-
ized approach such as this applied to the surveillance of 
obesity would allow for more specific, community-based 
interventions [18–20]. This may be particularly helpful in 
areas that have limited resources to conduct wide-scaled 
intervention efforts.

In 2009, the Health Information Technology for Eco-
nomic and Clinical Health (HITECH) Act was signed 
into law as an effort to promote the widespread use of 
EMR in a “meaningful” way. Aside from the clinical and 
organizational advantages, EMR enables more available, 
combined aggregated data across populations leading to 
better, yet not perfect, health outcome surveillance and 
research production that benefits overall society [21–25]. 
Electronic medical records (EMR) is a source for objec-
tive data rather than self-reported data, and, could pro-
vide a better and low-cost obesity surveillance option for 
public health departments looking to provide targeted 
prevention measures.

The purpose of this study is to assess the feasibility and 
applicability of EMR data obtained from university and 
county safety-net outpatient electronic medical records 
to provide census tract-level obesity estimates and dis-
tributions across El Paso County, Texas. El Paso, Texas 
is a unique context in that it is predominantly Mexican 

American (82%), is socioeconomically disadvantage rela-
tive to other cities its size, and has a high prevalence of 
obesity-related diseases 26. This analysis will provide a 
more detailed picture of the distribution of obesity within 
the county, facilitating better targeted efforts to reduce 
obesity.

Methods
Design and setting
2012–2018 adult patient data was extracted from the 
Electronic Medical Records (EMR) systems from Texas 
Tech University Health Sciences Center El Paso Clinics 
and University Medical Center El Paso outpatient clinics 
in El Paso, Texas. Analysis was completed in 2018–2019. 
The data process can be seen in Fig. 1. Raw data for over 
3.2 million observations were cleaned and prepared for 
analysis.

Data preparation
Data cleaning processes are documented in a previous 
paper [27]. Briefly, duplicates and inconsistencies were 
either removed or corrected when possible. Any case with 
unverifiable addresses or incomplete height or weight 
were removed. Finally, EMR-based Body Mass Indices 
that seemed out of range (above 100) were recalculated 
using height and weight or removed completely when 

3,245,526
Raw # of rows

1,435,799
Total Clinic Visits

~330,000
<18 years old

~1,105,335
>18 years old

1,089,952
Clean Data

202,198
Duplicate record IDs s averaged into one pa�ent average

143,524
Unique Individuals

58,674
Uniden�fiable 

addresses

16,020
Data Error

Fig. 1 Breakdown of the data cleaning process. 143,524 unique 
individuals were analyzed from our dataset
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data was missing. Patients were assigned census tracts 
using street addresses. Any unidentifiable addresses were 
removed. Figure  1 provides and overview of the clean-
ing process and how we arrived at 143, 524 participants 
from the 3,245,526 raw case files at the onset of the clean-
ing process. There were a total of 161 possible census 
tracts considered for this analysis. Patient representa-
tion per census tract was determined by a proportion of 
patients per census tract by total census tract population. 
This research was approved by the Texas Tech Univer-
sity Health Sciences Center El Paso Institutional Review 
Board (IRB) for Human Subjects Research. All methods 
and procedures were performed in accordance with the 
IRB guidelines. Since this was a secondary data analysis 
of existing electronic medical records, requirement for 
signed informed consent was waived by the Institutional 
Review Board for Human Subjects Research at Texas 
Tech University Health Sciences Center El Paso.

Analysis
Population representation was estimated using total 
number of patient records divided by total population 
for each census tract. Average Body Mass Index (BMI 
(kg/m2)) for each of the 161 census tracts was calculated 
using patient EMR data. Census tract obesity prevalence 
(BMI (kg/m2) 30 or above) was determined for each of the 
161 census tracts by dividing the percent of patients with 
a BMI of 30 or above by the total number of patients rep-
resented in each census tract. Census tract patient record 
representation and obesity prevalence were entered into 
ArcGIS (ESRI) and mapped for El Paso County.

Results
Figure 2 displays the percentage of census tract total pop-
ulation is represented by the EMR patient records. The 
percent of EMR patients per census tract ranged from 
0.7% to as high as 34.9%. Patients were most represented 
in the Northeast, Downtown/Lower Valley and Far East-
side of El Paso County and in and around clinic catch-
ment areas. Patients were least represented in the Fort 
Bliss area, the large North-Central area of the map. Fort 
Bliss generally provides healthcare on base through Wil-
liam Beaumont hospital, rather than community-based 
clinic. The lack of representation in that area are consist-
ent with what we would expect.

Figure  3 presents EMR record obesity prevalence by 
census tract across El Paso County. Prevalence ranged 
from 26.6% to as high as 57.6%. Census tracts with the 
highest obesity prevalence were located in the Lower Val-
ley, Far Eastside and Northwest El Paso County. This area 
corresponds geographically to areas where Latino ethnic-
ity, poverty and immigrant concentration is the highest. 
On the other hand, the Westside of El Paso County had 

the pocket with the lowest prevalence, this area is also 
the most affluent of the County.

Discussion
Latinos are disproportionately impacted by obesity. 
Strategies for curbing high prevalence rates among Lati-
nos have generally been informed by data collected at a 
state or federal level. The continued focus on surveillance 
at such a high level of aggregation has provided little 
insight into city or county risk factors that are action-
able in addressing current obesity trends. This study 
provides evidence of feasibility of electronic medical 
record obesity data as a tool to surveil population-level 
obesity within small geographic units. Findings from this 
study also demonstrate the uneven distribution of obe-
sity within small units of a city or county which is not as 
well represented in national surveillance data at a county 
level.

Latino communities have been described as obesogenic 
by multiple previous studies [28, 29]. However, most of 
these studies have used large-scale sampled data that 
often only represent urban residing populations or ethnic 
enclaves within a heterogeneous ethnic structure. This 
approach has limited the ability to infer factors respon-
sible for obesity in communities where Latinos are the 
majority. El Paso County Texas is predominantly Mexi-
can American-Latino. While the overall estimated preva-
lence of obesity is 34.9% based on BRFSS estimates, this 
study’s findings suggest that there may be substantial 
variation of the degree of obesity that may co-vary with 
ethnic concentration and socioeconomic status by cen-
sus tract (cite other paper). Our study’s findings suggest 
that known areas of El Paso County that are more heavily 
concentrated with Latinos, immigrants and lower aver-
age socioeconomic status, may also have a higher bur-
den of obesity, relative to the 34.9% overall estimate from 
the BRFSS. This variation may misrepresent that extent 
of obesity in areas that may be more heavily populated 
with Latinos at the same time as being socioeconomically 
diverse. Our research findings are based on analysis using 
EMR from a university-base and county outpatient clinic 
system and may not represent the true county obesity 
prevalence, since selection in insurance status or pres-
ence of chronic conditions may have biased our findings. 
Therefore, it would be important to replicate this analy-
sis using a pool of EMR from multiple providers. This 
is an important direct for research given the high bur-
den of obesity in Latino communities and limited effec-
tiveness in curbing trends through currently available 
interventions.

In this paper, we demonstrated a high feasibility of 
using a EMR data, to analyze health outcomes across 
a large population. EMR databases allow for quick 
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extraction and analysis of large quantities of data, and do 
not require an abundance of resources and manpower, 
as discussed in Funk et  al.’s study [17]. We were able to 
analyze nearly a fifth of the population -143,524 unique 
adults in the El Paso area of over 800,000 adults 26. While 
there are shortcomings still with respect to selection bias, 
this paper’s intent was to demonstrate feasibility, poten-
tial use in disease surveillance in areas that otherwise 
lack this capacity, and provide basis for future surveil-
lance and intervention work.

Using readily available BMI (kg/m2) data within univer-
sity-based and county health clinics allowed us to assess 
the distribution of obesity within El Paso County. Few 
studies have previously looked at obesity prevalence with 
small geographic units such as cities or counties, which 

is suggested by Jia et al. [14]. Roth et al. [10] successfully 
explored linking EMR and community data with a large 
sample size to study factors associated with obesity, but 
used a zip-code level of analysis. The study by Shafiri 
et al. [31] is one of the few studies that used both EMR 
for a large sample and the census tract level for their 
analysis of the built environment and ethnic disparities 
in childhood obesity. Funk et  al. demonstrated the ease 
of studying over 380,000 patients from a university-based 
healthcare system and showed that the results are com-
parable to NHANES [17]. Our study was an attempt to 
replicate this approach in a context of disadvantage and 
high ethnic homogeneity. The previous finds from Shafiri 
et  al., and Funk et  al. coupled with the results from the 
present study demonstrate the feasibility of EMR use in 

Fig. 2 Percent of census tract total represented by EMR patient records
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estimating obesity and other chronic diseases at a much 
more granular level than currently available national 
estimates at a county level. Future studies are needed to 
determine the reliability of EMR data to estimate popula-
tion-level obesity prevalence. The public health implica-
tions for this type of use are not only limited to obesity, 
but to other related health conditions traceable within a 
patient’s medical record.

This study has a number of strengths. First, the EMR 
data represented approximately 21% of the overall El 
Paso population. In some census tracts, the proportion 
was close to 35%. Secondly, this secondary data source 
has measured data and not self-reported data like many 
similar studies. Finally use of existing medical records is 

a cost effect way to conduct surveillance for obesity and 
other health outcomes. The findings from this study have 
a number of limitations that should be noted. First, EMR 
data were only obtained from an university clinic system 
clinics and while in many cases the patients represented 
a large proportion of a given census tract, it may not rep-
resent fully the El Paso County population. For exam-
ple, there was variation in the percentage of census tract 
population the EMR represented from as low as 0.7% to 
as high as 35%. It is likely in census tracts where repre-
sentation was low, there may be substantial variance in 
the data that may contribute to over or underestimate 
of obesity. Additionally, patients that visit the clinics on 
a regular basis, may be sicker and therefore, we may be 

26.6 - 30.0

30.0 - 35.0

35.0 - 40.0

40.0 - 50.0

50.0 - 57.6

Fig. 3 % EMR patient records with 30 or greater BMI (kg/m2) by census tract
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overestimating the true census tract-level obesity preva-
lence. This study was intended to demonstrate feasibil-
ity in a community that is underrepresented and carries 
a high burden of chronic diseases related to obesity [29]. 
Future work using multiple EMR data sources, would 
reduce potential bias and improve county-wide esti-
mates. Furthermore, analysis in other Latino dominate 
communities would need to be conducted to determine 
feasibility and applicability in other settings.

Conclusions
Use of EMR data for surveillance of obesity prevalence 
within El Paso County, TX is feasible and may provide a 
better snapshot of the distribution of obesity within the 
county than BRFSS estimates. With the potential of using 
EMR data for obesity and other chronic conditions, pub-
lic health officials have an opportunity to engage in preci-
sion surveillance, identify subpopulations who might be 
at greatest risk. Including population data such as edu-
cation, health insurance, mean family income, and other 
sociodemographic factors could lead to more effective 
targeted prevention efforts. However, further investiga-
tion is needed to determine data quality of these fields 
in the available EMR databases. This study provides evi-
dence of its potential utility in understanding the dis-
tribution of obesity within a Latino community and is a 
great starting point for further examination of commu-
nity risk factors for obesity.
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