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Abstract 

Background:  Semantic similarity is a valuable tool for analysis in biomedicine. When applied to phenotype profiles 
derived from clinical text, they have the capacity to enable and enhance ‘patient-like me’ analyses, automated coding, 
differential diagnosis, and outcome prediction. While a large body of work exists exploring the use of semantic similar-
ity for multiple tasks, including protein interaction prediction, and rare disease differential diagnosis, there is less work 
exploring comparison of patient phenotype profiles for clinical tasks. Moreover, there are no experimental explora-
tions of optimal parameters or better methods in the area.

Methods:  We develop a platform for reproducible benchmarking and comparison of experimental conditions for 
patient phentoype similarity. Using the platform, we evaluate the task of ranking shared primary diagnosis from uncu-
rated phenotype profiles derived from all text narrative associated with admissions in the medical information mart 
for intensive care (MIMIC-III).

Results:  300 semantic similarity configurations were evaluated, as well as one embedding-based approach. On aver-
age, measures that did not make use of an external information content measure performed slightly better, however 
the best-performing configurations when measured by area under receiver operating characteristic curve and Top 
Ten Accuracy used term-specificity and annotation-frequency measures.

Conclusion:  We identified and interpreted the performance of a large number of semantic similarity configurations 
for the task of classifying diagnosis from text-derived phenotype profiles in one setting. We also provided a basis for 
further research on other settings and related tasks in the area.
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Background
Analysis of natural language in clinical settings facilitates 
insight into relevant biomedical entities, which in turn 
can lead to improved outcomes for patients [1, 2]. Bio-
medical ontologies are frequently employed as resources 

in natural language processing (NLP) analyses, aiding in 
the resolution and reduction of ambiguity through their 
provision of controlled domain vocabularies and consen-
sus definitions of biomedical concepts [3].

Moreover, linking instances of biomedical concepts 
mentioned in text with ontology classes produces seman-
tic representations of entities described by those texts. 
These representations facilitate secondary analyses that 
make use of background knowledge encoded in or linked 
by ontologies. One such method for semantic analysis is 
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semantic similarity: a class of methods that leverage the 
structural features of ontologies to calculate numeri-
cal measures of similarity between classes or sets of 
classes [4, 5]. These methods have been widely explored, 
amongst others, for prediction of protein–protein inter-
action [6], disease gene prioritisation [7, 8], and rare dis-
ease diagnosis [9].

While semantic similarity has been widely explored 
for many tasks in biomedicine, it has only more recently 
been applied to phenotype profiles text-mined from 
clinical narrative text. One work used similarity of phe-
notypes text-mined from literature to characterise the 
human diseasome [10]. Another investigation developed 
Doc2HPO, which uses a hybrid approach of concept 
recognition with expert curation to produce phenotype 
profiles that can be analysed using several variant prior-
itisation methods [11]. Another work explored the use of 
uncurated text-derived phenotypes for differential diag-
nosis of common diseases [12].

Benchmarking tasks have been defined for the compar-
ison of semantic similarity measures in several biomedi-
cal spaces. For example, the collaborative evaluation of 
semantic similarity measures (CESSM) task supports col-
laborative comparison of semantic similarity approaches 
for tasks involving the gene ontology (GO) [13]. In the 
clinical space, experiments were performed to evaluate 
effectiveness at measuring similarity between classes in 
medical terminologies [14, 15]. To our knowledge, how-
ever, there are no such evaluations pertaining to pre-
dictive clinical tasks using patient phenotype profiles, 
despite this being an emerging area of application for 
semantic similarity. Nor are we aware of any evaluations 
for clinical semantic similarity tasks using text-derived 
phenotype profiles. There is, therefore, a lack of knowl-
edge surrounding best practices and configurations for 
this area of problems. Implementation of comparisons 
are also difficult, since there are no well-defined tasks or 
frameworks that can be easily used for benchmarking, or 
infrastructure surrounding these uses, even though such 
approaches have proven useful in other areas (e.g. with 
Gene Ontology).

Previous work comparing semantic similarity methods 
on a single hierarchical medical terminology, SNOMED-
CT [16], revealed poor agreement between methods [15]. 
Other works comparing semantic similarity methods for 
different tasks using GO found that different methods 
were more suitable for different tasks [5]. Differences in 
performance may also arise between different ontologies 
due to differing design principles, structure, breadth, or 
complexity.

Furthermore, the use of semantic similarity on large 
text-derived phenotype profiles is challenging. In one 
recent work, concept recognition performed on clinical 

narrative associated with 1000 medical information 
mart for intensive care (MIMIC-III) admissions with the 
human phenotype ontology (HPO) [17] producing 43,953 
separate annotations, with a mean of nearly 44 annota-
tions per admission [18]. Other work has shown that 
greater annotation size leads to bias in semantic similar-
ity calculations, in the form of greater similarity between 
entities with more annotations, regardless of whether 
they are more biologically related [19]. These findings 
reveal the need for investigations comparing semantic 
similarity methods for clinical tasks using phenotype pro-
files, and for clinical tasks using uncurated text-derived 
phenotype profiles. Direct clinical uses for these meth-
ods include variant prioritisation, patient stratification, 
and differential diagnosis for rare and common diseases; 
thus knowledge surrounding the best configurations may 
inform improvements to developments or implementa-
tions of these systems. For example, similarity-driven 
approaches from Monarch [20], PhenomeNET [8], Phe-
nodigm [21], and Exomiser [22] have been used to pri-
oritize variants in patients with rare disease. Importantly, 
using semantic similarity for clinical tasks or to charac-
terise population health has real world consequences 
and direct translational impact not directly seen in other 
semantic similarity tasks such as protein–protein inter-
action or gene function prediction. Because of the impor-
tance of evaluating positive and negative predictive value 
in clinical cases, a reproducible, patient-focused bench-
mark of similarity measures is acutely needed.

Our work contributes to these proposed explora-
tions by establishing a platform for evaluating relevant 
tasks, and by performing, and presenting the results 
of, one such exploration. In this work, we describe the 
development of a platform for reproducible and repeat-
able evaluation of different experimental conditions for 
comparison of patient phenotype profiles. We use this 
platform to compare and report upon performance of 
different semantic similarity methods for predicting 
shared primary patient diagnosis using uncurated text-
derived phenotype profiles, and report upon the results 
of this investigation, identifying best-performing meth-
odological configurations. We anticipate that our results 
and platform will inform future approaches employing 
semantic similarity across a number of tasks including 
patient/disease stratification, multimorbidity analysis and 
clustering, pathogenic variant prioritisation, and differ-
ential disease diagnosis.

Semantic similarity
Semantic similarity measures compute a quantitative heu-
ristic of similarity between multiple concepts. Determining 
similarity between concepts is useful for many biomedical 
and non-biomedical tasks, and can be constructed as an 
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unsupervised machine learning problem. Similarity can 
be calculated between words and sentences in natural text 
[23], nodes in graphs, or through logical relations in ontol-
ogies or related constructs [5]. All measures, regardless of 
knowledge domain, require a particular representation that 
can be computed; while many modes of semantic similarity 
can be more loosely defined upon graphs or other meth-
ods, we will focus on ontology-based methods.

Similarity can be computed for classes, annotated enti-
ties, or individuals in biomedical ontologies, and these 
measures are most often defined through some considera-
tion of the ontology structure as a directed acyclic graph, 
most frequently representing the subsumptive taxonomy 
of the ontology once classified by a reasoner [4]. Ontology 
graphs are composed of classes of entities (e.g., a pheno-
type) and relational edges between entities. We can repre-
sent this by A ⊑ B , where class B is a more specific subclass 
of class A. This expression assumes a subsumptive is_a 
relation. While other relations often exist, ranging from 
part_of and temporally_related_to, is_a relations and their 
enforced subsumptive nature are exclusively used by many 
semantic similarity measures.

Pairwise similarity methods calculate similarity between 
a single pair of terms in a biomedical ontology. For exam-
ple, the SimRada measure is defined in terms of the shortest 
path between two given nodes in a an ontology graph:

where distSP is the shortest path between two nodes in 
the the graph [24]. This measure, and others like it, rely 
on the structure of the graph alone and do not take into 
account the relational nature of ontological structure: 
if the distance between two classes is similar to that 
expected of two arbitrary unrelated classes, this will not 
be captured. Information content measures can partially 
mitigate this problem. An information content measure 
is a method that determines how specific or informative 
a particular term is. These can also be structural, such 
as in the case of the Zhou et al. [25] method, which uses 
a measure of how deep a term is in the ontology graph, 
or corpus-based, such as the Resnik [26] method, which 
uses a measure of how likely a term is to appear in a cor-
pus. This is simply defined as:

with

where I is the full set of annotations (e.g. patient-pheno-
type associations) and I(x) is the subset of annotations 

(1)SimRada(x, y) =
1

distSP(x, y)+ 1

(2)ICResnik(x) = − log p(x),

(3)p(x) =
|I(x)|

|I |

linked to x or its subclasses. Each pairwise similarity 
method that admits an information content measure 
will use it in a different way, such as being defined as the 
information content of the most common ancestor of the 
two input classes. A prime example is again from Resnik 
[26], where:

where MICA is the most informative common ancestor 
of both x and y.

Phenotype profiles, however, generally contain more 
than one phenotype to describe an entity. To calcu-
late semantic similarity between two sets of ontology 
classes, groupwise measures can be employed. These 
are further delineated into two groups. Direct group-
wise measures define their own methods of directly 
calculating similarity between two sets of classes. Indi-
rect groupwise measures, however, rely on a pairwise 
method given as a parameter, employing it as a con-
stituent of the method. For example, the Simmax indi-
rect groupwise measure compares each term in the two 
input sets using a given pairwise similarity method, and 
then selects the greatest score as the result:

A common groupwise approach not relying on pairwise 
similarity is the Jaccard index between the sets of entities 
to which patients may be annotated:

which relies solely on the annotation corpus.
Recent developments in semantic similarity have 

taken advantage of diverse graph substructures via 
syntactic embeddings and representation learning. 
In DeepWalk, relations between entities within ontol-
ogy graphs can be explored by random walks, in which 
walks of a given length are taken between nodes/classes 
in the graph to generate “sentences” [27]. Embeddings 
are then created from these sentences, via Word2Vec, 
hearkening back to the beginnings of semantic simi-
larity as applied to a corpus of written text [28]. The 
correlation of these embeddings then represents the 
similarity of entities. Extensions of these approaches 
have incorporated ontology-specific structure itself 
[29], effectively deriving new measures of semantic 
similarity. However, the non-deterministic nature of 
these embeddings and the ubiquity of more formalized 
measures of semantic similarity leave us to focus on 
traditional methods in wider use.

(4)SimResnik(x, y) = IC(MICA(x, y))

(5)Simmax(A,B) = MAX1≤i≤m,1≤j≤nSim(Ai,Bj)

(6)Jaccard(A,B) =
|A

⋂
B|

|A
⋃

B|
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Methods
We developed a framework with which to perform repro-
ducible semantic similarity experiments using HPO-
based phenotype profiles, using the MIMIC-III dataset 
[30]. While the software can be used to perform experi-
ments with phenotype profiles of any etiology, for the 
purposes of our investigation we developed a workflow 
that creates uncurated text-derived phenotype profiles 
for evaluation. The modular nature of the implementa-
tion allows for alternative means of producing or import-
ing phenotype profiles or running similar experiments, 
making it possible to use it as a basis for exploration of 
other outcomes, datasets, modalities, or related tasks. 
The platform is implemented in the form of Jupyter 
Notebooks containing executable code for repeating, 
modifying, and evaluating the experiments. The software 
is available, with instructions, from https://​github.​com/​
reali​ty/​mimpr​ed. The overall experimental methodology, 
visualised in Fig. 1, centres around sampling admissions, 
obtaining the associated clinical narrative text, produc-
ing phenotype profiles, then calculating and evaluating a 
large set of semantic similarity methods using a common 
interface. The subsequent methods subsections describe 
these steps in detail.

Sampling admissions
Our evaluation employed the MIMIC-III database [30]. 
MIMIC is a freely available database of healthcare data 
describing nearly 60,000 visits to a critical care clinic at 
Beth Israel Deaconess Medical Center in Boston, Massa-
chusetts. It provides a wealth of structured and unstruc-
tured data concerning those visits, including clinical 
narrative text. Diagnoses for patients are also provided in 
the form of ICD-9 codes, which were produced following 
visits by professional curators.

We sampled 1000 admissions, each describing a single 
patient visit, from the MIMIC dataset, collecting their 
associated texts together into one file per patient visit. 
Texts fall under different categories, such as discharge 
notes, nursing notes, and test results. In this experiment, 
we concatenate all notes from all categories, to provide a 
baseline. Future work could consider comparing different 

groups of note categories to evaluate any potential effect 
on performance. We also performed pre-processing to 
collapse multiple line breaks into sentence breaks, and 
otherwise to improve formatting of the files. Finally, we 
associated each admission with its primary diagnosis 
given by structured coding data.

Vocabulary creation and creation of phenotype profiles
We then used the Komenti semantic text mining frame-
work [31] to create a vocabulary from all non-obsolete 
terms in the Human Phenotype Ontology (HPO), which 
describes phenotypic abnormalities in humans [17]. 
Komenti was then applied annotate the texts, identifying 
HPO terms from the vocabulary in the clinical narrative 
associated with each admission. The set of HPO terms 
identified with each admission constitutes that the phe-
notype profile for that admission.

Semantic comparison of phenotype profiles 
and evaluation
We subsequently created sets of similarity scores for 
each pairwise combination of phenotype profiles derived 
from the text associated with the 1000 sampled admis-
sions. To calculate the semantic similarity scores, we 
used the Semantic Measures Library toolkit (SML) [32], 
and we explored every available combination of informa-
tion content, pairwise, and groupwise similarity measure 
available within the library. The SML toolkit was cho-
sen because it includes a large range of reference imple-
mentations for rule-based semantic similarity measures. 
Moreover, it provides a common interface for those 
measures under a single abstraction, ensuring that results 
are fully comparable, and that each measure does not 
require separate implementation. However, this excludes 
newer representation learning approaches, or any other 
methods not implemented in the toolkit. We further 
explore this choice in the discussion. We also separately 
perform the experiment on one representation learning 
approach, OPA2Vec [33], which is compared with results 
derived from SML measures.

Since there are distinctions between pairwise meth-
ods that may or may not admit information content 

Fig. 1  Overall description of the experimental methodology. These processes are split into separate notebooks, forming modules that can be 
modified and replaced, to extend the framework to explore other methods, outcomes, or settings

https://github.com/reality/mimpred
https://github.com/reality/mimpred
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measures, and groupwise measures that may or may 
not admit pairwise similarity measures, we had to iden-
tify the full set of combinations of available methods. In 
particular, we evaluated combinations of every indirect 
groupwise measure and every pairwise measure, as well 
as an additional combination of each IC-using pairwise 
measure with each IC measure. This led to 300 total 
experimental settings. We encoded these configurations 
into a set of XML files that can be used as parameters for 
the Semantic Measures Toolkit.

Each experimental setting, defining a method of meas-
uring similarity between phenotype profiles, produces a 
pairwise similarity matrix when used to compare every 
phenotype profile with every other phenotype profile. 
Subsequently, each of these was was transformed into 
a set of vectors that associated the semantic similar-
ity score for each pair of admissions with the outcome: 
whether those admissions shared a primary coded diag-
nosis. This process is described in Fig. 2.

We used the association between pairwise admis-
sion scores and shared diagnosis to evaluate how pre-
dictive those scores were of shared primary admission 
diagnosis, indicated by the associated ICD-9 codes. We 
evaluated performance using Area Under the receiver 
operating characteristic Curve (AUC), Mean Reciprocal 
Rank (MRR), and Top Ten Accuracy (A@10: the percent-
age of patients for whom the correct diagnosis was in the 
top ten most similar entities). One previously identified 
limitation of analyses that compared patient phenotype 
profiles for prediction of shared diagnosis was that no 
correct diagnosis can be found for an admission if there 
is no other admission in the set with a matching primary 
diagnosis [34]. To identify whether, and to what extent, 

a lack of matching diagnoses for any admissions in our 
sample negatively affected scores, we also evaluated a 
modified MRR metric that removed values of MRR that 
were 0, since values of 0 indicate there were no admis-
sions with a matching primary diagnosis (and therefore 
the correct label did not appear at all in the ranking). We 
also calculated parametric .95 confidence intervals for 
AUC and A@10 measures. Correlation between evalu-
ation metrics was calculated using the Pearson method. 
Using these evaluative measures, we interpret the results 
and compare different methods and classes of methods 
with each other, and provide discussion and analysis sur-
rounding potential causes for difference.

Results
We created phenotype profiles for 1000 admissions from 
MIMIC-III, by identifying HPO terms in their clini-
cal text narrative. We then created semantic similarity 
matrices for these phenotype profiles using each avail-
able combination of pairwise, groupwise, and informa-
tion content measure. A break-down of different SS and 
IC method categories is given in Table 1. We did not use 
two methods listed in the SML documentation. The first 
was the Tversky information content measure [35], which 
could not be found in the SML implementation. The sec-
ond was the Schlicker 2006 measure [36], which requires 
an additional hyperparameter, and was excluded on that 
basis, because our experimental design does not allow 
for hyperparameter optimisation (and this would require 
further data splitting). This led to a loss of 60 measure 
combinations, and we therefore obtained results for 300 
measure combinations. Using these similarity matrices, 

Fig. 2  A sample of an example output of the semantic similarity process. On the left is a semantic similarity matrix, in which every phenotype 
profile associated with a patient visit has been compared with every other one. The result is a matrix of similarity values. To evaluate the matrices, 
we then convert these into a ranked list of similarity values for each patient visit, which also includes whether or not the two patient visits being 
compared share a primary diagnosis. The latter structure is used to create our evaluation scores (e.g. AUC). In the experiment described in this 
article, this process is repeated once for every combination of semantic similarity measure being explored, since each will produce a separate 
similarity matrix
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we evaluated how predictive the semantic similarity score 
was of shared primary diagnosis.

Figure 3 shows the distribution of scores for each eval-
uation metric. In the case of AUC, shown in Fig.  3a, a 
majority of algorithms fall between 0.5 and 0.6, indicating 
performance approaching that of a random classifier, and 

thus that there is no signal in these methods. Interest-
ingly, all other metrics show a median grouping of scores 
above what would be expected for a completely random 
classifier, as seen in Fig.  3b–d. This indicates measures 
that performed poorly by AUC, may nevertheless pro-
duce at least one highly ranked correct match, despite 
overall scoring leading to very poor performance. Cor-
rect matches appearing at high ranks by random chance 
may contribute to baseline performance for the ‘first cor-
rect answer’ measures, though in all cases the appearance 
of scores that fall far below the primary cluster indicates 
against this.

Nevertheless, ranking of measures correlated mostly 
strongly between evaluation measures, which we char-
acterised using Pearson correlation. Between AUC and 
A@10 scores this was 0.68 (p value < 2.2e–16), while 
between AUC and MRR it was 0.6 (p value < 2.2e–16), 
and MRR with A@10 was 0.97 (p value < 2.2e–16). 
Despite these correlations, there are significant excep-
tions, particularly at the top end of the scores. Table  2, 
which lists the top three settings for each evaluation 

Table 1  Breakdown of the different categories of semantic 
similarity measures available in the SML Toolkit

Category Type of method Count Used

Pairwise similarity Structural 7 7

Information content 10 8

Groupwise similarity Direct 19 19

Indirect (Pairwise required) 5 5

Indirect (IC only required) 1 1

Information content Structural 5 5

Corpus 1 1

Total 48 46

Fig. 3  Distribution of scores for all measure combinations evaluated, using different performance measures. The distribution of MRR-0 and MRR-NA 
are the same, since these scores have a static relationship
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measure, confirms this. The GIC (Graph Information 
Content) measure [37], which admits an information 
content measure, accounts for all three top measures by 
A@10, and the top two measures by MRR. The particular 
information content measure makes minimal contribu-
tion to differences in performance here, with all settings 
being nearly identical by all evaluation measures. How-
ever, the AUC of settings involving GIC are substantially 
lower, at an average of 0.67, than the best performing set-
ting by AUC, of 0.81. The two GIC settings that lead the 
MRR rankings also have AUC values much lower than the 
Bader method that appears in third, and which otherwise 
had identical metrics, excepting a slightly reduced A@10 
value. Inversely, however, the best performing measures 
by AUC suffer from reduced values of the other metrics, 
which can lead to substantially different results in a prac-
tical sense; for example, the best performing measure by 
A@10 has a matching patient diagnosis in the top ten in 
8% more cases than does the best setting by AUC.

All three best performing methods by AUC used the 
AVG method of indirect groupwise comparison, which 
averages the result of comparisons made with its associ-
ated pairwise method. This could reflect the greater abil-
ity of the average method to encode information from 
large sets of annotation profiles. This is confirmed by the 
average metric values shown in Table  3 where the best 
measure by AUC was the AVG, although MRR and A@10 
found greater average values through direct measures, 
which is also in accord with the top-scoring methods 
shown in Table 2.

Table  4 shows average scores for each information 
content measures, compared with the average scores 
for methods that did not admit IC methods. This shows 
that non-IC methods performed better on average 
by all methods, and with clear separation in all cases. 
Despite this, we can see another example of deviation 
from average trends at the top end of performance by 

noting that the best-performing methods by all three 
metrics used information content measures.

We also tested one example of an embedding based 
approach, OPA2Vec. The AUC was 0.67 (0.64–0.7), the 
MRR-0 was 0.21, and the A@10 was 0.37 (0.34–0.4). 
This places it at a medium level of performance with 
respect to the full set of methods evaluated. The MRR 
is slightly higher than averages for all groupwise meas-
ures, while AUC falls in the middle section, with BMA 
and BMM, but below AVG and direct measures. It does 

Table 2  Top algorithms by AUC, MRR, and A@10

Since MRR-NA and MRR-0 are statically dependent, the top algorithms for both are equivalent, and so only ‘MRR-0’ is listed here

By Method AUC​ MRR-0 A@10

AUC​ AVG (GW) + Resnik (PW) + Resnik (IC) 0.81 (0.79–0.83) 0.19 0.34 (0.31–0.37)

AVG (GW) + Jaccard (PW) + Zhou (IC) 0.8 (0.78–0.82) 0.19 0.32 (0.29–0.35)

AVG (GW) + NODE_SIM (PW) + Zhou (IC) 0.8 (0.78–0.82) 0.18 0.31 (0.28–0.34)

MRR GIC (DGW) + Zhou (IC) 0.68 (0.65–0.71) 0.24 0.41 (0.38–0.44)

GIC (DGW) + Seco (IC) 0.68 (0.65–0.71) 0.24 0.41 (0.38–0.44)

Bader (DGW) 0.77 (0.74–0.8) 0.24 0.4 (0.37–0.43)

A@10 GIC (DGW) + Resnik (IC) 0.68 (0.65–0.71) 0.24 0.42 (0.39–0.45)

GIC (DGW) + Sanchez (IC) 0.67 (0.64–0.7) 0.24 0.42 (0.39–0.45)

GIC (DGW) + Min (IC) 0.67 (0.64–0.7) 0.23 0.42 (0.39–0.45)

Table 3  Average performance per groupwise measure

Bold indicates the emboldened figure in each column describes the greatest 
score for the relevant evaluation metric

Groupwise 
method

AUC​ MRR-NA MRR-0 A@10

MAX 0.52 0.19 0.13 0.22

MIN 0.51 0.18 0.12 0.19

BMA 0.68 0.29 0.19 0.33

BMM 0.68 0.22 0.14 0.28

AVG 0.76 0.24 0.16 0.28

Direct 0.71 0.31 0.20 0.36

Table 4  Average performance of information content measures 
versus those that did not use information content

Bolded entries in each result column indicate the best-performing method by 
that measure

IC method AUC​ MRR-NA MRR-0 A@10

Resnik 0.62 0.23 0.15 0.26

Zhou 0.62 0.22 0.14 0.25

Seco 0.62 0.22 0.14 0.25

Sanchez 0.63 0.22 0.14 0.25

Max 0.63 0.22 0.14 0.25

Min 0.63 0.22 0.15 0.26

Non-IC 0.67 0.27 0.18 0.32
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not appear amongst best performing measures for any 
metric.

Discussion
Our experiments revealed a wide range of performances 
associated with combinations of methods for similar-
ity-based prediction of shared primary diagnosis from 
text-derived phenotypes, measuring between very poor 
and good. Despite an overall strong correlation between 
performance measures, the best-performing methods 
differed depending on the evaluation metric. This can 
be accounted for by considering what the metrics meas-
ure. MRR measures, on average, the position of the first 
matching admission for each admission, A@10 measures 
the percentage of admissions with a matching diagnosis 
in the top ten most similar admissions, and AUC meas-
ures the overall ranking of all matching pairs of admis-
sions, and their position relative to non-matching pairs. 
Indirect groupwise measures favoured AUC, implying 
that these produce better overall rankings of shared diag-
noses, while direct groupwise measures favoured MRR 
and A@10, showing that these methods are better for 
producing highly ranked first matches.

These results provide insight that could, at least in 
our configuration, be used to inform interface design 
and interpretation of results in practical applications of 
semantic similarity to this problem. Methods perform-
ing better on MRR and A@10 metrics may be better for 
direct use by humans, since these are more likely to pro-
duce highly ranked correct matches. On the other hand, 
hybrid approaches that make secondary use of for com-
putation of diagnosis may benefit from measures that 
perform better by AUC, since aggregated information 
from multiple matches may be synthesised for improved 
prediction. Moreover, the AUC measure is derived from 
similarity score rankings that are calculated globally for 
all admission pairs, rather than per-admission (as A@10 
and MRR are). This means that AUC considers similar-
ity score rankings in global context. As such, it takes into 
account that while incorrect pairs may be highly ranked 
in the context of a single admission, the overall ranking of 
the pair may be appropriately low. This helps to measure 
the negative predictive power of the approach through its 
ability to express a low score, where a good match cannot 
be found. Use of this information in a practical setting 
would require further development, however, such as the 
addition of a likelihood ratio or percentage based on a 
suggestion’s global ranking. However, since these obser-
vations could be a feature peculiar to the dataset, or to 
particular experimental conditions (such as text-derived 
profiles), additional work should explore other datasets 
to confirm.

By AUC, settings involving the AVG indirect group-
wise measure performed best, while the other two met-
rics favoured GIC. These methods are in fact relatively 
similar, with GIC being defined by the average infor-
mation content of the intersection of terms in the con-
sidered sets [37], and AVG being defined by the average 
result of pairwise comparisons between all terms in the 
two sets. The major difference between these methods is 
that GIC considers only exact term matches between the 
two sets of terms, while AVG admits pairwise methods 
that measure similarity between individual terms, such 
as through their most informative common ancestor, and 
not requiring an exact match (which is the case for the 
best performing case, using Resnik). This could account 
for the difference in performance measured by different 
metrics, as admission pairs with many exact matches 
would be very highly ranked, while admissions with simi-
lar, but not exactly matching, phenotypes, will be lowly 
ranked in favour of pairs with exactly matching but irrel-
evant phenotypes (for example, those which are common 
in the corpus, such as ‘pain’). As such, GIC may produce 
highly ranked correct answers from pairs where there are 
an abundance of exactly matching phenotypes, but suf-
fer in cases with fewer exact matches, leading to a lower 
AUC score. This is an interesting result, that highlights 
the respective benefits of alternative methodological 
choices. It is possible that further investigation could be 
undertaken to identify whether a synthesis of exact and 
similarity-based methods of semantic similarity could be 
used to create an approach that combines their virtues. 
Perhaps, making use of both a local ranking and global 
ranking, derived from different similarity methods, could 
lead to a superior method.

The finding that AVG was the best performing indirect 
groupwise measure by AUC conflicts somewhat with 
findings for applications to other problems, particularly 
in relation to genetics and variant prediction [5].

In the case that text-derived phenotype profiles, pro-
duced using concept recognition on clinical narrative, 
contain erroneous annotations of concepts from irrel-
evant or incorrectly identified mentions of biomedi-
cal concepts, information content measures may aid in 
down-weighting these uninformative associations. For 
annotation frequency methods, this is because more 
frequently appearing annotations are down-weighted 
proportional to the frequency of their appearance. For 
example, if “allergies” is annotated in every note as a field 
name, whether an admission has any relevant allergies 
or not. Term specificity measures evaluate how specific 
a term is in the ontology used for comparison using its 
subsumptive hierarchy, which may benefit from a rela-
tionship between term generality and likelihood of an 
uninformative and non-distinguishing mention. For 



Page 9 of 12Slater et al. BMC Medical Informatics and Decision Making           (2022) 22:33 	

example, the general term “allergies” is more likely to 
appear in a note erroneously, than a very specific allergy, 
such as ’allergic conjunctivitis.’ Despite average values 
for performance being greater for non-IC measures, the 
best performing measures overwhelmingly involved IC 
measures, which is in accord with other findings and 
applications. The average performance of all informa-
tion content measures was almost equivalent, across 
annotation-frequency and term-specificity approaches, 
showing that, in our setting, there is no overall advan-
tage to either method. Meanwhile, overall top methods 
showed that the annotation-frequency method, Resnik, 
performed slightly better than term-specificity methods 
when measuring via AUC and A@10, while best perform-
ing methods by MRR used term-specificity (and included 
one non-IC method).

The significance of the difference between MRR-NA 
and MRR-0 values is that the MRR-NA value shows 
us what the MRR value would be if every patient had a 
match. That these values are much greater, implies that 
the MRR values are being negative impacted by admis-
sions without a matching admission (one that shared 
a primary diagnosis). This, in turn, implies that a larger 
sample size of patients may improve the MRR-0 value 
close to the MRR-NA value, since there would be fewer 
unmatched admissions.

We also tested the setting that was used in our previ-
ous work, that is the combination of Resnik pairwise, 
BMA, and Resnik IC [34]. In this experiment, this yielded 
an AUC of 0.73 (0.7–0.76), and an MRR-0 of 0.23, lower 
than the previously reported results of 0.77 and 0.42, 
respectively. We believe this to be caused by patient 
selection: in the previous experiment, admissions were 
limited to those with a primary diagnosis that contained 
a direct mapping in the disease ontology (DO), to facili-
tate exploration of differential diagnosis with DO dis-
ease profiles. As such, we can conclude that the results 
reported in that paper are optimistic with respect to 
the full set of diseases described in MIMIC. In addition, 
these results show that improved performance may have 
been obtained in this experiment by using AVG as the 
indirect groupwise measure, instead of BMA.

Future work and limitations
Since our work only tests one outcome, one ontology, 
and one dataset, the amount to which the results and 
interpretation can be extrapolated is limited. However, 
our work also also provides a framework for more eas-
ily evaluating additional experimental configurations and 
problem applications. It would be possible to introduce 
different methods of producing text-derived phenotype 
profiles, curating those profiles, or evaluating predic-
tion of different outcomes, as well as using different 

ontologies and datasets. There are, however, particular 
challenges to providing benchmarkable tasks in the area 
of healthcare applications, since datasets are typically 
private for ethical reasons. However, other datasets could 
be tested locally using modifications to our pipeline, and 
published for comparison. Other datasets, such as OMIM 
[38] or those provided using the PhenoPackets (https://​
github.​com/​pheno​packe​ts) schema, could be used to 
evaluate performance on structured datasets. While our 
investigation compares ability to classify primary diagno-
sis, which we use as an indicator of success in measuring 
true semantic similarity, it does not go further to evaluate 
grouping on additional factors our outcomes. These tasks 
require further investigation and development of tai-
lored methods. We hope that the experimental platform 
described in this work will form the basis for evaluation 
studies, in a manner similar to those previously described 
for tasks involving genes and gene products [5].

One such area that the experimental platform could 
be turned towards, is the prediction of patient diagnosis 
through comparison with disease profiles, rather than 
with other patients. In our previous work, we identified 
that prediction of patient diagnosis from text-derived 
phenotypes was best when using SS to compare patients 
to disease profiles mined from literature, and extended 
with in-context training from patient profiles [34]. We 
plan to follow this study up with another, comparing 
patients with different sizes and derivations of disease 
profile. We do not expect the results of this analysis to 
necessarily recapitulate the results described in this 
article, due to the asymmetry of entity types being com-
pared, along with differences in annotation size, source, 
and composition.

Extension of this work should also consist in its appli-
cation to different clinical settings. MIMIC-III describes 
admissions to a critical care setting, which holds particu-
lar biases with respect to common diseases and treat-
ment, as well as towards the particular hospital from 
which the data is derived. As such, results and even 
best-performing methods may vary depending on many 
related factors, such as geographic location, jurisdiction, 
department, or clinical focus.

While this work tests all available methods imple-
mented in the semantic measures library, there are also 
many semantic similarity approaches implemented as R 
packages [39], web-based tools [40], and standalone soft-
ware [41].

There are also newer classes of methods, such as fea-
ture learning approaches, that can be used to calculate 
semantic similarity. However, while SML provides a 
common interface and abstraction for its methods, these 
novel approaches are presently presented with entirely 
bespoke implementations, which may not have been 

https://github.com/phenopackets
https://github.com/phenopackets
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previously applied to the task of annotated entity com-
parison. While we tested one example of an embedding 
approach, OPA2Vec, which performed comparably to 
other methods, its requirement of a completely unique 
setup and implementation process meant that it was not 
possible to integrate this with the overall experimental 
pipeline. This presents a challenge for feasible imple-
mentation. Further challenges are presented by other 
methods, particularly those that make use of machine 
learning, that require additional training and adaptation 
to be applied to this problem. For example, Alshahrani 
discusses a feature learning method that requires train-
ing, and has only been implemented for the task of rela-
tion prediction [42]. In other cases, models are described, 
but implementation is not provided. In addition to intro-
ducing additional complexity, use of such methods would 
also necessitate changes to the experimental design, and 
impact direct comparability with other methods. Further 
complexity arises in the case of any representation learn-
ing approaches, in that there is a distinction between the 
process of learning representations themselves, and the 
comparison of those . However, these are sizeable prob-
lems in their own right, and are therefore considered out-
side the context of this work. As an area for future work in 
benchmarking semantic similarity methods, work should 
be performed comparing representation approaches with 
each other, using a range of different methods of calcu-
lating similarity between representations, and rule-based 
approaches. Furthermore, work could be performed in 
providing guidelines surrounding implementation and 
reporting of semantic similarity methods, in the same 
way that MIRO provides guidelines for new ontology 
reporting [43]. The development of additional shared 
tasks may also aid in improvement of reporting and gain-
ing comparable results using these methods.

Another limitation of our restriction to measures 
implemented in SML is that we were unable to measure 
the amount of time individual methods took to run. This 
is because in our experimental design leveraged SML’s 
batch processing feature to perform many calculations at 
once. In a future experiment, measures could each be run 
separately. However, theoretical estimates on time con-
sumption can be derived using time complexity reports 
given in literature presenting individual methods.

Conclusion
We have presented the development of a platform for 
evaluating semantic similarity methods for tasks using 
patient phenotype profiles. We used this implementation 
to evaluate a large number of settings for the task of pre-
dicting shared primary diagnosis from uncurated text-
derived phenotype profiles. We interpreted a large range 
of results by multiple measures, and identified methods 

that performed more optimally. These results, along with 
the platform, help to provide a basis for systematically 
identifying and evaluating methods for practical clinical 
tasks using semantic similarity methods.
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