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Abstract 

Background:  Early prediction of noninvasive ventilation failure is of great significance for critically ill ICU patients to 
escalate or change treatment. Because clinically collected data are highly time-series correlated and have imbalanced 
classes, it is difficult to accurately predict the efficacy of noninvasive ventilation for severe patients. This paper aims 
to precisely predict the failure probability of noninvasive ventilation before or in the early stage (1–2 h) of using it on 
patients and to explain the correlation of the predicted results.

Methods:  In this paper, we proposed a SMSN model (stacking and modified SMOTE algorithm of prediction of 
noninvasive ventilation failure). In the feature generation stage, we used an autoencoder algorithm based on long 
short-term memory (LSTM) to automatically extract time series features. In the modelling stage, we adopted a modi-
fied SMOTE algorithm to address imbalanced classes, and three classifiers (logistic regression, random forests, and 
Catboost) were combined with the stacking ensemble algorithm to achieve high prediction accuracy.

Results:  Data from 2495 patients were used to train the SMSN model. Among them, 80% of 2495 patients (1996 
patients) were randomly selected as the training set, and 20% of these patients (499 patients) were chosen as the test-
ing set. The F1 of the proposed SMSN model was 79.4%, and the accuracy was 88.2%. Compared with the traditional 
logistic regression algorithm, the F1 and accuracy were improved by 4.7% and 1.3%, respectively.

Conclusions:  Through SHAP analysis, oxygenation index, pH and H1FIO2 collected after 1 h of noninvasive ventila-
tion were the most relevant features affecting the prediction.
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Introduction
The total mortality of patients with noninvasive ventila-
tion (NIV) failure is 23–27% [1, 2]. However, the mor-
tality of patients with advanced NIV failure increases 

dramatically, ranging from 50 to 80%. Early prediction of 
noninvasive ventilation failure is of great significance for 
critically ill ICU patients to escalate or change the treat-
ment. In this paper, we proposed how to build a good 
prediction model and analysed which features would 
influence the final prediction of using noninvasive ven-
tilation on patients before or in the early stage (1–2  h). 
First, in the course of treatment of ICU patients, there 
were far fewer noninvasive ventilation failed samples col-
lected in hospitals than successful samples. Due to the 
small number of failed samples, the prediction or recall 
of the classifier is reduced, which leads to easily missed 
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diagnoses in clinical practice. Second, the prediction 
of a single classifier has a high deviation. In the face of 
complex diseases, hospitals need to solicit the opinions 
of doctors from different disciplines for comprehensive 
judgement to improve the diagnostic accuracy of patients 
and the adaptability of treatment options. Finally, most 
machine learning algorithms do not actively obtain time-
series relationships of data, such as 1 h before and after 
treatment. However, these data are important for doctors 
to observe changes in diseases and judge the efficacy. In 
conclusion, it is very meaningful to build a good predic-
tion classifier with interpretability and analyse the over-
all and individual features that affect predictions. In this 
paper, our contributions are as follows.

First, we proposed the SMSN model for the first time, 
including three stages: data processing, feature genera-
tion and modelling. Through experimental verification, 
the SMSN model was the best in AUC, F1, and accuracy 
performance measures, which improved the accuracy of 
prediction.

Second, we innovatively adopted an autoencoder model 
based on LSTM. It can actively extract time series data 
and automatically extract time series features by using 
LSTM’s ability to process time series and the autoencod-
er’s ability to extract features and thus adds them to the 
dataset to improve the accuracy of prediction.

Then, in view of the minority classes that are diffi-
cult to classify, we proposed an oversampling algorithm 
(modified SMOTE) for the first time. This kind of algo-
rithm focuses more on classes with less data, promotes 
class balance and improves the sensitivity or recall of the 
classifier.

Finally, we adopt the stacking ensemble algorithm 
including three classifiers, including simple logistic 
regression, random forests and Catboost in nonlinear 
tree classifiers.

Noninvasive ventilation failure was defined as the 
requirement of intubation for invasive mechanical ven-
tilation. However, for doctors with low seniority, they 
usually make incorrect judgements on when and what 
kind of treatment is appropriate due to lack of experi-
ence, resulting in the failure of treatment and operation. 
Therefore, machine learning algorithms assist doctors in 
making correct judgements, which is of great significance 
to improve the cure rate of patients and reduce mortality.

Related research
Traditional statistical methods
A study showed that data from June 2011 to June 2018 
were collected from the First Affiliated Hospital of 
Chongqing Medical University (Chongqing, China), the 
First Affiliated Hospital of Xi’an Medical University (Xi’an, 
China) and People’s Hospital of Changshou Chongqing 

(Chongqing, China) in 2019. A total of 500 patients were 
randomly selected into the derivation cohort, and the 
remaining 323 patients were included in the internal 
validation cohort. Five influencing factor variables were 
chosen: heart rate, acidosis (assessed by pH), conscious-
ness (assessed by Glasgow coma score), oxygenation and 
respiratory rate [1]. In conclusion, in high-risk patients 
identified by the HACOR score assessed at 1–2 h of NIV, 
early intubation is associated with decreased hospital 
mortality. However, the study was restricted to one dis-
ease of COPD, and there were only five variable factors in 
the study. Additionally, significant variable factors such as 
nursing were not considered. Chi-square and/or Fisher’s 
exact tests were used in the study, and the quantity was 
very limited. External verification of the study only came 
from and was simply performed by two hospitals with a 
lack of universality. Accordingly, the dependability of the 
conclusion requires further improvement.

Machine learning
In a cooperative experiment conducted by the Chinese 
People’s Liberation Army General Hospital (Beijing, 
China) and Cornell University (Ithaca, New York, United 
States), the data of 43,336 patients gathered from three 
intensive care units in the United States were applied 
for model development. In addition, the data of 24,819 
patients were from the test set, and 40 clinical vari-
ables were collected from each patient per hour, includ-
ing 8 vital sign variables, 26 laboratory variables and 6 
demographic variables. A total of 312 features were con-
structed per hour as input to the time-phased machine 
learning model for sepsis prediction [3]. LightGBM, an 
effective and efficient gradient boosting decision tree 
algorithm, was used to predict the risk of sepsis, and the 
proposed time-phased machine learning classifier for 
sepsis prediction was accurate in the experiment. How-
ever, it did not sufficiently mine the time series data col-
lected at different times.

Ensemble learning
Ensemble learning is a combined decision-making based 
on basic machine learning algorithms, which completes 
the learning task [4, 5] by training multiple base models 
and combining them. Generally, ensemble learning algo-
rithms, including the bagging algorithm [6], boosting 
algorithm [7] and stacking ensemble algorithm [8], have 
better performances than single machine learning algo-
rithms. The bagging algorithm obtains the training set of 
each base model by bootstrap sampling methods, thereby 
having different base classifiers. The boosting algorithm 
trains iteratively by increasing the weight of misclassified 
instances of the previous weak classifier and obtains a 
strong learner. The stacking ensemble algorithm takes the 
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prediction of the base classifier as new features, trains the 
original classifier with these new features, and obtains 
the predictions.

Through experiments, Statnikov et  al. found that ran-
dom forests of the decision tree classifier based on an 
ensemble learning algorithm carried out the best per-
formance in cancer classification [9]. In the EEG classi-
fication task, Hosseini et al. [9, 10] developed a random 
subspace ensemble method using a combination of vari-
ous methods as the base classifier. Dongxiao et  al. [11] 
proposed a method that adopted extreme gradient boost-
ing (XG boost) for breast cancer recurrence prediction. 
Pooja Tukaram Dalvi et  al. discovered that the stacking 
ensemble algorithm had the highest performance in 
anaemia classification and detection.

Data imbalance
In the medical datasets [9, 12], the data were mainly 
composed of normal samples, and a few of them were 
abnormal samples, leading to medical data imbalance. 
For data imbalance, oversampling algorithms are repeat-
edly used to generate new minority instances to achieve 
class balance. The SMOTE algorithm [11–13] is a classic 
oversampling algorithm, and the generation of its new 
instances is interpolated in accordance with the minor-
ity sample point x and the k nearest instance points to 
x. Compared with the random duplication of minority 
instances, the SMOTE algorithm balances the dataset 
and dramatically reduces the randomness in the sam-
pling process. Rahman et al. [11, 14] compared common 
oversampling algorithms and found that the SMOTE 
algorithm [11–13] achieved excellent performances in 
multiple medical datasets. On the basis of the SMOTE 
algorithm, the Borderline-SMOTE algorithm divides 
the minority instances into three categories in line with 
most of the instances from the adjacent points, which are 
noise class, boundary class, and security class. KMeans 
SMOTE [12, 13, 15] combines k-means and the SMOTE 
algorithm to effectively overcome the problem of imbal-
ance between and within classes, as well as the depend-
ency of the nearest neighbours.

Interpretability of medical classification
At present, in the face of increasing noninvasive respira-
tory data, machine learning can make use of its big data 
capability to make highly accurate predictions. However, 
some complex machine learning algorithms have a major 
disadvantage in the medical field: their similarity to a black 
box conceals the reasons for decision-making. This chal-
lenge makes the medical field extremely cautious of the 
application of machine learning. Accordingly, it requires 
not only high accuracy of the model but also strong 
interpretability to obtain numerous applications of deep 

learning in the medical field more quickly. For this pur-
pose, many researchers have studied the interpretability 
of machine learning. LIME [16], SHAP [12, 13, 15, 17, 18] 
and other tools have been constantly proposed in research 
on the interpretability of traditional machine learning.

Prediction models
Based on stacking ensemble algorithm
Data sources
The data of this study were derived from the electronic 
medical record database of the First Affiliated Hospital 
of Chongqing Medical University (Chongqing, China) 
from January 1, 2011 to January 25, 2019. As shown in 
Table  1, the data of 2495 severe patients were collected, 
and 13 disease diagnoses were involved. There were 1122 
cases of AECOPD (45%), 652 cases of pneumonia (26.1%), 
197 cases of ARDS (7.9%), and 524 cases of other diagno-
ses, accounting for 21%. The data information had four 
latitudes, which were the basic information parameters 
of patients, covering names, genders, ages and diagno-
ses; indices related to noninvasive ventilation failure, 
including H0 oxygenation index, H1 oxygenation index, 
H0GCS, H1GCS and other data recorded every hour; 
outcomes data: whether noninvasive ventilation failed, 
and APACHE score; past medical history data: whether 
patients had hypertension, diabetes, chronic liver and 
kidney diseases and cardiac insufficiency, etc. These data 
were recorded at hourly intervals, and the values of the 
above patient data were recorded every 1  h after hospi-
talization. In addition, the data were divided into quartiles 
by box plots. The data with the default distance exceeding 
the average value of 3δ were abnormal data. The abnormal 
values or the data that were not collected were regarded 
as missing values, which were replaced by medians.

Among them, 80% of 2495 patients (1996 patients) 
were randomly selected as the training set, and 20% of 
these patients (499 patients) were chosen as the testing 
set. The Ethics Committee approved the research pro-
tocol. Informed consent was obtained from patients or 
their family members.With several teaching hospitals and 
an inherent advantage in patient data collection, the hos-
pital also has an advantage in machine learning.

Research objects
According to the inclusion and exclusion criteria, 2495 
patients were selected from the database as the research 
subjects, with a total of more than 99,000 data points. The 
inclusion criteria were patients who were admitted to the 
intensive care unit, patients who completed the required 
inspection indicators after hospitalization, and patients 
whose data were collected at hourly intervals. The exclu-
sion criteria were noncritical patients who were not admit-
ted to the hospital, patients with a large number of missing 
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examination results after hospitalization, and patients 
whose data were not collected at one-hour intervals.

Proposed model framework
The proposed SMSN model, as shown in Fig. 1, includes 
the modified SMOTE algorithm to deal with data imbal-
ance and the LSTM autoencoder to exact time series 
features. The stacking ensemble algorithm carries out 
ensemble learning and combines multiple machine learn-
ing classifiers to improve the prediction accuracy. First, 
data preprocessing was carried out in the dataset, includ-
ing missing value processing, outlier processing, and 
data standardization. Second, feature engineering was 
executed in the dataset, covering feature generation and 
feature selection. To make full use of the features of the 
time series in the data, the LSTM autoencoder was used 
as the extraction model of the features of the time series. 
Ultimately, a modified SMOTE model was established to 
balance the minority classes and the majority classes. At 
the same time, a stacking ensemble algorithm was made 
to improve the prediction accuracy by combining logis-
tic regression, random forest and the Catboost algorithm. 
The three components will be introduced in sequence in 
the following chapters.

Data preprocessing
There were outliers in the collected data. In this paper, 
box plots were applied to divide the data into quartiles. 
When the data with the default distance exceeded the 
average value of 3δ, they were deemed abnormal data. 
These abnormal data or uncollected data were treated as 
missing values. To increase the stability of the filling of 
missing values, this paper did not make use of the aver-
age value but the medians to fill the missing values.

Distance-based machine learning algorithms, such as 
KNN [19], logistic regression [20, 21] and SVM [9, 12, 13, 
15, 17], are sensitive to the scale of each dimension of the 
input data, so preprocessing is required. In this paper, the 
z score standardization algorithm was selected to pre-
process the data. Assuming that the input data, its mean 
value, and the standard deviation are x, x and σ, respec-
tively, the transformation is as follows:

(1)x
′
=

x − x

σ

Table1  Characteristics of the enrolled patients

Item Value or number

Age, years 69 ± 14

Male N = 1794

APACHE II 16 ± 5

NIV failure N = 740

Diagnosis

 AECOPD N = 1122

 Pneumonia N = 652

 ARDS N = 197

Sleep apnoea-hypopnea syndrome N = 65

 Asthma N = 70

 Heart failure N = 50

 Bronchiectasis N = 46

 Sepsis N = 44

 Pulmonary embolism N = 39

 Pulmonary tuberculosis associated sequelae N = 35

 Chest wall deformity N = 22

Obesity-hypoventilation syndrome N = 6

Chronic thoracic sequelae N = 2

 Others N = 145

Underlying disease

 Hypertension N = 889

 Diabetes mellitus N = 493

 Chronic liver disease N = 53

 Chronic kidney disease N = 104

 Chronic heart disease N = 201

 Chronic lung disease N = 1459

 Immunosuppression N = 100

 Solid tumour N = 238

Variables collected before NIV

 GCS 14.6 ± 1.2

Systolic blood pressure, mmHg 137 ± 26

Diastolic blood pressure, mmHg 81 ± 16

 Heart rate, beats/min 134 ± 23

Respiratory rate, breaths/min 31 ± 7

 pH 7.36 ± 0.11

 FiO2 0.42 ± 0.15

 PaCO2, mmHg 57 ± 26

 PaO2, mmHg 72 ± 39

 PaO2/FiO2 178 ± 87

Variables collected after 1 h of NIV

 Tidal volume, mL 413 ± 160

 Minute ventilation, L 11.2 ± 6.6

Inspiratory pressure, cmH2O 15 ± 4

Expiratory positive airway pressure, cmH2O 6 ± 2

 GCS 14.6 ± 1.2

Systolic blood pressure, mmHg 127 ± 23

Diastolic blood pressure, mmHg 74 ± 14

 Heart rate, beats/min 104 ± 23

Respiratory rate, breaths/min 27 ± 7

 pH 7.39 ± 0.09

 FiO2 0.50 ± 0.16

Table1  (continued)

Item Value or number

 PaCO2, mmHg 54 ± 22

 PaO2, mmHg 95 ± 40

 PaO2/FiO2 205 ± 89
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In the dataset collected in this paper, the causes of res-
piratory failure were characterized by categorical vari-
ables, which were not evenly distributed among various 
categories and had a high correlation with predicting 
the treatment failure of the variables. As shown in Fig. 2, 
when the reason for respiratory failure is AECOPO, the 
probability of treatment failure is low. When respiratory 
failure is caused by ARDS, the rate of treatment failure is 
high. In this paper, OntHot encoding was chosen as the 
categorical variables encoding method. In addition, the 
number of some diseases in the sample is less than 20. In 
the process of onthot encoding, these diseases are classi-
fied into other diseases.

Feature engineer
Feature generation
Feature generation uses the existing features to generate 
new features and fully mine the information of the dataset 

Fig. 1  The training flowchart of SMSN model

Fig. 2  Causes and categories of respiratory failure



Page 6 of 15Liang et al. BMC Medical Informatics and Decision Making           (2022) 22:27 

to improve the prediction ability of the model. The new 
features need to be validated, and domain knowledge, 
industry experience and mathematical knowledge are 
required to comprehensively consider the validity of the 
features. In this paper, three methods were used for fea-
ture generation in accordance with the features of the time 
series correlation of data and clinical expert knowledge.

First, in the ICU dataset, respiratory detection data of 
each patient at two time points were collected to form 
a time series. The performances of traditional machine 
learning classifiers were reduced because they did not 
take advantage of the features of time series in the data. 
As shown in Fig.  3, the mean values of different detec-
tion features of the two categories at two time points 
h = 0 and h = 1 are visualized. Compared with patients 
with successful treatment, GCS, PaCO2 and oxygenation 
index features were at lower levels in patients with failed 
treatment, while HR, RR and FIO2 features were at higher 
levels in patients with failed treatment. In addition, 
PaO2 and oxygenation index features increased signifi-
cantly when h = 1 in patients with successful treatment. 
Meanwhile, the HR, RR and FIO2 in patients with failed 
treatment increased remarkably at h = 1. The change in 
detection features was highly correlated with the predic-
tion over time.

In the feature engineering stage, an LSTM autoen-
coder model was used to extract the time-series fea-
tures of the data sampled at two time points. As shown 
in Fig.  4, the variable x represents the raw data, which 
are treated as nodes in the input layer. It is encoded to 
the dimension-reduced vector h, which represents the 
nodes from the hidden layer. Then, the vector h shows 
that the dimensions of the input and output layers of the 
autoencoder are the same, and the encoder in the hidden 

layer automatically extracts the most useful features and 
restores the extracted features to raw data. The LSTM 
network could be framed as a chain of repeating mod-
ules where each module corresponds to a time point. A 
detailed structure is shown in Fig. 5. The key component 
of the chain is the cell state, which stores historical infor-
mation. At each time point, the information is updated 
and transmitted under the interaction of 3 gates: forget-
ting gate, input gate, and output gate. Every one of them 
is a sigmoid neural network layer. LSTM is good at pro-
cessing time-series data because of its memorizing his-
torical information. In this paper, the autoencoder model 
based on LSTM was adopted in combination with LSTM 
processing time series data and autoencoder automatic 
feature extraction.

As shown in Fig.  6, we manually extracted the mean 
value and differential value of the features of two time 
points as new features and then used deep learning tech-
nology to automatically extract the features of the time 
series.

Attending physicians with rich clinical experience have 
formed expert formulas to generate prior features, as 
shown in Table  2. In addition, the feature crosses tech-
nique was used to multiply pairwise features to generate 
new features.

Feature selection
Making new features requires considering their effective-
ness to prevent the generation of meaningless features. Fea-
ture selection is a technology that reduces the dimensions 
of input variables and the runtime of the machine learning 
classifier and improves the prediction accuracy. The feature 
selection algorithm with low variance filtering is a simple 

Fig. 3  Visual time series Fig. 4  The architecture of the aotoencoder
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method that calculates the variance corresponding to each 
feature value in the sample. If it is lower than the threshold 
value, it will be filtered (rejected). In addition, the Pearson 
correlation coefficient between features and tags is used for 
feature selection, which can filter irrelevant features. In this 
paper, variance and Pearson correlation coefficients were 
used to filter some features and retain the features with the 
highest correlation with the model.

Model
Modified SMOTE
The SMOTE algorithm is a classic oversampling algo-
rithm. The generation of new instances is determined by 

the interpolation between the minority class instances and 
the k near them. Therefore, the SMOTE algorithm relies on 
neighbour k in the process of generating new instances and 
can only obtain the optimal value of k through repeated 
tests in the dataset. In addition, the use of the SMOTE algo-
rithm will affect the data distribution of minority instances. 
If there is an isolated point in the minority classes in the 
dataset, there are no minority instance points nearby. Sup-
posing that the particularity is not considered, the SMOTE 
algorithm will also generate new instance points near the 
isolated points, which will change the original data dis-
tribution to a large extent. At the same time, the SMOTE 
algorithm treats all minority instances equally. In classifica-
tion, some misclassified minority instances are called hard 
instances, and correctly classified samples are called easy 
instances. Additionally, the SMOTE algorithm does not pay 
more attention to hard instances.

Modified SMOTE was proposed in this paper, which 
was more focused on hard samples than Borderline-
SMOTE and k-means SMOTE while maintaining the 
advantages of Borderline-SMOTE and k-means SMOTE. 
The modified SMOTE algorithm first used the SVM 
classification algorithm to obtain a set of minority error 
instances. Then, it removed all isolated instances from 
the set of minority error instances to obtain a new set of 
instance points. Subsequently, clustering was performed 
by using the k-means algorithm in the instance points 
set, and N clusters were obtained. Eventually, the centre 
of clustering and the instance in the cluster were used 
to generate new instance points. The modified SMOTE 
algorithm procedure is presented in Algorithm 1:

Fig. 5  The structure of the LSTM network

Fig. 6  Extracting the features of time series
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Predictionsing model
In the model stage, a stacking integrated learning algorithm 
was adopted, which integrates logistic regression, random 
forest and Catboost. Logistic regression becomes a binary 
classification algorithm by adding a sigmoid function based 
on linear regression. The binary classification algorithm 
needs to make predictions in the range of [0, 1], while lin-
ear regression can only make predictions in the domain of 
real numbers. In this case, a sigmoid function is added to 
the linear regression to enable it to make predictions within 
the required range. Random forest establishes a forest in 
a random way. The forest is composed of many decision 
trees, and there is no correlation between them. Because of 
its randomness, it has strong anti-noise ability and is not 
easy to overfit. Catboost is a GBDT framework based on 
oblivious trees, and it has fewer parameters and high accu-
racy and supports category variables. Its greatest advan-
tage is the efficient processing of category features. It was 
enhanced based on the XGBOOST algorithm, and it had a 
tremendous advantage in processing category features.

As shown in Fig. 1, the proposed prediction model used 
Catboost [22], random forests and logistic regression as 
base learners, and logistic regression as the meta learner. 
The prediction probabilities of each base learner were con-
nected to form a new training set to train the meta learner. 
There were considerable differences among the selected 
classifiers, and stacking was able to make full use of the 
advantages of each learner to improve the performance of 
the classifier.

Results
Performance measures
The task of predicting the probability of noninvasive res-
piratory failure was evaluated. To improve the comprehen-
sive and objective evaluation of the classifier, five different 
evaluation indices were used to evaluate the experiment. 
The basic terms of the confusion matrix will be introduced 
first. Positive class instances of true positives (TPs) are rec-
ognized as the positive classes; negative class instances of 
false-positives (FPs) are recognized as the positive classes; 

positive class instances of false negatives (FNs) are recog-
nized as the negative classes; and negative class samples of 
true negatives (TNs) are recognized as the negative classes. 
The specific five Performance Measures are as follows:

Accuracy refers to the quantity of instances or the total 
number of instances that are predicted correctly. Accu-
racy represents the overall classification performance of 
the classifier, and its formula is as follows:

Precision represents the ratio of the true positive 
classes in the instances that are judged to be the positive 
classes. It measures the number of errors of the positive 
classes predicted by the model are wrong. The formula is 
as follows:

Recall represents the ratio of instances that are judged 
to be the positive classes in the positive class instances, 
and it measures the model’s ability to recognize the posi-
tive classes.

The area under the receiver operating characteristic 
curve (AUC) was calculated. The receiver operating char-
acteristic curve (ROC) represents the false-positive rate 
(FPR) and true positive rate (TPR).

The score of F1-Meature (F1) is a special case of F-Mea-
ture, which is a weighted sum of Precision and Recall and 
is suitable for the comprehensive judgement of the classi-
fier. The F1 score expression is as follows:

As shown in Table  3, the logistic regression classifier 
was used in this paper to conduct experiments under 
the three conditions of the original features, the manual 
features, and all features. It was observed that when the 
original features were used, the classification accuracy 
was 0.869. When features other than the deep features 
were added, including features generated by the feature 

(2)Acc =
TP + TN

TP + FP + TN = FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 =
2× Precision× Recall

Precision+ Recall

Table 2  Expert experience features

NIV noninvasive ventilation, RR respiratory rate, HR heart rate, FIO2 fraction of 
inspired oxygen

H0 means the data collected before NIV. H1 means the data collected after 1 h 
of NIV

Before NIV (H0) After 1 h of NIV (H1) Unit

Oxygenation index/
H0RR

H1oxygenation index/
H1RR

mmHg/breath/min

Age*H0RR Age*H1RR year*breath/min

H0RR*H0HR H1RR*H1HR breath/min*beat/min

H0RR*H0HR*H0FIO2 H1RR*H1HR*H1FIO2 breath/min*beat/min

Table 3  Classification experimental results of different features

Features Accuracy AUC​ F1 Precision Recall

The original features 0.869 0.905 0.747 0.872 0.653

The manual features 0.874 0.907 0.753 0.889 0.653

All features 0.878 0.907 0.77 0.864 0.694
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crosses technique, features of prior knowledge, and the 
feature mean of the two time points, the classification 
accuracy was increased by 0.05. When all features were 
used, the classification accuracy was 0.878; that is, when 
deep features were added, the classification accuracy of 
the model was increased by 0.04 compared to that with-
out adding deep features. After the deep feature is added, 
the recall is significantly improved, which shows that the 
time series feature is very meaningful for the prediction 
of noninvasive respiratory failure.

By comparing and adding the generated features and 
the original features, it can be shown that the generated 
features can improve the performance of the classifier.

As shown in Table  4, common oversampling algo-
rithms, including random oversampling, SMOTE, 
Borderline SMOTE, SVM SMOTE, and the proposed 
modified SMOTE, were used in this paper to carry out 
classification experiments based on the logistic regres-
sion model. According to Table  3, the SVM SMOTE 
model had the best accuracy and precision scores. The 
proposed modified SMOTE was optimal in AUC, F1 and 
recall indices, indicating that modified SMOTE could 
identify more minority classes.

As shown in Table 5, all the features and the modified 
SMOTE oversampling algorithm were used in this paper 
to compare common machine learning classifiers with 
the proposed SMSN classifier. Random forest had the 

highest precision, which was biased towards recognizing 
negative classes. However, its recall was the lowest, and 
its ability to identify positive classes was very poor. Logis-
tic regression had the highest recall and the highest rate 
of recognizing positive classes, but its rate of recognizing 
negative classes was very low. The SMSN model had the 
highest Accuracy, AUC and F1. with Precision and Recall 
in the top three. Combined with the advantages of three 
base models, which were random forest, logistic regres-
sion, and Catboost, its performance was significantly 
improved.

The ROC curves of the different machine learning clas-
sifiers are shown in Fig. 7. The SMSN model had the larg-
est ROC curve area, and its AUC was 0.915, which was 

Table 4  Classification experimental results of different 
oversampling algorithms

Classifiers Accuracy AUC​ F1 Precision Recall

Random oversampling 0.844 0.904 0.759 0.695 0.837

SMOTE 0.846 0.896 0.749 0.719 0.782

Borderline SMOTE 0.836 0.898 0.734 0.702 0.769

SVM SMOTE 0.848 0.904 0.75 0.726 0.776

Modified SMOTE 0.834 0.905 0.758 0.663 0.884

Table 5  Classification experimental results of different machine 
learning classifiers

Classifiers Accuracy AUC​ F1 Precision Recall

Random forest 0.862 0.896 0.729 0.861 0.633

Logistic regression 0.834 0.905 0.758 0.663 0.884

Catboost 0.866 0.901 0.755 0.817 0.701

SVM 0.832 0.845 0.754 0.662 0.878

GBDT 0.862 0.892 0.745 0.815 0.687

XGBoost 0.858 0.888 0.732 0.822 0.66

LightGBM 0.872 0.893 0.763 0.837 0.701

SMSN 0.882 0.915 0.794 0.814 0.776

Fig. 7  ROC curve of different classifiers

Fig. 8  Confusion matrix of classifiers
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larger than that of other machine learning classifiers. 
As shown in Fig. 8, the recall of the SMSN classifier was 
0.776, which had an increase of 0.082 compared with the 
logistic regression classifier without the oversampling 
algorithm, indicating that the proposed oversampling 

algorithm could improve the rate of recognizing positive 
classes. In addition, the recall of the SMSN model was 
lower by 0.108 compared to that of the logistic regression 
classifier using the modified SMOTE algorithm. How-
ever, its precision was increased by 0.151, and all other 
indices performed better. The SMSN model achieved a 
balance in the recognition of positive and negative classes 
because its AUC and F1 were the highest.

Table  6 shows the prediction performance of tradi-
tional Apache scoring, which obtained mediocre reviews 
under complex clinical conditions. Compared with the 
Apache scoring, the SMSN classifier based on a machine 

Table 6  Apache scoring experiment

The significance of bold mean that better performance results are obtained in 
this experiment

Classifiers Accuracy AUC​ F1 Precision Recall

Apache 0.713 0.667 0.235 0.55 0.15

SMSN 0.882 0.915 0.794 0.814 0.776

Fig. 9  The feature importance of random forests based on SHAP

Fig.10  The feature importance of LightGBM based on SHAP
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learning algorithm has improved significantly because it 
considers more features and uses more data.

Interpretability
In this paper, SHAP was used to conduct feature impor-
tance analysis on the three base classifiers, and the results 
are shown in FigS. 9, 10 and 11. The top three features of 
SHAP values in the random forest classifier were PaO2/
FiO2 at 1 h of NIV, H1PH and AECOPD. The top three 
features of SHAP values in the LightgBM classifier were 

H1GCS, solid tumour and PaO2/FiO2 at 1 h of NIV. The 
top three features of SHAP values in the logistic regres-
sion model were H1GCS, H1PH and H1PAO2. The top 
three features of SHAP values in different classifiers had 
differences and similarities.

In the random forest classifier, the feature importance 
of PaO2/FiO2 at 1  h of NIV was much higher than that 
of H1PH, and the first three features of SHAP values in 
the other two models had little difference. In the logistic 
regression model, the SHAP values of PaO2/FiO2 at 1 h 

Fig. 11  The feature importance of logistic regression based on SHAP

Fig. 12  Analysis of SHAP values of the SMSN model
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of NIV even couldn’t enter the top ten, which was very 
different from the random forest model. Three classifiers 
were used for prediction, and the features valued by the 
classifiers were significantly different and had their own 
characteristics. The stacking ensemble algorithm could 
combine the advantages of different classifiers to obtain 
better predictions.

Figure  12 is the visual figure of the SHAP values of 
the SMSN, which was sorted according to the average 
SHAP values, and the higher the feature was, the larger 
the average SHAP value was. The horizontal axis in the 
figure represents the SHAP value, and each feature has 
many points on the horizontal axis to represent the 
sizes of the SHAP values of the instance in the testing 
dataset. In addition, the colours of these points rep-
resent the feature values. Dark blue indicates that the 
feature value was small, and dark red indicates that the 
feature value was large.

H1PH, H1GCS, H1FIO2, H1RR and PaO2/FiO2 at 1 h of 
NIV of the average values of features were found to have 
the highest SHAP values. Among them, the higher the 
feature values of H1PH, H1GCS and PaO2/FiO2 at 1 h of 
NIV were, the smaller their SHAP values were, and the 
lower the probability of patients’ noninvasive ventilation 
failure was. Furthermore, the higher the feature values of 
H1FIO2, H1RR and reasons for respiratory failure-ARDS 
were, the larger their SHAP values were, and the higher 
the probability of patients’ noninvasive ventilation failure 
was.

As shown in Figs. 13 and 14, taking the random forest 
classifier as an example, SHAP analysis was used for the 
predictions of two patients who failed noninvasive res-
piratory therapy. E[f(X)] = 0.545 represents the average 
predicted values of the instance in the test set. In Fig. 13, 
f(X) = 1.594 represents the predicted value of patient I 
who failed noninvasive respiratory therapy, which was 
higher than the average predicted value of 1.049. Accord-
ing to the SHAP formula, the sum of the SHAP values of 
89 features was 1.049. As shown in Fig. 13, PaO2/FiO2 at 
1 h of NIV was low, leading to a high SHAP value. How-
ever, the patient’s solid tumour was 0, resulting in a nega-
tive SHAP value. The age*H1RR feature was generated 
according to expert knowledge, and its SHAP value was 
positive. As shown in Fig. 14, the reason for respiratory 
failure—ARDS—was 1, and PaO2/FiO2 at 1 h of NIV was 
low, which made the SHAP value high. Compared with 
Fig.  13, the H1GCS value was higher in Fig.  14, and its 
SHAP value was negative, while the SHAP was positive in 
Fig. 13. Even if the predicted results all failed, the SHAP 
values of the same feature were positive and negative, 
with a large difference. Moreover, the decision-making 
process of two patients to obtain the same prediction 
result was different, and SHAP could be used as a tool for 
clinicians to interpret the prediction process.

As shown in Fig.  15, although the patient had a low 
PaO2/FiO2 at 1  h of NIV, he had no solid tumour, no 
ARDS, and a high H1GCS, which made the failure prob-
ability of the patient predicted by the final model low. 

Fig. 13  SHAP analysis of the noninvasive ventilation failure patient I
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It can be observed that SHAP’s interpretation of the 
SNSM’s predictions helped doctors make decisions.

Discussion
There were data related to time series in the collected 
noninvasive respiratory data. When the LSTM-based 
autoencoder model was used to extract time series 

features, both accuracy and F1 were improved. Tradi-
tional machine learning algorithms are unable to han-
dle data imbalance well, resulting in a very low recall. 
When the proposed modified SMOTE algorithm was 
introduced, the recognition ability of positive classes was 
enhanced and recall was significantly improved, but its 
AUC and F1 were still not high. To further improve the 

Fig. 14  SHAP analysis of the noninvasive ventilation failure patient II

Fig. 15  SHAP analysis of successful patient I with noninvasive respiratory therapy
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performance of the classifier, the idea of ensemble learn-
ing was introduced, and the stacking ensemble algorithm 
was adopted. In addition, three different machine learn-
ing classifiers were combined to obtain the SMSN model. 
Through experimental verification, the SMSN classi-
fier was optimal in AUC, F1 and accuracy performance 
measures. Additionally, taking the components in the 
SMSN model, namely, the logistic regression classifier, 
as an example, SHAP was used to analyse the decision 
path of each patient’s prediction result, i.e., how each fea-
ture affected the final prediction. Through the proposed 
SMSN model, the failure probability of noninvasive ven-
tilation could be predicted more accurately before the use 
of noninvasive ventilation or in the early stage (1–2 h) of 
noninvasive ventilation. Accordingly, recommendations 
were made for patients with a high risk of failure to help 
doctors decide when to escalate or change the treatment 
plan, which was of scientific significance for the decision 
support of doctors with low seniority to make decisions.
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