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Abstract 

Background:  The diagnostic likelihood ratio (DLR) and its utility are well-known in the field of medical diagnostic 
testing. However, its use has been limited in the context of an outcome validation study. We considered that wider 
recognition of the utility of DLR would enhance the practices surrounding database studies. This is particularly 
timely and important since the use of healthcare-related databases for pharmacoepidemiology research has greatly 
expanded in recent years. In this paper, we aimed to advance the use of DLR, focusing on the planning of a new 
database study.

Methods:  Theoretical frameworks were developed for an outcome validation study and a comparative cohort 
database study; these two were combined to form the overall relationship. Graphical presentations based on these 
relationships were used to examine the implications of validation study results on the planning of a database study. 
Additionally, novel uses of graphical presentations were explored using some examples.

Results:  Positive DLR was identified as a pivotal parameter that connects the expected positive-predictive value 
(PPV) with the disease prevalence in the planned database study, where the positive DLR is equal to sensitivity/
(1-specificity). Moreover, positive DLR emerged as a pivotal parameter that links the expected risk ratio with the dis-
ease risk of the control group in the planned database study. In one example, graphical presentations based on these 
relationships provided a transparent and informative summary of multiple validation study results. In another exam-
ple, the potential use of a graphical presentation was demonstrated in selecting a range of positive DLR values that 
best represented the relevant validation studies.

Conclusions:  Inclusion of the DLR in the results section of a validation study would benefit potential users of the 
study results. Furthermore, investigators planning a database study can utilize the DLR to their benefit. Wider recogni-
tion of the full utility of the DLR in the context of a validation study would contribute meaningfully to the promotion 
of good practice in planning, conducting, analyzing, and interpreting database studies.
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Background
The use of healthcare-related databases (DBs) for phar-
macoepidemiology research has expanded in recent years 
[1]. A PubMed search found a nearly six-fold increase 
in the number of publications related to DB studies and 
administrative claims data from the decade spanning 

Open Access

*Correspondence:  yoichi.ii@pfizer.com
Biometrics and Data Management, Development Japan, Pfizer R&D 
Japan, 3‑22‑7, Yoyogi, Shibuya‑ku, Tokyo 151‑8589, Japan

http://orcid.org/0000-0001-6418-0547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-01757-1&domain=pdf


Page 2 of 10Ii et al. BMC Medical Informatics and Decision Making           (2022) 22:19 

2001‒2010 to 2011‒2020†. A rapid increase has also been 
reported in the Asia‒Pacific region, where such data-
bases have become widely available in recent years [2]. 
[† Search query for Title/Abstract: ("database study" OR 
"database studies") AND ("claims" OR "administrative"); 
Search date: 06 JAN 2021].

In such times of change, it is important to make 
renewed efforts to promote good practice in the plan-
ning, conduction, analysis, and interpretation of DB 
studies. Advancing the understanding of outcome valida-
tion studies is an essential part of these efforts. Outcome 
validation studies are particularly important for DB stud-
ies based on secondary use DBs, such as administrative 
claim DBs. This paper focuses on how to utilize the exist-
ing validation studies to inform and evaluate the design 
of a new claim-based DB study in its planning phase. One 
possible conclusion from such evaluation is that there 
is not enough information to proceed with confidence, 
leading to a decision to conduct a new validation study. 
The steps after the conduct of the DB study, which may 
include bias adjustments using the data from the valida-
tion studies, are out of the scope of this paper.

In a claim-based DB study, the source information typi-
cally includes diagnosis, drug prescription, and medical 
procedure records from an administrative claims DB. The 
outcome of interest is defined by a specific combination 
of these records. When the source DB is the electronic 
medical record (EMR), such a combination of records is 
sometimes referred to as the “EMR-derived phenotype 
algorithm” [3]. In this paper, we will use the term “phe-
notype algorithm” or simply “algorithm” when there is 
no confusion. Even a well-considered algorithm is not 
perfect in identifying the true occurrence (or lack of 
occurrence) of an outcome. Thus, an “outcome validation 
study” is conducted to characterize the degree of imper-
fection of the algorithm. More specifically, a validation 
study characterizes the relationship between the pro-
posed algorithm and a “gold standard” evaluation.

In addition to outcomes, the validation target may 
include exposure variables (e.g., the use of specific drugs), 
selection variables (e.g., the diagnosis of a specific dis-
ease), or confounder variables. To refer to these wider 
usages, a generic term “validation study” is used. Some 
general references related to validation studies are avail-
able [4–9]. For common outcomes, systematic reviews of 
validation studies are available [6, 10–17].

The “diagnostic likelihood ratio” (DLR) and its utility 
are well-known in the field of medical diagnostic test-
ing, such as screening tests for specific diseases [18–21]. 
However, its use in the context of a validation study 
seems to be limited. We found only two such examples: 
Barbhaiya et  al. [22] and Shrestha et  al. [23]. Both used 
DLR as a summary measure to characterize the target 

phenotype algorithms. In this paper, we explored addi-
tional usages for the DLR. Specifically, we examined the 
use of DLR in the assessment of bias during the plan-
ning of a comparative cohort DB study. We consider 
that wider recognition of the full utility of the DLR will 
enhance the practices surrounding DB studies, including 
those during the reporting of outcome validation studies 
and the planning of a new DB study.

Methods
Outcome validation study
Typically, a validation study is conducted on a random 
sample from an entire population of subjects. For clar-
ity, we refer to the random sample as “validation study 
sample” and to the entire population as the “validation 
study population.” A hypothetical summary of a valida-
tion study result is shown in Table 1 (adapted from Fig-
ure.  37.1 of Ritchey et  al. [6]). The rows represent the 
outcomes (“positive” or “negative”) as identified by the 
proposed phenotype algorithm. The columns represent 
the phenotype or the true disease status (with or with-
out disease) based on the gold standard. For example, NA 
represents the number of subjects who are identified as 
positive by the algorithm among those who truly have the 
disease. NB, NC, and ND are defined analogously.

Sensitivity and specificity are two fundamental meas-
ures of misclassification. Sensitivity is the proportion of 
subjects identified by the algorithm as positive among 
those who truly have the disease, i.e., NA/(NA + NC). 
Specificity is the proportion of subjects identified by the 
algorithm as negative among those who are truly without 
the disease, i.e., ND/(NB + ND). The disease prevalence in 
the validation study sample is (NA + NC)/N, where N is 
the total number of subjects in the sample.

Table 1  Summary of a typical validation study result (Adapted 
from Figure 37.1 of Ritchey et al. [6].)

N = total number of subjects in the validation study sample 
(N = NA + NB + NC + ND)

NA, NB, NC, ND = number of subjects in each cell

Sensitivity = NA/(NA + NC)

Specificity = ND/(NB + ND)

Disease prevalence = (NA + NC)/N

Outcome based on 
claims data algorithm
(phenotype algorithm)

“True” disease status based on gold 
standard
(phenotype)

With disease (D+) Without disease (D−)

Positive (O+) NA
(true positive)

NB
(false positive)

Negative (O−) NC
(false negative)

ND
(true negative)
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The following equations give the relationship between 
positive and negative DLR and the two misclassification 
measures.

If an appropriate sampling design is employed, the 
validation study sample can be used to estimate the 
sensitivity, specificity, and DLR of the validation study 
population. The precision of the point estimate of each 
measure can be quantified by their respective confidence 
intervals (CI).

We now introduce the notation shown in Table  2. 
First, let Pr(D+;S) denote the probability that a subject 
truly has the disease (D+) in a population of interest S. 
If we consider a randomly sampled subject from S, then 
the probability that a subject has the disease is simply 
the proportion of subjects with the disease in S. If S is 
the validation study population SVS, then Pr(D+;SVS) is 
the disease prevalence of the validation study popula-
tion. Next, let Pr(O+|D+;S) denote the probability that 
a subject’s outcome is positive (O+) according to the 
algorithm in a subset of S with the disease. The expres-
sion Pr(X|Y;S) denotes the conditional probability of X in 
a subset of S in which Y is true. Thus, Pr(O+|D+;SVS) is 
the probability of a positive outcome in a subset of the 
validation study population with the disease, which is 
simply the sensitivity in the validation study population. 
Analogously, Pr(O−|D− ;SVS) is the specificity in the vali-
dation study population.

Positive diagnostic likelihood ratio
(

DLR+
)

= sensitivity/
(

1− specificity
)

Negative diagnostic likelihood ratio
(

DLR−
)

=
(

1− sensitivity
)

/specificity

Comparative cohort database study
In the following, we envision a DB study planning con-
sisting of 4 main steps. The 1st step is to formulate the 

research question and consider possible study design 
and database options for the DB study. We assumed this 
step had been completed and that a comparative cohort 
study based on the claims database was chosen. We also 
assumed the risk ratio (test versus control group) was 
chosen as the relative measure. The 2nd step is to search 
for relevant validation studies and extract usable infor-
mation such as sensitivity, specificity, and other per-
formance measure values. The 3rd step is to consider 
possible values, or a range of possible values, for the risk 
of the outcome event in the control group based on his-
torical information (e.g., clinical trials, observational 
studies). Also, there is likely to be a target risk ratio value 
for the DB study. Such evaluations are commonly con-
ducted in sample size and power calculations for the DB 
study. The 4th step is to evaluate the impact of the perfor-
mance measures on the bias of risk ratio and other fea-
tures of the planned DB study.

Positive‑predictive values
In a comparative cohort DB study, we wish to infer the 
true state of disease based on the proposed claims-based 
algorithm. Because the algorithm is imperfect, as charac-
terized by the validation study results, we need to under-
stand how it performs when applied to the DB study. Two 
such measures of performance are the positive-predictive 
value (PPV) and the negative-predictive value (NPV) [6]. 
In the developments below, estimates of sensitivity, spec-
ificity, and disease prevalence are assumed to be available 
from past validation studies or other sources. Addition-
ally, as before, we distinguish the terms “DB study sam-
ple” and “DB study population.”

PPV is the probability that a subject identified by the 
algorithm as positive truly has the disease. Using Bayes’ 
theorem from probability theory [21, 24], the PPV of 
the algorithm when applied to the DB study population 
(PPVDB) can be expressed as follows, where PDB is the 
disease prevalence of the DB study population:

(1A)

PPVDB = Pr (D+ |O+; SDB)

=
Pr (O+ |D+; SDB)Pr (D+; SDB)

Pr (O+ |D+; SDB)Pr (D+; SDB)+ Pr (O+ |D−; SDB)Pr (D−; SDB)
· · ·Bayes’ theorem

=
Sensitivity · PDB

Sensitivity · PDB +
(

1− Specificity
)

(1− PDB)

Table 2  Notations for prevalence, sensitivity, and specificity

Notation Interpretation

Pr(D + ; S) Probability of true disease (D+) in population S [preva‑
lence]

Pr(O +|D + ; S) Probability of “positive” outcome based on the algorithm 
(O+) in a subset of S with true disease (D+) [sensitivity]

Pr(O −|D − ; S) Probability of “negative” outcome based on the algorithm 
(O−) in a subset of S without true disease (D−) [specific‑
ity]
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Equation  1A follows from the previous line because 
sensitivity and specificity are assumed not to depend on 
the population so that Pr(O+|D+;SDB) = Pr(O+|D+;SVS) 
and Pr(O−|D− SDB) = Pr(O−|D− ;SVS). In practice, the 
plausibility of this assumption should be justified [25]. 
Equation  1B is obtained by dividing the numerator and 
denominator by the term (1 − Specificity). In many vali-
dation studies, an estimate of PPV for the validation study 
itself (PPVVS) is reported. The population value of PPVVS 
is obtained by replacing PDB in Eq.  1A with the disease 
prevalence of the validation population (PVS). It is noted 
that the usual estimate of PPVVS (= NA/(NA + NB)) can be 
obtained by substituting the estimates of the DLR+ and 
PVS from the validation study into Eq. 1B.

By solving Eq. 1B for the DLR+ and by noting that the 
equation holds for either the validation study or the DB 
study population, another useful expression for the DLR+ 
is obtained:

In the terminology of diagnostic tests, DLR+ is equal 
to the ratio of “post-test odds” to the “pre-test odds” 
[18, 19]. Pre-test odds is the odds of disease (D+), and 
post-test odds is the odds of disease when the test result 
is positive (in the current case, when the ocome is O+). 
Under the current assumption, the DLR+ is invariant 
between validation and DB studies.

Analogous developments for the NPV are possible, 
where the DLR− plays the corresponding role.

(1B)=
DLR+ · PDB

DLR+ · PDB + (1− PDB)
.

(2)DLR+ =

(

PPVVS

1− PPVVS

)/(

PVS

1− PVS

)

=

(

PPVDB

1− PPVDB

)/(

PDB

1− PDB

)

=
Post - test odds

Pre - test odds
.

Relative measures of risk
We now examine the impact of misclassifications on 
relative measures of risk, namely, the risk ratio (RR). 
As stated by Ritchey et  al., the ultimate criterion for 
the importance of misclassification is the degree of bias 
exerted on relative measures of risk [6].

Let NTES and NCON indicate the sample sizes of the 
test and control (referent) groups of a hypotheti-
cal cohort DB study, respectively. Similarly, let XTES 
and XCON indicate the corresponding number of sub-
jects with the true disease, which are assumed to be 
known for this hypothetical situation. The expected 
numbers of positive outcomes based on the algorithm 
and the corresponding risk expressions are given in 
Table  3. Table  3 assumes that sensitivity and specific-
ity are invariant between the test and control groups. 
For applications in actual DB studies, the plausibility of 
this “non-differential misclassification error” should be 
justified.

Using the risk expressions in Table 3, we can write the 
expected RR in terms of the true RR, as shown in Eq. 3, 

where RREXP is the expected RR, RRTRUE is the true RR, 
and RCON is the true disease risk of the control group in 
the DB study:

The details of the derivation are shown 
in Appendix A (Additional file  1). The term 
(1− RRTRUE)/

{

RCON ·
(

DLR
+ − 1

)

+ 1
}

 is the bias 
of the RREXP relative to the RRTRUE. If the RRTRUE is 

(3)RREXP = RRTRUE +
1− RRTRUE

RCON ·
(

DLR+ − 1
)

+ 1
.

Table 3  True and expected number of positive outcomes, risks, and risk ratio

Numbers of positive outcomes are those expected under the non-differential misclassification assumption. The numbers include both true- and false-positives based 
on the algorithm.
a Se = sensitivity, Sp = specificity

Group Sample size Number of true positives Expected number of positive outcomes 
identified by the algorithma

Control NCON XCON ECON = XCONSe + (NCON − XCON)(1 − Sp)

Test NTES XTES ETES = XTESSe + (NTES − XTES)(1 − Sp)

Group True risk Expected risk based on the algorithm

Control RCON = XCON/NCON ECON/NCON = RCONSe + (1 − RCON)(1 − Sp)

Test RTES = XTES/NTES ETES/NTES = RTESSe + (1 − RTES)(1 − Sp)

Relative measure True relative measure Expected relative measure

Risk ratio (RR) RRTRUE = RTES/RCON RREXP = (ETES/NTES)/(ECON/NCON)
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greater than 1, then the bias term is always negative in 
this “ideal” situation (see Appendix B, Additional file 1). 
In real-life situations, there may be other sources of 
bias so that the overall bias may not be negative [6, 26].

All calculations were performed and graphs were 
generated using R version 3.6.1 [27].

Results
Positive‑predictive values
Figure 1A displays the expected PPV of the DB study as 
a function of a DLR+ and the disease prevalence of the 
DB study population. A hypothetical range (0.025‒0.4) 
is graphed for the disease prevalence in the DB study 
population. For each value of the disease prevalence, the 
expected PPV of the DB study increases with increasing 
values of DLR+. Figure  1B gives an alternative display 
format in which the x-axis is the disease prevalence, and 
each line represents a value of the DLR+. For each DLR+ 
value, the expected PPV of the DB study increases with 
increasing disease prevalence. If the disease prevalence 
of the DB study population is equal to that of the valida-
tion study, then the PPVs are also expected to be equal. It 
follows that if the disease prevalence of the DB study is 
likely to be lower than that in the validation study, then 
the expected PPV of the DB study would be lower than 
that in the validation study.

In many validation studies, sensitivity and specific-
ity are not available, and only PPVs are reported. Thus, 
previously mentioned assessment methods are not appli-
cable. However, a plausible range of DLR+ can be ascer-
tained by using Eq. 2. Figure 2 shows DLR+ as a function 

of disease prevalence of the validation study (PVS) for 
selected values of the PPV for the validation study 
(PPVVS). Suppose a plausible range of PVS is 0.04‒0.06, 
based on information from the validation study or other 
sources, and the PPVVS is 0.8 according to the validation 
study. From Fig.  2, the corresponding range of DLR+ is 
approximately 63‒96. If desired, a range of values for 

Fig. 1  Expected PPV of the DB study as a function of DLR+ and disease prevalence. A Positive-predictive value (PPV) of the database (DB) study is 
plotted against positive likelihood ratio (DLR+). Each line represents a fixed value of disease prevalence of the DB study population. A hypothetical 
range of disease prevalence values is shown (0.025–0.4). B Expected PPV is plotted against a hypothetical range of the disease prevalence of the DB 
study. Each line represents a fixed value of DLR+. A range of values for the DLR+ is shown (20–1000). Both plots are based on Eq. 1B

Fig. 2  DLR+ as a function of disease prevalence of the validation 
study population. Positive diagnostic likelihood ratio (DLR+) is plotted 
against disease prevalence of the validation study population. Lines 
are drawn for selected values of positive-predictive value (PPV) for 
the validation study. The plot is based on Eq. 2 for the validation study 
population
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PPVVS may be considered to account for the precision of 
the estimate. Once the value of DLR+ is in hand, one can 
refer to Fig. 1, as before.

Relative measures of risk
Figure 3A displays the RREXP as a function of the DLR+ 
and the true disease risk of the control group of the DB 
study. For illustrative purposes, the RRTRUE is set to 2.0, 
and a hypothetical range of values (0.01‒0.1) for the true 
disease risk of the control group (RCON) is graphed. For 
each value of the control group’s risk, the degree of bias 
decreases with increasing values of the DLR+. Figure 3B 
gives an alternative display format in which the x-axis is 
the control group risk. For each value of the DLR+, the 
degree of bias decreases with increasing values of the 
control group risk. Figure 3A and B permit a more com-
pact and transparent way of visualizing the relationship 
between the expected RR and the control group risk of 
the DB study, as compared with a traditional display for-
mat shown in Appendix Figure X1 (Additional file 1).

Use examples
Published examples of the DLR in the context of outcome 
validation studies are rare. Barbhaiya et  al. (2017) con-
ducted a validation study of claim-based phenotype algo-
rithms for identifying the diagnosis of avascular necrosis 
[22]. In their paper, the DLR+ was used as a summary 
measure, along with the sensitivity, specificity, and PPV. 
Shrestha et  al. (2016) conducted a systematic review 
of administrative data-based phenotype algorithms for 

the diagnosis of osteoarthritis [23]. In their review, the 
DLR+ was included as a summary measure of the phe-
notype algorithms, along with sensitivity, specificity, 
and expected PPV values at three hypothetical values of 
the disease prevalence. We recommend a routine inclu-
sion of DLR in a validation study report whenever it is 
computable.

As a further illustration of the use of the DLR+, we 
provide two artificial examples based on data from a 
systematic review by McCormick et al. [17]. The review 
identified 30 studies on administrative data-based phe-
notype algorithms for the diagnosis of acute myocardial 
infarction (MI). We envision planning a DB study with 
acute MI outcomes.

In the first artificial example, we selected three stud-
ies that reported sensitivity, specificity, PPV, and NPV: 
Kennedy et al. [28], Pladevall et al. [29], and Austin et al. 
[30]. Many studies in the review reported only PPVs. 
Table  4 provides a summary of the three studies. We 
supplemented the DLR+ and its 95% confidence interval 
(CI), which were not included in either the systematic 
review or the original reports. In addition, we calcu-
lated two features of the planned DB study that would 
be expected under specific assumptions. The first feature 
is the expected PPV when the prevalence of acute MI is 
assumed to be 0.05 in the planned DB study. The second 
feature is the relative bias of the RR when the control 
group’s risk of acute MI and the true RR are assumed to 
be 0.03 and 2.0, respectively. The relative bias is defined 

Fig. 3  Expected RR as a function of DLR+ and the true disease risk. Expected risk ratio (RR) of the database (DB) study is shown as a function 
of positive diagnosis likelihood ratio (DLR+) and the true disease risk of the control (referent) group of the DB study. The true RR is set to 2.0. A 
Expected RR is plotted against DLR+. A hypothetical range of values for the true disease risk of the control group is shown (0.01–0.1). B Expected RR 
is plotted against the true disease risk of the control group. A range of values for the DLR+ is shown (20–1000). The right axis of each plot displays 
the scales in terms of % bias relative to the true RR. Both plots are based on Eq. 3. Figure X1 (Additional file 1) gives a more traditional display in 
which sensitivity and specificity are considered separately
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Table 4  Use example of DLR+ in validation studies and in planning of a DB study

Threevalidation studies included in a systematic review by McCormick et al. are utilized [17].
a Positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (DLR+)
b Expected PPV of the planned database (DB) study at population prevalence of 0.05. The calculation was based on Eq. 1B.
c Expected relative bias of risk ratio (RR) at DB study control group risk of 0.03. The relative bias is defined as bias/true RR × 100%, where the true RR is assumed to be 2. 
The calculation was based on Eq. 3.
d 95% confidence interval (CI): Exact method of Clopper-Pearson [31] was use for sensitivity, specificity, PPV, and NPV. Log-transformed approximate method of Katz 
was used for DLR+ [32]. R packages “binom” [33] and “DescTools” [34] were used in the calculation.
e Range corresponding to the 95% CI of DLR+

Cell counts Kennedy [28] Pladevall [29] Austin [30]

N 20,386 5329 58,816

NA 67 401 20,048

NB 43 333 2594

NC 4 95 2521

ND 20,272 4500 33,653

Validation study Estimate 95%CId Estimate 95%CI Estimate 95%CI

Sensitivity 0.944 0.862, 0.984 0.808 0.771, 0.842 0.888 0.884, 0.892

Specificity 0.998 0.997, 0.998 0.931 0.924, 0.938 0.928 0.926, 0.931

Prevalence 0.003 0.003, 0.004 0.093 0.085, 0.101 0.384 0.380, 0.388

PPVa 0.609 0.511, 0.701 0.546 0.509, 0.583 0.885 0.881, 0.890

NPVa 1.000 0.999, 1.000 0.979 0.975, 0.983 0.930 0.928, 0.933

DLR+a 445.8 329.0, 604.2 11.7 10.5, 13.1 12.4 12.0, 12.9

DB study Expected Rangee Expected Range Expected Range

PPV at 0.05b 0.959 0.945, 0.970 0.382 0.356, 0.409 0.395 0.386, 0.404

Relative bias of RR(%) 
at 0.03c

− 3.49 − 4.61, − 2.62 − 37.8 − 38.9, − 36.7 − 37.2 − 37.6, 
− 36.9

Fig. 4  An example of application of Eqs. 1B and 3 to data from actual validation studies. Validation studies by Austin [30], Pladevall [29] and 
Kennedy [28] were selected from the systematic review by McCormick et al. [17]. A Expected positive-predictive value (PPV) of the planned 
database (DB) study is plotted against the disease prevalence of the DB study. B Expected risk ratio (RR) of the planned DB study is plotted against 
the control group risk of the DB study. The right axis is in terms of relative bias scale. In each panel, center, lower and upper lines for each study 
correspond to the point estimate and lower and upper bounds of 95% confidence interval of DLR+
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as the bias divided by the true RR multiplied by 100%. 
The assumptions were chosen for illustrative purposes.

The DLR+ value for the Kennedy study is nearly 40 
times greater than that of the other two studies (Table 4). 
This translates to a large difference in the expected PPV 
and bias of the RR between Kennedy and the other stud-
ies. Figure 4A displays the expected PPV in the DB study 
for a hypothetical range of disease prevalence, which 
is set to 0.01‒0.09 for our illustration. For the Kennedy 
study, the expected PPV at a disease prevalence of 0.05 is 
0.959, which contrasts with values below 0.4 for the other 
two studies (Table 4 and Fig. 4A). Figure 4B displays the 
expected bias of the RR for a plausible range of the con-
trol group’s risk, which is assumed to be 0.01‒0.05 for 
our illustration (true RR is set to 2.0). For the Kennedy 
study, the bias of RR is − 3.49% at a control group risk 
of 0.03, which contrasts with values less than − 37% for 
the other two studies (Table 4 and Fig. 4B). Additionally, 
the disease prevalence is 0.003 for the Kennedy study, 
which is notably lower than that of the other two stud-
ies (Table 4). Thus, planning for the DB study is greatly 
affected by the choice of validation studies. In actual 
applications, one needs to evaluate various features of 
the validation studies carefully and select those stud-
ies that are most relevant for the planned DB study. The 
validation study features to be scrutinized might include 
the study population, the “gold standard” criteria, and 
the outcome definition. Also, in actual applications, the 
range of parameters such as the disease prevalence and 
control group risk should be judiciously selected by each 
investigator based on past information and to cover rel-
evant expected scenarios in the planned DB study.

The second example involves a case in which only PPVs 
are reported. In this case, the previous type of assessment 
is not applicable. McCormick et  al. [17] reported a sys-
tematic difference in PPV values between studies with 
and without cardiac troponin measurement as a part of 
the “gold standard.” For this illustration, we considered 
eight phenotype algorithms from seven studies in Fig. 2A 
of McCormick et  al. [17], whose gold standard criteria 
included cardiac troponin measurements. Figure 5 plots 
the DLR+ against the disease prevalence for the reported 
PPV value for each algorithm. Each line is drawn based 
on the relationship in Eq. 2. A wide range of disease prev-
alence is displayed to consider various possibilities.

A detailed examination of each validation study and the 
related sources may provide a hint on a narrower plausible 
range for the disease prevalence. Suppose that this plausible 
range is taken to be 0.1‒0.3 (shown by the shaded region 
in Fig.  5). Next, consider a freely moving horizontal line 
moving up from the bottom of the figures. The horizontal 
line crosses the first algorithm (Varas-Lorenzo, 2008) at 
the disease prevalence of 0.3 (DLR+  = 6). As the horizontal 

line continues to move up, it will cross multiple algorithms. 
Analogously, a horizontal line moving down from the top 
of the figure crosses the first algorithm (Merry, 2009) at the 
disease prevalence of 0.1 (DLR+  = 279). Thus, the range of 
the DLR+ values that is consistent with all eight algorithms 
is 6‒279; this range is indicated by a pair of horizontal blue 
solid lines in Fig.  5. In actual applications, this range for 
DLR+ may be too wide, and algorithm selection may need 
to be refined further. One idea to narrow the range might 
be to consider DLR+ values that are consistent with the 
“median” algorithm, which, in this case, are the two central 
algorithms (i.e., Kiyota 2004s and Barchielli 2010). A pair of 
horizontal blue dotted lines in Fig. 5 indicates such a range 
(Note: the Barchielli 2010 and Hammar 2001 algorithms 
nearly overlap in Fig. 5). Once a plausible range of DLR+ 
value is determined based on assessments such as above, 
one can compute the corresponding range for the expected 
RR using Eq. 3.

Discussion
In this paper, we investigated the utility of the DLR in 
the context of an outcome validation study. Positive DLR 
was identified as a pivotal parameter that connects the 
expected PPV with the disease prevalence in the planned 

Fig. 5  An example of application of Eq. 2 to algorithms from 
validation studies. Positive likelihood ratio (DLR+) is plotted against 
the disease prevalence of the validation study. Each line is drawn 
corresponding to the reported PPV value for each algorithm. 
Seven studies (eight algorithms) were selected from Fig. 2A of 
the systematic review by McCormick et al. [17]. Ordering of the 
algorithms in the legend corresponds to the order of lines in the 
graph. Included algorithms and the reported PPVs are: Merry 2009 
(0.9688), Kiyota 2004p (primary diagnosis) (0.9411), Ainla 2006 (0.933), 
Kiyota 2004s (primary or secondary diagnosis) (0.9245), Barchielli 
2010 (0.8602), Hammar 2001 (0.8583), Heckbert 2004 (0.8302), 
and Varas-Lorenzo 2008 (0.7202). The gray band indicates disease 
prevalence between 0.1 and 0.3. Horizontal blue solid lines indicate 
DLR+ values that are consistent with all eight algorithms; blue dotted 
lines indicate DLR+ values that are consistent with the “median” 
algorithm
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DB study, where the positive DLR is equal to sensitivity/
(1-specificity). Moreover, positive DLR emerged as a piv-
otal parameter that links the expected RR with the dis-
ease risk of the control group in the planned DB study.

The importance of thorough sensitivity analyses after 
the completion of a DB study is well established [6, 35–
38]. In contrast, there has been less focus on what can be 
done to improve the planning of a DB study. During the 
planning phase, careful assessments of outcome defini-
tions and other elements of the study design should be 
conducted. Toward this end, the DLR provides a trans-
parent and informative summary of the relationship 
between PPVs that can be expected in the planned DB 
study based on the results of a validation study (Fig. 1). 
Additionally, the expected degree of bias of the RRs can 
be characterized clearly (Fig. 3).

There are some limitations to the method described 
above. As mentioned in “Methods” section, there are 
assumptions in the derivation of the equations, such as 
the non-differential misclassification error. The invari-
ance of sensitivity and specificity between the validation 
study and the DB study populations is another assump-
tion. If assessments of sensitivity to deviations from these 
assumptions are desired, an investigator can start with 
an expression such as that in Table 3 and use computer 
calculations to evaluate performance under any arbitrary 
settings. In particular, the assumption of non-differential 
misclassification error requires careful considerations. In 
addition, extensions to other relative measures such as 
the risk difference and odds ratio as well as non-binary 
variables (e.g., continuous, categorical) may be of inter-
est. Finally, although we focused on claim-based DB 
studies, some features are also relevant for DB studies 
based on electronic health records.

Conclusions
Wider recognition of the full utility of the DLR in the 
context of validation studies will make a meaningful 
contribution to the promotion of good practice in the 
planning, execution, analysis, and interpretation of DB 
studies.
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