
Harford et al. 
BMC Medical Informatics and Decision Making           (2022) 22:21  
https://doi.org/10.1186/s12911-021-01730-4

RESEARCH

A machine learning approach for modeling 
decisions in the out of hospital cardiac arrest 
care workflow
Samuel Harford1, Marina Del Rios2*, Sara Heinert3, Joseph Weber4, Eddie Markul5, Katie Tataris6, Teri Campbell7, 
Terry Vanden Hoek7 and Houshang Darabi1 

Abstract 

Background:  A growing body of research has shown that machine learning (ML) can be a useful tool to predict how 
different variable combinations affect out-of-hospital cardiac arrest (OHCA) survival outcomes. However, there remain 
significant research gaps on the utilization of ML models for decision-making and their impact on survival outcomes. 
The purpose of this study was to develop ML models that effectively predict hospital’s practice to perform coronary 
angiography (CA) in adult patients after OHCA and subsequent neurologic outcomes.

Methods:  We utilized all (N = 2398) patients treated by the Chicago Fire Department Emergency Medical Services 
included in the Cardiac Arrest Registry to Enhance Survival (CARES) between 2013 and 2018 who survived to hospital 
admission to develop, test, and analyze ML models for decisions after return of spontaneous circulation (ROSC) and 
patient survival. ML classification models, including the Embedded Fully Convolutional Network (EFCN) model, were 
compared based on their ability to predict post-ROSC decisions and survival.

Results:  The EFCN classification model achieved the best results across tested ML algorithms. The area under the 
receiver operating characteristic curve (AUROC) for CA and Survival were 0.908 and 0.896 respectively. Through cohort 
analyses, our model predicts that 18.3% (CI 16.4–20.2) of patients should receive a CA that did not originally, and 
30.1% (CI 28.5–31.7) of these would experience improved survival outcomes.

Conclusion:  ML modeling effectively predicted hospital decisions and neurologic outcomes. ML modeling may 
serve as a quality improvement tool to inform system level OHCA policies and treatment protocols.

Keywords:  Out of hospital cardiac arrest, Neurological outcome, Decision modeling, Machine learning, Deep 
learning
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Introduction
Out-of-hospital cardiac arrest (OHCA) is a critical public 
health burden affecting approximately 400,000 persons 
in the United States annually where only 10% survive [1]. 
While advances in resuscitation science have improved 

survival rates, mortality varies widely by geography, 
emergency medical services (EMS) agency, and hospi-
tal [2]. While some of the variation has been attributed 
to OHCA characteristics (i.e., presenting rhythm, age, 
receipt of bystander cardiopulmonary resuscitation), 
variations in post-cardiac-arrest hospital care, such as 
use of coronary angiography and revascularization, when 
needed, may explain some of the heterogeneity seen 
when comparing survival and good neurological out-
come [3].
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Machine Learning (ML) is a subfield of artificial Intelli-
gence (AI) where algorithms learn tasks by studying high 
volumes of data [4, 5]. The advent of big data and use of 
electronic health records enable us to pursue solutions to 
critical health issues. While traditional statistical meth-
ods are the standard for investigating patient and treat-
ment intervention and associated outcomes, studies have 
suggested that ML algorithms provide greater insights 
across a wide variety of clinical settings [6]. AI models 
use data to predict future events on the basis of the sta-
tistical weight of historical correlations and identify sen-
sitive points within the system of care to direct strategic 
allocation of resources to improve disparities in clinical 
outcomes. ML has already proved useful in healthcare 
applications including medical imaging [7], disease out-
break prediction [8], drug discovery/usage [9, 10], and 
hospital workflow optimization [11, 12].

The OHCA care workflow is a time-sensitive pro-
cess that requires quick and effective decision making 
throughout the chain of survival. ML has been applied 
at several stages of the care workflow to aid in predict-
ing risk and recognition of cardiac arrest. During calls 
to emergency centers, conversations can be monitored 
using a ML model to help identify a cardiac arrest [13]. 
Wearable devices can monitor vitals to predict the occur-
rence of a cardiac arrest for high risk individuals [14]. ML 
has also been used to predict in-hospital cardiac arrests 
(IHCA) based on vital monitoring [15].

Previous ML studies in OHCA have been limited by 
small population size and lack of diversity [16], absence 
of pre-hospital data in model development [17], and by 
not discriminating overall survival from survival with 
good neurologic outcomes [17]. In addition, there remain 
significant research gaps on the utilization of ML mod-
els for post-return of spontaneous circulation (ROSC) 
decision-making throughout the OHCA workflow and 
their impact on survival outcomes. Powerful and afford-
able computer technologies enable us to combine big 
data to evaluate interactions that affect decision-making 
and survival. This study aims to develop ML models that 
effectively predict hospital’s post-ROSC practice to per-
form coronary angiography in adult patients with ROSC 
after OHCA and subsequent neurologic outcomes.

Methods
This study was approved by the Office for the Protec-
tion of Research Subjects of the University of Illinois at 
Chicago.

Study setting
The Chicago Fire Department (CFD) is the sole EMS 
agency providing emergency response and transport 
for 911 calls for Chicago’s approximately three million 

residents. Upon identification of an OHCA by EMS dis-
patchers, a basic or advanced life support fire suppression 
company, and advanced life support transport ambulance 
are dispatched to the cardiac arrest. The Chicago EMS 
system responds to over 2500 OHCA incidents annu-
ally and has 33 receiving hospitals for OHCA incidents, 
including 24 ST-elevation myocardial infarction (STEMI) 
hospitals with interventional cardiology and targeted 
temperature management capabilities [18]. Per proto-
col, all OHCA patients treated by CFD EMS who either 
achieve ROSC or with refractory ventricular fibrillation 
or ventricular tachycardia are transported to STEMI 
receiving centers in order to ensure access to early coro-
nary angiography and revascularization as these are a 
critical component of post-resuscitation care [19].

Data collection
This study utilizes Cardiac Arrest Registry to Enhance 
Survival (CARES) data for Chicago [20]. The CARES reg-
istry is the largest cardiac arrest data source in the United 
States, collecting 911 dispatch centers, EMS providers, 
and receiving hospital data from over 1800 EMS agencies 
and 2200 hospitals [21].

The CFD EMS treated 12,904 non-traumatic OHCA 
incidents between September 2013 and December 2018. 
This study focuses on OHCA workflow decisions made 
post-ROSC including 2398 OHCA incidents that sur-
vived to hospital admission. Figure  1 shows how the 
data is preprocessed for the study from the full Chi-
cago CARES data. The information used for modeling 
includes 23 input features for decision modeling and 24 
input features for survival modeling (see Additional file 1: 
Table S2 for detailed lists of the decisions and outcomes 
in this data source). During the modeling process for 
the decision and survival models, the information has a 
sequential nature where the only new piece of informa-
tion in the survival model is the Coronary Angiography. 
The input features used to develop and evaluate models 
are all categorical features. To accommodate ML models, 
the categorical features are either one-hot encoded or 
transformed into a vectorized representation [22]. Tra-
ditional forms of machine learning algorithms require 
categorical features to be one-hot encoded where a single 
feature is transformed into multiple features that repre-
sent the original information. For example, if the feature 
regarding the initiation of cardiopulmonary resuscitation 
(CPR) has the options of Lay Person, First Responder, or 
EMS Personnel and the instance receives First Responder 
CPR the value is encoded as [0,1,0]. In the neural network 
models, certain architectures allow for the utilization of 
embedding layers. These embedding layers allow for the 
model to learn a vectorized representation of the features 
instead of going through the one-hot encoding process.
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This study models post-ROSC decisions and the neu-
rologic outcome of OHCA incidents. CARES includes 
data on two post-ROSC decisions: (1) whether a patient 
underwent targeted temperature management (TTM) 
and (2) whether coronary angiography (CA) was per-
formed. The 2015 AHA Guidelines recommended 
(Class I) that comatose adult patients with ROSC after 
OHCA have TTM and CA for OHCA patients with 
suspected cardiac etiology of arrest and ST-elevation 
on ECG (Class I). The 2015 AHA Guidelines also stated 
that CA is reasonable even in the absence of ST-ele-
vation (Class IIa) as CA, alone or as part of a bundle 
of care, is associated with improved myocardial func-
tion and neurological outcomes [23–25]. Due to wide 
variation in TTM practice and absence of granular 
data regarding individual hospital practices (e.g., tem-
perature selected, length of temperature management, 
rewarming practices), we did not consider the decision 
to perform TTM as one that could be reliably predicted 
in decision models. Instead we opted for the post-
ROSC decision of CA, where the modeling process 
aims to determine whether or not a patient is expected 
to receive a Coronary Angiography. The CA model 
refers to the decision model throughout this paper.

We also examine the outcome of neurologic function 
from the hospital record, measured in CARES by Cer-
ebral Performance Category (CPC) score [26]. For this 
study, neurologic outcome was modified to a binary 
classification based on CPC score: Class 0 of individu-
als who survived with functional neurological outcomes 
(CPC1/2) and Class 1 of patients with non-functional 
neurological outcomes (CPC3/4/5). The CPC model aims 
to classify patients into one of these classes based on the 
care and condition of the patient. The CPC model refers 
to the survival model throughout this paper.

Machine learning modeling
To classify the OHCA workflow decisions and neurologi-
cal outcome, we train ML models using a subset of the 
available data. We then evaluate the performance of the 
developed model on the remaining data, i.e. data not 
used in the training phase. For the 2398 OHCA instances 
in the study, 21.5% receive a Coronary Angiography, and 
20.8% have a neurological outcome of Class 0. Figure  1 
subsets the 2398 OHCA instances for this study into four 
sets: training, validation, testing, and cohort analysis. The 
modeling sets are split randomly across the data time-
frame because the decision-making policies implemented 

Fig. 1  Data flow for machine learning modeling subsets
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during the timeframe should be consistent. The training 
set consists of 957 events (40% of data), and is used to 
construct the ML models. The validation set consists of 
241 events (10% of data), and is used for model param-
eter optimization and model comparison. The testing set 
consists of 600 events (25% of data), and is used to evalu-
ate models on completely unseen data. The cohort analy-
sis set consists of 600 events (25% of data), and is used to 
perform further analysis regarding post-ROSC decisions 
for cohorts that will be formally defined in the Cohort 
Analysis subsection. Additional file 1: Table S1 provides 
additional details for the data demographics for each set.

To model the decisions and survival outcomes we com-
pare several ML algorithms. LightGBM [27], XGBoost 
[28], Decision Trees [29], Random Forest [30], Gradient 
Boosting [31], k-Nearest Neighbor [32], Logistic Regres-
sion [33], Support Vector Machine [34], and Deep Neural 
Networks [35]. ML models including Logistic Regression, 
Decision Trees, and k-Nearest Neighbor are popular 
algorithms in a variety of healthcare applications because 
they are highly interpretable to the user. The remain-
ing developed ML models are generally more power-
ful algorithms, however they result in low interpretable 
outcomes. During the training process for all models a 
grid search of parameters performed to ensure that each 

model is optimized. Additional file  1: Table  S3 provides 
the detailed parameters that are explored during this 
process.

For the neural network model, we utilized a modified 
Embedded Fully Convolutional Network (EFCN) [36]. 
Figure 2 illustrates the EFCN model architecture for the 
two types of models: Coronary Angiography and CPC 
Score. These two models are developed in a sequence 
where the Coronary Angiography EFCN is trained first, 
then the CPC Score EFCN. Due to the sequential nature 
of the modeling flow and the utilization of neural net-
works, transfer learning is applied by using pre-trained 
embedding vectors [37]. As shown in Fig. 2, the embed-
ding weights for the Coronary Angiography EFCN model 
are randomly initialized and updated during training. 
For the CPC Score EFCN model, the pre-trained embed-
ding vectors (yellow dashed boxes) are used as the initial 
weights for the embedding vectors and then updated 
during the training from the Coronary Angiography clas-
sification. The only randomly initialized weights for the 
CPC Score EFCN model is the embedding vector for the 
Coronary Angiography input, which is the only new fea-
ture in this model.

Each model is constructed using the training set 
and was iteratively improved using the validation set. 

Fig. 2  Sequence of EFCN architectures with transfer learning
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The model that yields the best area under the receiver 
operating characteristic curve (AUROC) on the vali-
dation data is selected as the best model. The higher 
the AUROC, the better the performance of the model 
at distinguishing between classes. This model is then 
evaluated on the unseen testing data. AUROC is used 
as the primary evaluation metric. In addition, other 
metrics including the accuracy, area under the preci-
sion-recall curve (AUPRC), F1 Score, Matthew’s corre-
lation coefficient (MCC) [38], and the Brier score loss 
(BSL) [39] are reported for all results. In addition, the 
SHapley Additive exPlanations (SHAP) [40] values for 
the best method is present. This method utilizes game 
theory to explain the prediction of an instance by cal-
culating the contribution of each feature to the final 
prediction.

Cohort analysis
Chicago has 33 receiving hospitals. Using the devel-
oped ML models, cohort analysis of post-ROSC deci-
sions was performed. Prior to analysis, the hospitals 
first are broken into cohorts based on the CPC1/2 rates 
for applicable OHCA instances. This analysis has the 
potential to be conducted on all hospitals, but to ensure 
generalizability we removed 18 hospitals from this anal-
ysis due to an insufficient number of OHCA instances 
to draw conclusions about the post-ROSC decisions. 
The cohort analysis data set includes 15 hospitals with 
at least 75 OHCA instances for the study period. The 15 
hospitals are broken into three cohorts with five hospi-
tals in each cohort. The CPC1/2 rate of each cohort is 
determined based on the combined CPC1/2 rates of the 
training and validation instances of the hospitals in the 
respective cohort. Cohort 1 consists of the 5 hospitals 
with the highest CPC1/2 rate of 35.9. Cohort 2 consists 
of the 5 hospitals with the next highest CPC1/2 rate 
of 18.3. Cohort 3 consists of the remaining 5 hospitals 
with a CPC1/2 rate of 13.2. Additional file 1: Table S1 
provides a demographic breakdown of these cohorts.

The cohorts were used to retrain our ML models to 
evaluate how decisions differ based on hospital cohorts. 
Modeling retraining is done by taking the pretrained 
weights from the full modeling process and allows 
the model to reoptimize because on just a specific 
cohorts training set. The retraining process allows for 
the models to better reflect a cohorts decision making 
without started from randomized network weights. 
These cohort models are used to analyze how differ-
ent cohorts make decisions when patients arrive with 
specific field conditions. The potential field conditions 
for analysis include the field data listed in Additional 
file 1:Table S2.

Results
The training set consists of 957 OHCA patients. Of 
these patients, 209 receive a Coronary Angiography, 
and 198 have a neurological outcome of Class 0. The 
training set is used to develop the ML models. Each 
model utilizes the training data to learn the underlying 
patterns in the data with the objective of performing 
the classification task. For the decision making model, 
the objective is to learn how the decision to perform a 
Coronary Angiography is being made based on the real 
instances recorded in the data.

The validation set consists of 241 cardiac arrest 
patients, of which, 52 receive a Coronary Angiography, 
and 51 have a neurological outcome of Class 0. Addi-
tional file  1: Table  S3 provides detailed information 
about the optimized hyperparameters for each model. 
Table  1 presents the AUROCs for each ML model on 
the tasks of modeling CA and CPC. The EFCN model 
achieves the best AUROC for CA and CPC with scores 
of 0.8836 and 0.9272, respectively. Additional file  1: 
Table  S4 provides complete modeling results of all 
models with a variety of metrics and complete confu-
sion matrices.

The testing set consists of 600 cardiac arrest patients, 
of which 130 receive a CA, and 130 have a neurological 
outcome of Class 0. The AUROC of the CA and CPC 
EFCN models on the testing set are 0.9079 and 0.8967, 
respectively. Additional file 1: Table S2 provides SHAP 
value averages for each model broken by class. Addi-
tional file  1: Table  S4 provides information about the 
testing results of all models and additional evaluation 
metrics.

The cohort analysis set consists of 600 cardiac arrest 
patients. For these 600, 94 are removed in unused hos-
pitals as discussed in the Cohort Analysis subsection. 
For the cohorts there are 132, 156, and 218 cardiac arrest 
patients in Cohorts 1–3, respectively. Each of these 
cohorts have 26, 34, and 43 patients that receive a CA, 
respectively. The CA EFCN model is reoptimized based 
on the Cohort 1 training and validation data. When eval-
uating the performance of the reoptimized model on the 
respective cohort sets, AUROCs of 0.9761, 0.6601, and 
0.6371 are achieved for the respective cohorts. Table  2 
demonstrates the expected model changes of the reopti-
mized Cohort 1 model on the other 2 cohorts. This table 
first shows the patients that did not receive a Coronary 
Angiography and then what happens to their expected 
output where a positive change means that a patient is 
now expected to survive with CPC1 or 2. The Cohort 1 
model expected 33 of the 175 Cohort 3 patients without a 
CA to be given a CA. Then using the survival model, the 
Cohort 1 model predicts a positive change in survival for 
10 of the 33 patients with a changed CA.
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Discussion
Our decision and survival models achieve testing 
AUROCs of 0.9079 and 0.8967, respectively. These evalu-
ation metrics are similar to the AUROCs of the validation 
set, which suggests these models do well in generalizing 
to unseen data. Our cohort analysis showed how mod-
eled changes in decisions could impact OHCA survival. 
When evaluating the lowest tertile (Cohort 3) with mod-
els based on the highest tertile (Cohort 1), our model 
showed a change in the decision to perform CA for 
18.86% of the patients and predicted a positive impact in 
CPC class for 30.3% of the patients with a changed deci-
sion. To our knowledge, this is the first study to show that 
ML modeling can not only effectively predict patient out-
come after an OHCA but can also predict hospital prac-
tice to perform CA post-ROSC.

Because decision-making in healthcare often involves 
large amounts of data, ML and simulation can be use-
ful tools to predict how different variable combinations 
affect patient outcomes [6]. ML has been successfully 
used in prognosis, diagnosis, treatment, clinical work-
flow, and expanding the availability of clinical expertise 
[41]. In our previous work, a ML model using data from 
the Chicago CARES dataset had an AUROC of 0.825 
in predicting survival with favorable neurological out-
comes among patients with a witnessed OHCA [36]. A 
Korean study of deep learning ML models used elec-
tronic health record data to predict subsequent cardiac 

arrest in hospitalized patients with an AUROC of 0.850 
[15]. ML models of OHCA can also predict survival 
outcome. A study from the Swedish Registry of Car-
diopulmonary Resuscitation (SRCR) reported an accu-
racy of 0.82 in predicting survival after OHCA [42]. 
The Korean OHCA registry had a better performance 
in predicting neurologic outcomes with an AUROC of 
0.953, but this study included only patients who had 
sustained ROSC [43]. In our study utilizing data from 
patients who survived to hospitalization post-OHCA, 
the AUROC of 0.8967 for survival with functional CPC 
was better than both previous studies.

Perhaps the most powerful use of ML models is as vir-
tual laboratories for examining the interaction of treat-
ment strategies and interventions under different patient 
variables and systems of care circumstances that may be 
otherwise costly, time-consuming, or even unethical to 
manipulate in the real world. Such models can help deci-
sion-makers within OHCA systems of care make tactical 
decisions regarding resource allocation or adapt treat-
ment guidelines to local context. Ours is the first model 
to predict decisions with a high accuracy level regarding 
provision of CA after OHCA with an AUROC 0.8836. 
Moreover, we were able to show that when hospitals in 
Cohort 3 (lowest CPC tertile) changed the decision-
making regarding coronary angiography to resemble 
decisions made by Cohort 1 (highest CPC tertile), more 
patients could survive with functional neurologic 

Table 1  Results on validation set in terms of AUROC

Model CA CPC

LightGBM 0.7050 0.7462

Random Forest 0.6641 0.6437

XGBoost 0.6639 0.7561

Gradient Boost 0.6619 0.6977

Decision Tree 0.6415 0.6537

k-Nearest Neighbor 0.6781 0.7077

Logistic Regression 0.6937 0.7417

EFCN 0.8836 0.9272

Table 2  Cohort analysis of the reoptimized Cohort 1 EFCN models on the other cohort data

Cohort 2
(N = 156)

Cohort 3
(N = 218)

Patients that were not initially given CA, 
that the model predicts to get CA
23/122
(18.85%)

No change in CPC class
18/23 (78.3%)

Patients that were not initially given CA, 
that the model predicts to get CA
33/175
(18.86%)

No change in CPC class
23/33 (69.7%)

Positive change in CPC class
5/23 (21.7%)

Positive change in CPC class
10/33 (30.3%)

Negative change in CPC class
0/23 (0%)

Negative change in CPC class
0/33 (0%)
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outcome. OHCA systems of care can use ML models to 
critically review OHCA treatment guidelines and test 
how different decisions may affect patient outcomes 
before costly and time-consuming implementation and 
training.

Our findings also have significant implications for how 
emergency systems of care define cardiac arrest care 
centers (CACs). Some studies have suggested that hos-
pital case volume and coronary angiography capabilities 
are associated with better outcomes [44–47]. However, 
post-OHCA care is complex and requires the coordina-
tion of multiple specialties including neurointensivists, 
cardiologists, pulmonary, and critical care specialists, to 
name a few. Our study demonstrates the power of ML as 
a tool to inform decision-making for systems of care. In 
the future, EMS systems of care without formalized CAC 
agreements could develop ML models to identify which 
hospitals to preferentially transport patients post-OHCA. 
ML models can also be developed to perform continu-
ous quality improvement of treatment in the field and on 
the hospital side of care. Hospitals can also use ML for 
benchmarking against other hospitals within the same 
system of care and to simulate how changes in local treat-
ment guidelines impact patient outcomes before imple-
menting these changes at a larger scale. These ML models 
can also be adapted to other emergency systems of care 
such as stroke, myocardial infarction, and trauma.

One of our study limitations is its limited generaliz-
ability as external validation is needed to further inter-
rogate the performance of the final model. Another 
important limitation is our inability to define why hos-
pitals make different interventions decisions although 
caring for patients with similar demographics and car-
diac arrest characteristics. Specifically, the CARES data 
does not include data on the presence or absence of 
ST-elevation on EKG and it does not provide sufficient 
detail to measure and compare the utilization of other 
resources, such as expertise in neuroprognostication or 
the presence of a cardiac arrest champion. The CARES 
data set is also limited in that it does not include details 
on comorbid illnesses that influence prognostication 
and the decision to perform CA such as cancer and end 
stage renal disease. Despite the data limitations, our 
models show promise for ML as a tool to predict hos-
pital variations in post-ROSC care and subsequent neu-
rologic outcome in OHCA.

Conclusion
Our study showed a modeled difference in a decision 
to perform coronary angiography between hospitals by 
tertile for survival with CPC 1–2. Artificial intelligence 
and ML can be a valuable tool to guide systems of care 

decision-making. Future research may develop a more 
reliable decision support network by incorporating 
more detailed individual patient-level and system level 
features.
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