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Abstract 

Background:  Information retrieval (IR) help clinicians answer questions posed to large collections of electronic medi-
cal records (EMRs), such as how best to identify a patient’s cancer stage. One of the more promising approaches to 
IR for EMRs is to expand a keyword query with similar terms (e.g., augmenting cancer with mets). However, there is a 
large range of clinical chart review tasks, such that fixed sets of similar terms is insufficient. Current language models, 
such as Bidirectional Encoder Representations from Transformers (BERT) embeddings, do not capture the full non-
textual context of a task. In this study, we present new methods that provide similar terms dynamically by adjusting 
with the context of the chart review task.

Methods:  We introduce a vector space for medical-context in which each word is represented by a vector that 
captures the word’s usage in different medical contexts (e.g., how frequently cancer is used when ordering a pre-
scription versus describing family history) beyond the context learned from the surrounding text. These vectors are 
transformed into a vector space for customizing the set of similar terms selected for different chart review tasks. We 
evaluate the vector space model with multiple chart review tasks, in which supervised machine learning models 
learn to predict the preferred terms of clinically knowledgeable reviewers. To quantify the usefulness of the predicted 
similar terms to a baseline of standard word2vec embeddings, we measure (1) the prediction performance of the 
medical-context vector space model using the area under the receiver operating characteristic curve (AUROC) and (2) 
the labeling effort required to train the models.

Results:  The vector space outperformed the baseline word2vec embeddings in all three chart review tasks with an 
average AUROC of 0.80 versus 0.66, respectively. Additionally, the medical-context vector space significantly reduced 
the number of labels required to learn and predict the preferred similar terms of reviewers. Specifically, the labeling 
effort was reduced to 10% of the entire dataset in all three tasks.

Conclusions:  The set of preferred similar terms that are relevant to a chart review task can be learned by leveraging 
the medical context of the task.
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Background
In a clinical chart review task [1], a clinically knowledge-
able person (e.g., physician, medical student, or nurse) 
combs through electronic medical records (EMRs) [2–4] 

for specific data of interest. Chart reviews are time-con-
suming and costly because a patient’s chart may be com-
posed of hundreds of clinical notes. Various automated 
approaches have been developed to improve the effi-
ciency of chart reviews. A particularly promising infor-
mation retrieval (IR) method to assist with chart reviews 
is query expansion [5–8]. This method expands the origi-
nal search terms into a set of similar terms and, subse-
quently, returns medical notes that contain at least one 
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of the expanded terms. In addition, these similar terms 
can be applied to highlight text within a note and assist 
the reviewer to identify the important snippets of text 
quickly [9–14].

Chart reviews are relied upon to answer a wide range 
of questions—from determining the current stage of can-
cer for a particular patient to identifying which drugs 
appear to be most ordered for the treatment of seizures. 
These different chart review tasks can be assisted by 
query expansion methods; however, given the range of 
chart review tasks that derive from a single search term, a 
static set of similar terms is not appropriate for all tasks. 
Rather, the set of similar terms should adjust based on the 
context of the chart review task. For example, a reviewer 
looking for an epilepsy diagnosis likely cares more about 
EEG results, while a reviewer looking at medications 
for treating epilepsy likely cares more about indications 
of the drug Keppra. Therefore, the set of similar terms 
should dynamically adjust based on the task and context 
of the review.

To date, natural language processing methods for term 
similarity, such as word2vec [15, 16] and more recently 
Bidirectional Encoder Representations from Transform-
ers (BERT) [17], provide embeddings to capture term 
similarity that can be used to recommend terms for 
expansion. For example, these methods now support 
dynamic query refinement in the Google search engine 
[17, 18]. Importantly, the similarity between two words 
within an embedding depends on the training data set 
used to build the embedding[19], as well as the data set 
used to fine-tune the model (e.g., refining BERT into 
BioBERT [20]). Thus, as the training or finetuning data 
set is changed, the set of expansion terms similarly will 
change.

While word2vec model training and finetuning activi-
ties modify word similarities according to textual rela-
tionships, there are a number of ways that clinical 
documentation can be influenced by factors not explicitly 
documented in the text. For example, word choice can be 
modified by a number of factors, including, but not lim-
ited to, who authored the note, the section in which the 
word is documented, or the age of the patient. Similarly, 
when reviewing charts, these different usages impact the 
information needed for a chart review. In this research, 
we investigate how such contextual information can 
be leveraged to modify term similarity for chart review 
tasks.

In this paper, we introduce a medical-context vector 
space, which corresponds to a collection of the usage fre-
quencies of clinical terms in various real-world medical 
situations, to identify task-appropriate similar terms. We 
evaluate the medical-context vector space for prediction 
of preferred similar terms in chart review tasks for acute 

myocardial infarction (AMI), Crohn’s disease, and dia-
betes. Each of these tasks is notable in that they consist 
of complex requirements for identifying similar terms 
for chart reviews, including terms for relevant diagno-
ses, medications, findings, and history. Additional file 1: 
Table A, Table B, and Table C demonstrate the 10 most 
similar terms for "Crohn," "Acute Myocardial Infarction 
(AMI)," and "Diabetes." It can be seen that there are simi-
lar terms in common across the various medical contexts, 
as well as specific similar terms for certain medical con-
texts. For example, as shown in Additional file 1: Table A, 
“ileitis” and “ileum” are commonly used similar terms for 
“Crohn”, but “pancolitis" is only used in the outpatient-
visit note types from the gastroenterology department, 
which implies that the system will recommend "pan-
colitis" to users only when they focus on reviewing a spe-
cific note type from a certain department.

Methods
Medical‑context vector space
To orient the reader, we provide a running example in 
Fig.  1, which depicts the medical context associated 
with a fictitious medical note. The note was created for 
a 26-year-old male patient by a physician in the Neuro-
Epilepsy Department. The Medical Context Type refers to 
the general context of a term’s usage, the Medical Con-
text refers to a specific type of data in the context, and the 
Attribute refers to the specific value. Our objective is to 
capture information regarding how terms are used in dif-
ferent medical contexts.

We identified four types of usage context types result-
ing in ten specific contexts from the EMR system [21] of 
Vanderbilt University Medical Center (VUMC):

(1)	 Hospital Organizational Structure. The role and 
speciality of the note’s author (i.e., job titles and 
departments) based on the hospital’s organizational 
structure.

(2)	 Medical Events. The documented diagnoses and 
procedures of a patient, including ICD-9/10 codes, 
CPT codes, and Emergency Department chief com-
plaints that are documented around the time the 
note is written.

(3)	 Demographics. Patient gender (male, female, and 
unknown) and age (quantized into ten-year bins).

(4)	 Medical Note Structure. Clinical note types and 
sections.

These contexts represent commonly used descrip-
tors of patient care and can be used to infer non-textual 
information regarding how terms are used in different 
situations. Leveraging this structure, we build the medi-
cal-context vector space through the following steps:
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(1)	 Preprocessing: First, we extract a subset of notes 
from the EMR system (e.g., all medical notes cre-
ated in the year 2016). For each medical note and 
context, we extract the associated attribute values 
(as shown in Fig. 2) and filter out stop words (e.g., 
“a” and “of”) and single-character words.

(2)	 Initialization: We define ten medical contexts 
C = {C1,C , ..,C10} as shown in Table  1. For each 
clinical term w, we initialize its medical-context 
vector to all zeros:

(3)	 Accumulation: For each word, we increment its 
medical-context vector based on the occurrence 
of the word in each context. For example, in Fig. 2, 
we add four to the Neuro-Epilepsy dimension of the 
author’s department medical context in the med-
ical-context vector of EEG if the author uses EEG 
four times. This step is repeated for each note.

(4)	 Normalization: Next, as shown in Fig.  3, we nor-
malize the counts of clinical terms in each context 
into medical-context proportions [0.0, 1.0] (i.e., the 
medical context vectors). At the end of this process, 
each clinical term is represented as a medical-con-
text vector that consists of its normalized frequen-
cies in each medical context.

The medical-context vector represents how a term is 
used within a medical situation. We define the medi-
cal-context similarity of two clinical terms wi and wj in 
the medical context Ck as the cosine similarity of their 
medical-context vectors:

uw = {uc1(w),uc2(w), . . . ,uc10(w)} =
{

−→
0 c1,

−→
0 c2, . . . ,

−→
0 c10

}

The similarity of two clinically similar terms in a 
medical context provides intuition into their seman-
tic relationships. For example, as shown in Fig. 4, in the 
department medical context, the cosine similarity of 
diabetes and hypertriglyceridemia is 0.56, which sug-
gests that they are moderately similar in the department 
medical context, while other terms have a better simi-
larity (e.g., hypothyroidism) in that context. For further 
illustration, Additional file 1: Table A, Table B and Table 
C report on the top similar terms in different medical 
contexts.

We define the medical-context similarity vector of 
two clinical terms wi and wj as a vector containing the 
medical-context similarities across all medical contexts. 
Each index of the vector is equal to the cosine similar-
ity of each term’s medical-context vector for one specific 
context:

The medical-context similarity vector of two clinical 
terms represents their relationships across all medical 
contexts. For example, Fig. 5 shows the medical-context 
similarity vector of diabetes and hypertriglyceridemia. It 
can be seen that their similarity in the Note Type, Author 
Department, and Chief Complaints contexts are much 
lower than in other contexts. Therefore, if a reviewer 
prefers terms that have a similar distribution of medical-
context frequencies as diabetes in the Note Type, Author 
Department, and Chief Complaints contexts, then the 
reviewer may not prefer hypertriglyceridemia.

Medical-context similarity vectors provide a weighted 
vector space, which can be used to identify which similar 
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=
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Fig. 1  The medical context for an example clinical note
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terms are preferred for a specific chart review task. Thus, 
instead of providing chart reviewers with a static set of 
similar terms, the set can be adjusted as information is 
collected about the context of a task. This adjustment 
can be done in an online learning style where (i) a chart 
reviewer first inputs a keyword, (ii) is presented with a 
list of ranked similar terms, and (iii) the reviewer then 
starts the chart review task, in which the goal is to high-
light text in notes that are evidence for answering clini-
cal questions. Given the iteratively-gathered highlighted 
text as input, a supervised machine learning model for 
term prediction is iteratively trained after each input to 
capture the contexts that the reviewer deems to be most 

Fig. 2  The medical-context counts of EEG according to their context in the example note in Fig. 1

Table 1  The dimensions for clinical terms in each medical 
context

Context type Medical context Dimensions

Hospital organizational structure Departments 258

Staff 158

Medical events CPT events 6537

ICD events 957

Chief complaint events 11,595

Demographics Age 10

Gender 3

Medical note structure Note type 1514

Note section 61

Top note section 5
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important. The trained model is then applied to recom-
mend similar terms.

Evaluation
Medical‑context vector space
We collected notes from the VUMC EMR generated 
between January 1, 2016, and January 2, 2017. The medi-
cal contexts were distributed across a set of dimensions 
as follows (and shown in Table 1):

(1)	 Hospital Organizational Structure. 258 depart-
ments and 158 types of staff;

(2)	 Medical Events. 957 ICD-9 codes, 6,537 CPT codes 
and 11,595 chief complaints in free-text format;

(3)	 Demographics. Three patient genders (male, 
female and unknown) and ten age ranges (quan-
tized into ten-year bins up to 100, after which all 
ages were represented as 100 +);

(4)	 Medical Note Structure. 1,514 note types; 61 note 
sections (defined by the headers as determined by 
the SecTag method [22]). Five sections (“assess-
ment,” “findings,” “family medical history,” “medica-

tions,” and “problem list”) contain the most impor-
tant information in a chart review task based on 
our discussions with the medical researchers.

Datasets
We created three evaluation datasets associated with 
chart review tasks (Table 2):

(1)	 Acute Myocardial Infarction Note Relevance 
(referred to as the AMI project). This task requires 
researchers to highlight any portion of a note that 
contains references to diagnoses, medications, pro-
cedures, or symptoms of AMI.

(2)	 Crohn’s Anti-TNF Responsiveness (referred to as 
the Crohn’s project). This task requires researchers 
to review and highlight text describing whether a 
patient with Crohn’s disease was clinically respon-
sive to anti-TNF medication.

(3)	 Pediatric Diabetes Note Barriers (referred to as the 
Diabetes project). This task requires researchers 

Fig. 3  The top 3 dimensions in each medical context for EEG 
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to review a list of medical notes, highlight and label 
portions of the notes that may be related to barriers 
in the documentation of diabetes plans.

All of these chart review tasks were deployed in the 
Vanderbilt’s Pybossa crowdsourcing platform [23], and 
reviewed by chart reviewers who have sufficient medical 
knowledge. We recruited medical researchers from differ-
ent disciplines of VUMC, including professors, nurses, and 
medical students who passed a pre-citification of medical 
knowledge related to the chart review tasks.

In each of the chart review tasks, the researchers 
searched and reviewed medical notes to identify and 
highlight important text snippets for the task. Given the 
medical notes D of a chart review task T, we define the 
highlighted count H of a clinical term w as the total number 
of times w is highlighted across all documents in D:

H(w|D) =
∑

dj∈D

H
(

w|dj
)

Experimental design
We assessed the capabilities of the medical-context vec-
tor space and standard word2vec methods by evaluating 
the extent to which the methods identified the terms that 
chart reviewers would highlight. Specifically, the term 
prediction supervised machine learning model is pro-
vided highlighted and non-highlighted text as labeled 
input along with either the medical-context vectors or 
word2vec vectors, and then predicts if terms will be high-
lighted. The two hypotheses driving this experiment are: 
(i) if a term is relevant to a task, then the term should be 
highlighted by the chart reviewer, and (ii) the terms that 
are highlighted the most often should be preferred (i.e., 
predicted by the model) at a higher frequency than non-
preferred terms. The experimental design is as follows.

For each chart review task, a topic word K is chosen as 
the most important keyword of the research goal (e.g., 
diabetes is a topic word of the research task Pediatric 
Diabetes Note Barriers Problem) and serves as the basis 
for a similar term generator. Table  2 presents the topic 
word of each chart review task.

We define the similar terms that might be pre-
ferred by the researchers of a chart review task as the 

Fig. 4  The medical-context vectors for diabetes and hypertriglyceridemia in the Department medical context
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candidate semantic set. A candidate semantic set Ws 
can be provided by any existing similar term genera-
tor, such as EMR-based word2vec embeddings [6, 14, 
24, 25], or the EMR-subsets method. A candidate set is 
used instead of all possible words in the vocabulary as a 
means to limit the search space.

We define the semantic preference of a chart review 
task as a subset of preferred similar terms and a sub-
set of non-preferred similar terms from the candidate 
semantic set. A semantic preference prediction task 
is formulated as a supervised machine learning task, in 
which a model learns the semantic preference from a 
small set of preferred similar terms and non-preferred 
similar terms (i.e., the training label set). The features 

of a similar term w are its medical-context similarity 
vector based on the topic word K. The label of a simi-
lar term is based on its highlighted count in the chart 
review task and a given importance cutoff I. If the 
highlighted count of a similar term w ∈ Ws is greater 
than I, we label it as an important term (i.e., label = 1); 
otherwise, we label it as a non-important term (i.e., 
label = 0).

Figure  6 shows an example application of the medi-
cal-context vector space to predict the preferred simi-
lar terms of reviewers in a chart review task. A classifier 
based on logistic regression is trained to weight each 
medical context and obtain the weights of medical con-
text as Wc = {Wc1,Wc2, . . . ,Wc10} with a given thresh-
old I . Given the medical-context similarity vector 
{Sc1(K ,w), Sc2(K ,w), . . . , Sc10(K ,w)} of an unlabeled 
similar term t, the classifier then predicts if an unlabeled 
similar term t is a preferred similar term of the reviewer 
and will be highlighted.

Semantic preference prediction evaluation
This semantic preference prediction task evaluation was 
performed in the following manner:

Fig. 5  The medical-context similarities of diabetes and hypertriglyceridemia in all medical contexts

Table 2  Chart review tasks defined for the evaluation

Chart review task Topic word Patients Notes

Acute myocardial infarction AMI 152 200

Crohn’s anti-TNF Responsiveness Crohn 983 437,993

pediatric diabetes note barriers Diabetes 76 210
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(1)	 Given an evaluation data set, we first generate a 
candidate semantic set Ws for its topic word using 
an existing similar term generator.

(2)	 Given the candidate semantic set Ws , we con-
struct a label set with an importance cutoff I = 1. If 
the highlighted count of a similar term wi ∈ Ws is 
greater than 1, we label it as an important term (i.e., 
label = 1); otherwise, we label it as a non-important 
term (i.e., label value equals 0). For each similar 
term wi in the candidate semantic set Ws , we gener-
ate its medical-context similarity vector S(wi,K ).

(3)	 We train and evaluate a supervised machine learn-
ing model in the label set using ten-fold cross-val-
idation. We evaluated three classifiers: (1) Logis-
tic regression, (2) Random forest, and (3) Support 
vector machine. We measured the ROC (Receiver 
Operating Characteristic) curve and reported the 
AUROC (Area Under the ROC Curve). Other 
standard metrics (e.g., precision, recall, and F1 
score) were considered; however, AUCROC was 
chosen for its ability to measure the balance of 
the true positive rate (TPR) and false positive rate 
(FPR).

(4)	 We increase the importance cutoff I by 1 and repeat 
steps (2) and (3) until the number of important 
terms is less than 10 in the resulting label set. Based 
on the cross-validation model, we defined 10 as the 
minimum number of positive labels to ensure each 
test fold had at least one positive label.

We repeated this process with three similar term 
generators: (1) the EMR-subsets method [19], (2) the 
Complete EMR word2vec embedding [19], and (3) the 
Google News word2vec embedding [16]. The Complete 
EMR word2vec embedding and the Google News word-
2vec embedding are also used as baseline feature spaces 

to recommend similar terms. We use the two baseline 
embeddings to evaluate if the training data for the word 
embeddings significantly impacts performance.

Learning curve evaluation
In a chart review task, the fewer labels required for 
learning the semantic preference, the earlier we can pro-
vide semantic support to reviewers. As such, we further 
assessed how the size of the training dataset influences 
the performance of the medical-context vector space. 
To perform this assessment, we rely on a learning curve 
analysis [26].

The learning curve analysis task evaluation was per-
formed in the following manner:

(1)	 Given an evaluation data set, we first generate a 
candidate semantic set Ws using an existing similar 
term generator.

(2)	 Given the candidate semantic set Ws , we con-
structed a label set with an importance cutoff I. 
When the highlighted count of a similar term 
wi ∈ Ws is greater than I, we label it as an impor-
tant term (i.e., label = 1), otherwise, we label it as a 
non-important term (i.e., label value equals 0). For 
each similar term wsi in the candidate semantic set, 
we generate its medical-context similarity vector 
S(wi,K ).

(3)	 Given the label set, we set x to 1% of the data points 
as the training set and the remaining 99% as the test 
set.

(4)	 We train a supervised machine learning model with 
the training set and evaluate its AUROC with the 
test set. Repeat step (3) and (4) 100 times and meas-
ure the AUROC.

(5)	 Next, we increase x by 1% and repeat step (3) and 
(4) until x is greater than 90%.

Fig. 6  The workflow for learning and recommending clinically similar terms by reweighting medical-context similarity vectors
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(6)	 Finally, we increase the importance cutoff I and 
repeat step (2) to (5) until the number of important 
terms is less than 10 in the resulting label set.

We repeat this process with the similar term generators 
used in the Semantic Preference Prediction Experiment.

Interpretable feature space experiment
Constructing interpretable feature space is essential for 
medical applications [27, 28], especially chart review 
tasks. Thus, we assessed the potential of the medical-
context vector space for providing an interpretable fea-
ture space. We applied the binary logistic regression 
(Eq.  1) to analyze the impacts of medical contexts to 
reviewers’ semantic preference of the three chart review 
tasks (Table  2) for a term w and the topic word K, and 
interpreted the meanings of the weights of each medical 
context.

Results
Distribution of terms
Figure 7 shows the distribution of the clinical terms (Kep-
pra, EEG, seizures, epilepsy, and Vimpat) across the note 
sections. It can be seen that EEG is frequently used in the 
Assessment/Diagnosis section, while Keppra is more fre-
quently used in the Medications section.

Comparison to BERT
We compare the medical-context vector’s performance 
to two fine-tuned BERT models: (i) a BERT model fine-
tuned by the approximately four million de-identified 
prescription notes from the VUMC EMR (which we 
refer to as the DrugBERT model), and (ii) the pre-trained 
BioBERT model. We provide the phrase “Keppra medi-
cation” to these models, in which medication is the 

(1)

ln

(

P
(

Preferred
)

P
(

Non-preferred
)

)

= Intercept +

10
∑

i=1

Ci ∗ Sci(w,K )

contextual information to help the models contextualize 
similar terms for Keppra. For the medical-context vector, 
the phrase Keppra medication is converted into a con-
text vector. For all methods, we find the ten most similar 
terms.

Table  3 presents the similar terms for Keppra from 
the models. The result shows that the DrugBERT and 
BioBERT model provides mostly typos of Keppra (e.g., 
keppr) as the top similar terms of "Keppra." However, 
in a clinical chart review task, given the phase Keppra 
medication, it is more likely the reviewers consider drugs 
other than Keppra as its top similar terms.

Semantic preference prediction
Table 4 shows the size of the candidate semantic set pro-
vided by the EMR-subsets method and the number of 
terms highlighted by reviewers. The table shows that for 
each project, reviewers highlighted different proportions 
of terms, demonstrating potential variability and chal-
lenges for recommending similar terms. In the remain-
der of this paper, we only show the results based on the 
candidate semantic sets provided by the EMR-subsets 

Fig. 7  The proportion of similar terms for epilepsy in note sections

Table 3  Similar terms for Keppra based on the fine-tuned BERT 
models and the medical-context vector space

Similarity rank DrugBERT BioBERT Medical-
context vector 
space

1 keprra keppr depakote

2 keppr onkeppra vimpat

3 keppera kepppra trilepatal

4 keprpa keppraxr valproic

5 sezure keprra phenobarbital

6 gabatril prnno topiramate

7 sezire ssri gabatril

8 sizure andmri lamictal

9 seizre najib fosphenytoin

10 equetro nimotop zonisamide
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method and the baseline Complete EMR word2vec 
embedding because the Google New embedding resulted 
in similar results to the EMR embedding.

The medical-context vector space’s AUCROC outper-
formed all baseline word2vec embeddings in all evalua-
tion datasets across all similar term generators. Tables 5, 
6 and 7 provide the three example comparisons of the 
medical-context vector space and the baseline Com-
plete EMR word2vec embeddings for three datasets. 

A one-sided Mann–Whitney U test indicated that the 
medical-context vector space statistically significantly 
outperformed the baseline Complete EMR word2vec 
embedding.

Figure  8 shows the result of the Semantic Preference 
Prediction evaluation using the Diabetes dataset and the 
candidate semantic set generated by the EMR-subsets 
method [19].

Learning curve analysis
As shown in Fig. 9, the medical-context vector space out-
performed the EMR-based word2vec embedding regard-
less of the size of the training data set. It can be seen that 
the medical-context vector space significantly reduces 
the number of required labels for learning the semantic 
preference. For example, as shown in Fig. 9, with only 1% 
of the label set, the medical-context vector space reached 
an AUROC of 0.7 while the baseline Complete EMR 
word2vec embedding only achieved 0.5. When using 10% 
of the labels, the medical-context vector space and word-
2vect achieved an AUROC of 0.78 and 0.60, respectively.

Interpretable feature space
As shown in Table 8, the Chief Complaint medical con-
text has a significant positive impact on reviewers’ 
semantic preference, which means the clinical terms 
that are similar in describing the same chief complaint of 
a chart review task are preferred by the reviewers. It is 
interesting that the Gender context had the highest sig-
nificant positive impact on the semantic preference of the 
AMI chart review task. Since the topic word AMI likely 
has little relevance with respect to gender, terms highly 
relevant to gender were not preferred by the reviewers.

Discussion
This paper presents a novel vector space model, the med-
ical-context vector space, to identify similar terms to sup-
port chart reviews. The medical-context vector space is 
a collection of normalized-frequencies of clinical terms 
in different medical contexts, which provide information 
on the relationships between clinical terms. We evalu-
ated the medical-context vector space for predicting the 
preferred similar terms of reviewers in three chart review 
tasks. The results show that the medical-context vec-
tor space efficiently learned the preferred similar terms 
of reviewers and outperformed the baseline word2vec 
embedding in all three chart review tasks as measured 
with the AUROC metric. Additionally, the medical-
context vector space significantly reduced the number 
of labels (e.g., from thousands of labels to tens of labels) 
required to learn and predict the preferred similar terms 
of reviewers.

Table 4  The candidate semantic sets of the chart review tasks

Dataset Candidate similar terms Unique 
highlighted 
similar terms

AMI 1949 1414

Crohn 1204 438

Diabetes 1055 273

Table 5  Diabetes dataset average ROC AUROC scores with an 
importance cutoff of 10

*p < 0.05

Model AUROC

Medical-context vector 
space features

word2vec 
features

Logistic regression 0.80* 0.58

Random forest 0.68* 0.54

Support vector machine 0.78* 0.57

Table 6  AMI dataset average ROC AUROC scores with an 
importance cutoff of 40

***p < 0.001, **p < 0.01, *p < 0.05

Model AUROC

Medical-context vector 
space features

word2vec 
features

Logistic regression 0.80** 0.73

Random forest 0.75*** 0.56

Support vector machine 0.75* 0.71

Table 7  Crohn dataset average ROC AUROC scores with an 
importance cutoff of 1

***p < 0.001, **p < 0.01, *p < 0.05

Model AUROC

Medical-context vector 
space features

word2vec 
features

Logistic regression 0.79** 0.68

Random forest 0.80*** 0.60

Support vector machine 0.79*** 0.68
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There are several possible reasons why the medical-
context vector space outperformed the baseline methods. 
First, the feature space provided by the medical-context 
vector space is much smaller than the feature space pro-
vided by the word2vec embedding (i.e., 10 dimensions 
vs. 100 dimensions of the Complete EMR word2vec 
embedding). Second, the feature space provided by the 
medical-context vector space is more capable of captur-
ing relationships between terms induced by external, 
non-textual forces. For instance, context such as the chief 
complaint, the author’s department and the patient’s 
age influence the terms a chart reviewer prefers for a 

given task, yet these factors are not captured in tradi-
tional word embedding models. Third, the construction 
of medical contexts (e.g., note sections), and counting 
the frequency of words in those contexts, implicitly cap-
tures relationships between terms in structured ways that 
otherwise would be difficult to extract based on the text 
alone.

The medical-context vector adjusts to the reviewer’s 
desired semantics by eliciting reviewer input. Previous 
research has similarly demonstrated that clinical natu-
ral language processing models (e.g., word sense disam-
biguation) can be trained by asking experts to provide 

Fig. 8  Average AUROC achieved by the logistic regression classifier for the diabetes dataset

Fig. 9  Average AUROC with different training dataset size for the Crohn’s disease dataset (importance cutoff 1)
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labeled instances [29, 30]. This iterative process allows 
the medical-context vector to essentially be fine-tuned 
for the specific task. While other fine-tuning methods 
have been proposed and shown to be successful using 
text, the fine-tuning process used in this work relies on 
the non-textual contexts that are encoded. This explicit 
encoding of context allows for rapid learning of the 
reviewer’s preference, as demonstrated by the number of 
labels needed from reviewers.

Fine-tuned BERT models, such as the DrugBERT and 
BioBERT, can be tuned for a specific chart review task. 
However, this study shows that the resulting embeddings 
recommend terms in different ways than the medical-
context vector. For example, when looking for similar 
terms of a seizure drug, BERT fine-tuned models recom-
mend typos or misspellings, while the medical-context 
vector recommends other drugs with the same clinical 
purpose. Thus, while BERT and fine-tuned BERT can be 
useful for expanding terms for clinical chart review tasks, 
the medical-context vector fills in an essential techno-
logical gap when identifying similar terms based on the 
context in which terms are used.

In this study, three machine learning methods (namely, 
logistic regression, random forest, and support vector 
machines) were evaluated to determine how well they 
predict the preferred terms for clinically knowledgeable 
reviewers.

All three machine learning models attained better per-
formance when using the medical-context vector space 
compared to the word2vec embeddings. In a follow-up 
pilot study, several clinical researchers were invited to 
test a prototype user interface (Additional file  1: Figure 
D). Their feedback suggested that the logistic regres-
sion method might be preferred by clinical researchers 

because the results are both accurate and easily interpret-
able by examining the weights of the logistic coefficients).

By contrast, methods based on random forests and 
support vector machines can be more difficult to inter-
pret due to the complexity of the models. Specifically, 
random forests learn a list of features, which creates sub-
groups of variables, and then builds an ensemble over the 
subgroups. Support vector machines identify a decision 
surface in a feature space that is higher in dimensionality 
than the original system to separate different classes.

There are several limitations of this study that highlight 
opportunities for future research. First, when building 
the medical-context vector space, we limited the time 
range used to build the medical event context of a note to 
48 h (i.e., a chief complaint had to be within 48 h of when 
the note was written). It is unknown if different time 
ranges would impact these findings. Second, in this study, 
we focused on ten medical contexts when building the 
medical-context vector space, but there are clearly others 
that could be considered. Third, this pilot study indicated 
that certain medical contexts (e.g., the “Chief Complaint” 
medical context) have a significant impact on reviewers’ 
semantic preferences in a chart review task, but it is nec-
essary to survey reviewers to learn why they prefer such 
terms.

To refine this system, the vector space could be 
enhanced in several ways. First, domain knowledge could 
be introduced by adding more knowledge-based dimen-
sions, such as a laboratory result dimension, which 
would be oriented to capture how providers use words 
when describing test values. Second, the system could 
be extended by inviting clinical researchers to identify 
the important medical contexts. As shown in Additional 
file 1: Figure D, a clinical researcher selects words from a 
candidate word list (left column of the UI) and drag each 
word into the positive (negative) area if they are preferred 
(or not). The system will learn the preferred contexts 
of clinical researchers and identify the most important 
medical contexts.

The vector space method can be put into practice and 
further tested in our existing EMR search engine (Addi-
tional file  1: Figure E) [19, 23]. The search engine takes 
a keyword as input which is expanded to a set of terms 
used for document retrieval based on the vector space.

Conclusions
In this paper, we presented a novel vector space model, 
the medical-context vector space, to represent how clini-
cal terms were used in varying medical situations. We 
evaluated the performance of the medical-context vector 
space in predicting the preferred similar terms of review-
ers in three chart review tasks. The empirical findings 
show that the medical-context vector space achieved good 

Table 8  The impact of medical contexts on reviewers’ 
preference in AMI task

***p < 0.001, **p < 0.01, *p < 0.05, one-tailed

Index Context Coefficient

AMI Crohn’s Diabetes

1 Intercept − 16.16*** − 13.82*** − 22.04

2 Department 0.58 0.42 0.33

3 Staff 1.90 0.64 − 1.49

4 ICD event − 2.94** 2.18** 4.89

5 CPT event 0.37 1.35* 4.10

6 Chief complaint 5.75*** 7.24*** 4.93***

7 Note type 5.70*** − 1.92* − 0.05

8 Note section 2.00*** − 0.23 2.37**

9 Top five note sections 1.43 1.37* − 2.54

10 Age 0.37 2.65*** − 5.41***

11 Gender 8.85*** 8.03*** 15.78
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performance and significantly outperforms baseline word-
2vec embeddings. Additionally, the medical-context vector 
space significantly reduced the number of labels required 
to learn and predict the preferred similar terms of review-
ers. This research suggests that the medical-context vector 
space can better identify preferred similar terms based on 
non-textual features compared to traditional word embed-
ding models.
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