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Abstract 

Background: Symptom phrase recognition is essential to improve the use of unstructured medical consultation cor-
pora for the development of automated question answering systems. A majority of previous works typically require 
enough manually annotated training data or as complete a symptom dictionary as possible. However, when applied 
to real scenarios, they will face a dilemma due to the scarcity of the annotated textual resources and the diversity of 
the spoken language expressions.

Methods: In this paper, we propose a composition-driven method to recognize the symptom phrases from Chi-
nese medical consultation corpora without any annotations. The basic idea is to directly learn models that capture 
the composition, i.e., the arrangement of the symptom components (semantic units of words). We introduce an 
automatic annotation strategy for the standard symptom phrases which are collected from multiple data sources. In 
particular, we combine the position information and the interaction scores between symptom components to char-
acterize the symptom phrases. Equipped with such models, we are allowed to robustly extract symptom phrases that 
are not seen before.

Results: Without any manual annotations, our method achieves strong positive results on symptom phrase recogni-
tion tasks. Experiments also show that our method enjoys great potential with access to plenty of corpora.

Conclusions: Compositionality offers a feasible solution for extracting information from unstructured free text with 
scarce labels.
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Introduction
The high-speed development of internet is changing the 
habits of individuals to harvest information and obtain 
answers to the questions. Nowadays, more and more 
people try to figure out their physical problems via online 

consultation with medical professionals1. Accordingly, a 
great number of corpora containing the communications 
between patients and doctors are accumulated. However, 
the rare resources of doctors would be hard to satisfy the 
growing demands for medical services. This prompts the 
use of medical consultation corpora for the development 
of medical automatic question answering (QA) systems 
which have been studied over several decades [1, 2].
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The majority of automatic QA systems rely on named 
entity recognition (NER) as the first step [3, 4]. In clini-
cal domains, named entity recognition refers to the 
automatic identification of text spans which represent 
particular entities (e.g., symptoms, diagnoses, medica-
tions) [5]. For this study, we focus on the task of symptom 
phrase recognition, because patient symptoms are inte-
gral to health care communications, and diagnostic and 
therapeutic reasoning. In particular, we concern about 
the statements which are stored in Chinese medical 

consultation corpora. Most existing methods for identi-
fying symptoms require either enough manually anno-
tated training data or as complete a symptom dictionary 
as possible. However, this is often not available in domain 
specific scenarios. On the one hand, the supervised 
medical textual resources are quite scarce, because to 
annotate the data sets needs the experts’ knowledge and 
experience, which involve high overhead. On the other 
hand, the spoken language expressions are so diverse that 

Table 1 Cases of extraction results by word matching

Fig. 1 The architecture of the medical QA systems
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it is difficult to collect all the patients’ descriptions of the 
symptoms.

Like humans, a medical QA system (The architecture 
of the medical QA systems can be depicted as in Fig. 1.) 
should be able to leverage known vocabulary to under-
stand the meaning of the processed information. Suppose 
there is a list of standard symptom phrases used by the 
domain practitioners, we are interested in recognizing 
and extracting symptom phrases from patients’ descrip-
tions of what they are experiencing. One straightfor-
ward way for exploiting the vocabulary list is to match 
the entire phrases and decide what symptoms to extract. 
However, the word sequence repeatedly used by the 
domain practitioners is an ad-hoc description. Many 
other wordings in oral expression are used to describe 
subjective feelings. E.g.  (ENG: “short-
ness of breath and in a state of discomfort”) describes 
the typical symptom of  (ENG: “chest distres”). It 
is often the case that most symptom mentions appear-
ing in the consultation corpus fail to match the symp-
tom phrases in the vocabulary list. An alternative way 
is to rely on tokenization and match individual words to 
acquire symptom information. However, this may lead to 
either incorrect boundaries (e.g., the former three cases 
in Table  1) or inappropriate collocations (e.g., the latter 
three cases in Table 1). Note that we use the notation ‘/’ 
in Chinese sentences to denote the segmentation using 
the tokenizer.2

To tackle these issues, we go beyond word matching 
and propose a Composi-tion Driven (ComD) symptom 
phrase recognition method for Chinese medical consul-
tation corpora without any annotations. The basic idea 
is to directly learn models that capture the composition, 
i.e., the arrangement of the symptom components. We 
introduce an automatic annotation strategy for the stand-
ard symptom phrases which are collected from medi-
cal publications, electronic medical records, and web 
resources. Specifically, we establish a position recogni-
tion model based on the relative positions between the 
symptom components (semantic units of words). After-
wards, we learn the embedding representations for the 
components, which are then used to estimate the inter-
action scores between them. By integrating the position 
outputs and the interaction scores, we are allowed to 
recognize the symptom phrases in medical consultation 
corpora. Experimental results demonstrate the feasibility 
and effectiveness of the proposed method which further 
improves the overall performance.

The contributions of our paper can be summarized into 
three aspects:

• We view each symptom phrase in the vocabulary as 
composition of words and their interactions. This 
allows us to deduce the symptom phrases that are 
not seen before, without dependence upon any anno-
tated corpus.

• We incorporate the position outputs and the inter-
action scores to judge the compositionality between 
individual words during symptom prediction, which 
can be viewed as an innovative attempt in the field of 
data mining.

• Experiments have shown that for symptom phrases 
recognition tasks, the proposed method can achieve 
strong positive results, and have great potential with 
access to increasing online textual corpus.

Related work
For a medical question answering system, understanding 
the symptom phrases from the patient’s input is the most 
critical step in providing an effective solution. A signifi-
cant way to address the issues of symptom phrases rec-
ognition is named entity recognition (NER), which is the 
task to identify mentions of rigid designators from text 
belonging to predefined semantic types such as person, 
location, organization, etc. Over the past few decades, 
NER has made great strides in a wide range of areas with 
the help of technologies such as artificial rules, tradi-
tional machine learning (ML), and deep learning (DL). 
Here, we classify these existing NER techniques into 
three levels from the attributes of methods, and conduct 
a brief analysis of the pros and cons of some representa-
tive strategies related to our work below.

Rule‑based approaches
Some hand-crafted rules, for example, domain-specific 
gazetteers and syntactic-lexical patterns, are commonly 
used to design the rule-based NER systems. Kim [6] 
adopted Brill rule inference method for speech input, 
making the system generates rules automatically based 
on Brill’s part of speech markers. In the field of biomedi-
cine, Hanisch et al. [7] proposed ProMiner, which utilizes 
pre-processed thesaurus to identify protein mentions 
and potential genes in biomedical texts. Quimbaya et al. 
[8] presented a dictionary-based NER method based 
on electronic health records, and experimentally veri-
fied that the approach improves recall while having lim-
ited impact on precision. UMLS [9] is one biomedical 
resource which is prepared by medical experts manu-
ally. It has a metathesaurus which contains terms and 
codes from many vocabularies. Luca et al. [10] proposed 

2 here we use “Jieba” Chinese language segmentation module that is imple-
mented in python https://pypi.org/project/jieba/.
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QuickUMLS: a fast, unsupervised, approximate diction-
ary matching algorithm for medical concept extraction. 
Similar approaches identify entities largely through hand-
crafted semantic and syntactic rules and then work very 
well when lexicon can be exhaustive. However, domain-
specific rules and incomplete dictionaries make such sys-
tems tend to have high precision and low recall, making it 
impossible to transfer to other domains.

ML‑based approaches
In machine learning, NER is cast into a multi-class clas-
sification or clustering task, which learns a model that 
identifies similar patterns from unseen data. Among 
the supervised approaches, Bikel et  al. [11, 12] pro-
posed an NER system based on Hidden Markov Models 
(HMM), namely IdentiFinder, to classify names, date, 
time expressions and numerical quantities. Besides, 
McCallum et  al. [13] proposed a feature-induced 
method for Conditional Random Fields (CRFs) in NER, 
which achieves F-score of 84.04% for English by per-
forming on CoNLL03. Krishnan et al. [14] presented a 
two-stage approach of coupling two CRF classifiers, in 
which the second CRF utilizes the potential representa-
tions from the output of the first CRF. Moreover, there 
are plenty of supervised NER strategies based on other 
ML algorithms, Decision Trees [15], Maximum Entropy 
Models [16] and Support Vector Machines (SVMs) [17] 
for examples, which have been studied and success-
fully applied by many scholars. Admittedly, supervised 
learning algorithms rely on a large amount of anno-
tated data, which is time-consuming and laborious. As 
a result, unsupervised NER approaches are more desir-
able. Collins et  al. [18] observed that the use of unla-
beled data reduces the requirements for supervision 
to just seven simple seed rules, and then proposed two 
unsupervised algorithms for the classification of named 
entities. Nadeau et  al. [19] presented an unsupervised 
gazetteer building and named entity ambiguity resolu-
tion system that combines entity extraction with dis-
ambiguation based on simple and efficient heuristics. 
Besides, Zhang et  al. [20] proposed an unsupervised 
method for extracting named entities from biomedi-
cal texts by relying on terminologies, corpus statistics 
and shallow syntactic knowledge, and experiments on 
two mainstream biomedical databases proved the effec-
tiveness and universality of the method. In the field 
of semi-supervised approach, Ke et  al. [21] proposed 
using Co-training combining with CRF and SVM on 
Chinese organization name recognition. Co-training is 
a semi-supervised learning method, which uses a small 
amount of tagged corpus and large scales of untagged 
corpuses for machine learning. Liu et al. [22] proposed 
to combine a K-Nearest Neighbors (KNN) classifier 

with a linear Conditional Random Fields(CRF) model 
under a semi-supervised learning framework to rec-
ognize entities for tweets. Actually, the main charac-
teristic of the ML-based approaches is to identify the 
combination of feature extraction and model selection 
that work well together for enhanced prediction perfor-
mance [23–25]. In particular, they extract context fea-
tures as sources of semantic encoding variability, which 
may have limitations in the face of less rigid and more 
flexible spoken language.

DL‑based approaches
In recent years, deep learning, empowered by continu-
ous real-valued vector representations and semantic 
composition through nonlinear processing, has been 
employed in NER systems, yielding state-of-the-art 
performance [26]. The application of neural models 
for NER was pioneered by [27], where an architecture 
based on temporal convolutional neural networks over 
word sequence was proposed. BiLSTM-CRF [28], as the 
most commonly-used architecture for NER using deep 
learning, combines BiLSTM and CRF and effectively 
solves the problem of handling the strong depend-
ence of tags in the sequence ineffectively. Recently, 
Batbaatar et  al. [29] proposed a novel neural network 
architecture, named semantic-affective neural network 
(SENN), which utilizes semantic/syntactic and emo-
tional information by using pre-trained word repre-
sentations. Besides English, there are some studies on 
Chinese language. Wu et  al. [30] studied NER in the 
Chinese clinical literatures. Zhang et al. [31] proposed 
an LSTM model of lattice structure for Chinese NER, 
which encodes the sequence of input characters and 
all potential words matching the vocabulary. Li et  al. 
[32] pre-trained BERT model on the Chinese clinical 
domain corpora, and designed a new post-processing 
way to combine the terminology dictionary with the 
model and apply radical features to the model on two 
Clinical Named Entity Recognition (CNER) datasets. 
Historically, the advantages of deep learning have been 
less obvious when working with small databases. For 
example, on the 203,621-word CoNLL-2003 English 
database, the best DL model, measured by F1 score, 
outperformed the best shallow model by only 0.4%. 
In other words, a large amount of annotated data is 
required to train a good deep learning model.

Although NER has been extensively studied in the 
biomedical field, symptom phrases seem to have been 
shelved because there is so little work being done on 
the subject, especially for Chinese medical texts, which 
we are mainly discussing here. In our work, we make 
full use of public resources to mine medical knowledge, 
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and does not require manual annotations. By devising 
a novel automatic annotation strategy, the proposed 
approach can save a lot of labour and material costs. 
More specifically, we combine the position information 
and the interaction scores between the components of 
the symptom phrases, and then employ them to iden-
tify new symptom phrases in the corpus.

Proposed method
We begin by introducing a general framework for unsu-
pervised symptom phrase recognition. We then describe 
three crucial components in detail, i.e., (1) how to char-
acterize the positions of the symptom components, 
(2) how to calculate the interaction scores between the 
symptom components, and (3) how to recognize unob-
served symptom phrases.

Overview
For this study, we build a symptom dictionary in advance 
by aggregating a number of standard symptom phrases 
from multiple resources (i.e., medical publications, elec-
tronic medical records, and web resources). Equipped 
with the dictionary, we are allowed to mine useful knowl-
edge, which facilitates the downstream task of symptom 
extraction from medical consultation corpus.

• From the perspective of position, we provide an 
automatic annotation scheme to indicate demarca-
tion of symptom phrases, followed by characterizing 
the probabilities of each component (semantic units 
of words) arranged on different positions within a 
symptom phrase.

• From the perspective of interaction, we learn the 
embedding for each component to capture the con-
textual associations between them. If two compo-
nents tend to co-occur or appear in similar contexts, 
they will be mapped into similar word vectors.

When medical consultation corpus is concerned, we use 
a basic pipeline to pre-process the texts involved. First, 
we segmented each text into sentences using a Chinese 
text analysis tool3. We next divided each sentence into 
words by the tokenizer4. After that, we filtered out non-
informative words such as extremely common words, 
rare words, and those that don’t appear in the symptom 
dictionary. The retained words are then assigned with 
annotations that contribute to extracting the results. 
During post-processing, we identify the most probable 

Fig. 2 The workflow of ComD

3 https://github.com/blmoistawinde/HarvestText.
4 here we use “Jieba” Chinese language segmentation module that is imple-
mented in python https://pypi.org/project/jieba/.
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boundaries of the candidate symptom phrases. Follow-
ing the principle of compositionality, we integrate the 
position information and the interaction effect to recog-
nize the symptom phrases that are not seen before. Fig-
ure  2 presents the workflow of ComD which comprises 
three main modules, i.e., position modeling (detailed in 
Sect. 3.2), semantic interaction (detailed in Sect. 3.3) and 
compositionality judgement (detailed in Sect. 3.4).

Position modeling
Different from traditional annotation methods ([33]) 
which manually annotate each word in the textual cor-
pora, in this task, we consider annotations in the symp-
tom dictionary, which can be realized automatically. As 
mentioned previously, the symptom dictionary includes 
a list of standard expressions about patient symp-
toms. Through observing a variety of Chinese symptom 
phrases, it was found that there are mainly two types 
from the view of morphology, i.e., simple words (e.g. 

, ENG: “chest distress”) and compound words (e.g. 
, ENG: “chest is not smooth”). In addi-

tion, a compound word can be split into multiple simple 
words by the tokenizer mentioned before. Therefore, we 
adopt the basic annotation signs “BIES” (Begin, Inter-
mediate, End, Single) to represent the position informa-
tion of a simple word in the phrase. For convenience, we 
abbreviate a “simple word” as a “word”, unless otherwise 
stated.

Table  2 shows some basic composition forms of Chi-
nese symptom phrases, and illustrates how the standard 
symptom phrases are annotated. For example, if there is 
only one simple word, such as  (ENG: “fever”), 
then it is annotated as “S”. If there is more than one sim-
ple word, such as  (ENG: “per-
sistent low back pain”), then the word  (ENG: 
“persistent”) is annotated as “B” indicating its beginning 

position, the word  (ENG: “pain”) is annotated 
as “E” indicating its end position, and the other word 

 (ENG: “low back”) is annotated as “I” indicating 
its intermediate position.

Besides word-based annotations, we can also conduct 
character-based annotations whose signs “BIES” repre-
sent the position information of a character in the symp-
tom phrase, as illustrated in Table 2.

Given a component in a symptom phrase, we count 
how many times it appears on a particular position. For 
example, the word  (ENG: “intermittent”) 
appears 60 times at the beginning and 12 times in the 
middle. We model the probability of counts as a multi-
nomial distribution (n,πB,πI ,πE ,πS) , where πB , πI , πE , 
and πS denote the probabilities of four possible positions 
on each of n independent trials. For example, in terms of 

 (ENG: “intermittent”), there are 72 independ-
ent trials, each of which leads to a success for exactly 
one of the four positions “BIES”. The parameters can be 
derived based on maximum likelihood estimation. In the 
above example, the estimations are (0.83, 0.17, 0, 0). Note 
that these results allow us to infer candidate symptom 
phrases from the perspective of position arrangements.

Semantic interaction
We exploit the vector representation of words computed 
on the symptom dictionary, and implement certain met-
ric to estimate an interaction score between any two 
words in the embedding space.

(a) Word embedding For this study, we build the embed-
ding using the Word2Vec implementation proposed by 
Mikolov et  al. [34], a shallow, two-layer neural network 
based on a skip-gram model [35]. As is well known, the 
skip-gram model is directed toward the prediction of 
the surrounding words given a target word as input 
(Fig.  3). The learned embedding allows to capture the 

Table 2 Some basic composition forms of Chinese symptom phrases
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contextual associations between components in a symp-
tom phrase. In this sense, if two components tend to co-
occur or appear in similar contexts, they will be mapped 
to approximate vectors. Note that there are several neural 
embedding models which are known to be fully expres-
sive, and which may thus be thought of as more promis-
ing candidates for learning word representations [36, 37]. 
We address whether neural embedding models are able 
to capture compositions of words and their interactions 
in the next section.

(b) Interaction scoring Once the embeddings are built, 
we are in a position to predict interaction scores based 
on the distribution of word vectors in the word embed-
ding. A straightforward way to measure proximity 
between two components is to use a common distance 
metric such as Euclidean distance, Manhattan distance 
or Cosine similarity, and regard them to interact with 
each other when the metric is within a certain threshold. 
However, this is problematic due to the fact that the close 
proximity in high dimensional space does not necessarily 
imply strong semantic interaction. As high dimension-
ality often carries rich and diverse semantics, the same 
distance may arise from different regions of the semantic 
space. Inspired by [38], we assess the degree of seman-
tic interaction between two components according to the 
data distribution in their neighbourhood. Intuitively, the 
less similar neighbours they share, the weaker the seman-
tic interaction is.

Following [38], we first use K-means algorithm [39] to 
partition the vectors into multiple clusters. Meanwhile, we 
apply KNN algorithm [40] to find the nearest neighbours. 
By analyzing the cluster membership of the nearest neigh-
bours, we are allowed to associate each component vector 
with a discrete probability distribution. In this sense, the 
discrete probability distribution is derived from the clusters 
that the neighbours belong to and the corresponding occu-
pancy. Endowed with explicit semantics, the resulting rep-
resentation helps to support the calculation of interaction 
scores. We use KL divergence [41] to calculate how much 
information is lost when approximating one distribution 
with another. The formula is as follows:

where Pα and Pβ refer to the discrete probability distribu-
tion matrices of two components wα and wβ , respectively. 
For example, for the words  (ENG: “persistent”) 
and  (ENG: “fever”), Pα represents a discrete prob-
ability distribution corresponding to  (ENG: 
“persistent”) and Pβ represents a discrete probability dis-
tribution corresponding to  (ENG: “fever”).

In order to circumvent the asymmetry of KL divergence, 
we use a score function based on the JSD, defined as fol-
lows [38],

where M = 1
2 (Pα + Pβ).

In order to measure the interactions between compo-
nents wα and wβ of interest, we use the scoring function 
whose range is within [0, 1], defined as follows [38]:

Where ν and γ are scaling and offset parameters 
respectively.

Compositionality judgement
We combine the position information and the interaction 
scores to judge the compositionality between individual 
words. Suppose the words are independent of each other. 
Let πwα

B  , πwα

I  , πwα

E  , and πwα

S  signify the probabilities of “B”, 
“I”, “E” and “S” positions in term of a given word wα . For 
an input sentence from patients’ descriptions, we assign 
each wα with possible annotations according to πwα

B  , πwα

I  , 
π
wα

E  , and πwα

S  . Besides “BIES”, we use “O” to represent the 
“Other” position, indicating that the corresponding com-
ponent is independent of the extracted results. Actually, the 
words in a sentence may have more than one annotations. 
We choose such annotations as candidates, which result in 
non-overlapping subsequences either assigned with “B” at 

(1)DKL(Pα||Pβ) =
∑

i

Pα(i) log

[

Pα(i)

Pβ(i)

]

,

(2)JSD(Pα||Pβ) =
1

2
DKL(Pα||M)+

1

2
DKL(Pβ ||M),

(3)I(wα ,wβ) = exp(−νJSDα,β + γ ),

Fig. 3 Description of the skip-gram model. The model 
used in Word2Vec to find an optimal representation to 
predict the surrounding context of a target word. Consider 
a standard symptom phrases from the symptom dictionary, 

 (ENG: “supraclavicular lymph 
nodes were not palpable and enlarged”). The example highlights the 
window around  (ENG: “lymph node”), organs that produce 
immune cells for fighting infections. The target word,  
(ENG: “lymph node”), is linked to each of its neighboring words and 
the pairs are fed into the network. The learning process optimizes the 
probability of predicting the contextual words of  (ENG: 
“lymph node”)
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the beginning and “E” at the end or assigned with “S”. Then, 
the boundary scoring function π(l1, . . . , lq) is defined as 
follows:

where π li denotes the score for the subsequence li . If 
li corresponds to one single component, i.e., li = wi

1 , 
then the score is defined as π li = π

wi
1

S  . Otherwise, 
let li = wi

1 − · · · − wi
k , the score is thus defined as 

π
li = π

wi
1

B · π
wi
k

E .
Note that there may be consecutive occurrences of 

words with annotation “B”. We treat the leftmost word 
as the beginning. Similarly, for the consecutive occur-
rences of words with annotation “E”, we treat the right-
most word as the end. In general, the words that can 
act as boundaries can also act as intermediate compo-
nents (e.g.  (ENG: “intermittent”) appears in 

 (ENG: “intermittent urinary pro-
tein”) and  (ENG: “upper 
limb intermittent dyskinesia”) respectively). This also 
makes sense from the view of morphology.

After finding the most probable boundaries from the 
candidates, we are required to determine which inter-
mediate components are useful and indispensable. This 
is achieved by calculating the interaction scores between 
each intermediate component and the boundary com-
ponents. Specifically, if the subsequence is annotated 
as B-E, its components are both kept and directly com-
bined into a symptom phrase. Otherwise if the subse-
quence wj

1 − w
j
2 − · · · − w

j
k is annotated as B−I− · · · − E, 

the component wj
i assigned with “I” will be discarded if 

its utility value is less than a certain threshold δ . Formally, 
the utility function is defined as follows:

where I(wj
1,w

j
i) represents the interaction score between 

the beginning component w
j
1 and the intermediate 

(4)π(l1, . . . , lq) =

q
∑

i=1

π
li ,

(5)θ(w
j
i) =

I(w
j
1,w

j
i)+ I(w

j
i ,w

j
k)

2
, 1 < i < k ,

component wj
i , I(w

j
i ,w

j
k) represents the interaction score 

between the intermediate component wj
i and the end 

component wj
k , both of which are defined in equation (3).

For example, an input sentence contains a subsequence 
 (ENG: “An ear 

infection is so itchy and painful at first”) which is anno-
tated as “B−I−I−I−E”. Let δ be set to 0.5. Then the inter-
mediate component  (ENG: “at first”) and  
(ENG: “so”) are discarded due to their utility values are 
less than δ . As a result, the extracted symptom phrase is 

 (ENG: “An ear infection is itchy and 
painful”). The details are shown in Table 3.

Experiments
In this section, we investigate the performance of the 
proposed method ComD on the medical consultation 
corpus crawled from public websites. The goals of our 
experiments are threefold, where one is to investigate the 
contribution of each module by performing the detailed 
ablation study, one is to examine whether ComD is able 
to achieve satisfactory results compared to other baseline 
approaches and the other is to analyze the effect of the 
threshold parameter δ.

Data collection
The datasets consist of the symptom dictionary for train-
ing and the medical consultation data for prediction.

Symptom Dictionary contains 732,855 symptom 
phrases which were collected from multiple data sources 
including medical publications5, electronic medical 
records6 and web resources78. They are the conventional/
typical expressions used by the domain practitioners.

During pre-processing, we first determined whether 
the sources have a clear delineation of symptom phrases. 

Table 3 An example of interaction scores between the internals and the boundaries

5 https://item.jd.com/10139850.html, https://item.jd.com/12419020.html.
6 https://www.biendata.xyz/competition/ccks_2021_clinic/data/.
7 https://www.99.com.cn/, http://www.39.net/, https://www.120ask.com/.
8 https://dxy.com/, https://www.guahao.com/, https://www.haodf.com/.
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If so, we directly loaded them into the dictionary. Oth-
erwise, we predefined several lexico-syntactic patterns to 
detect symptom phrases in texts. For instance, patterns 
like “The principal manifestation of NPx is NPy ”, or “Typi-
cal symptoms of NPx include NPy ” often indicate symp-
tom phrases of the form NPy . The punctuation marks in 
them and duplicate ones are removed subsequently.

MedConSult is a collection of nearly one thousand medi-
cal consultation records derived from the website9. The 
symptom labels are given by the human annotators. The 
annotations are used as the ground truth for evaluating the 
overall performance of the proposed method.

Curated Data from MedConSult is a subset of the medi-
cal consultation data MedConSult by removing the records 
that have no annotation signs “I”. In other words, we only 
kept the records that contain symptom phrases with at 
least three components. It has been stated that if a record 
only contains B−E subsequences, we directly combine the 
boundary components into a symptom phrase without 
judging their semantic interaction. Therefore, this subset 
serves the purpose of demonstrating the necessity of each 
training operation (i.e., position modeling and interaction 
scoring), and exploring how the recognition performance is 
sensitive against the variations of the interaction parameter.

Experimental settings
This section describes the metrics that are used to quanti-
tatively evaluate our method.

Interaction over Union (IoU) is the most commonly used 
metric for comparing the similarity between two strings. 
The higher the IoU, the closer the extracted result is to the 
ground truth. In our case, if IoU between the extracted 
result and the ground truth exceeds a certain threshold ε , 
the extracted result is assumed to be correct.

Micro-averaging (Micro) is an average metric that com-
putes the total number of false positives (FP), false nega-
tives (FN), and true positives (TP) over all consultation 
records, and then computes the precision, recall, and F 1 
score using these counts, which are defined as follows,

(6)Micro-P =
TP

TP + FP
× 100%,

(7)Micro-R =
TP

TP + FN
× 100%,

(8)Micro-F1 =
2×Micro-P ×Micro-R

Micro-P +Micro-R
× 100%.

Macro-averaging (Macro) is an average metric that 
treats all records equally, no matter how many symp-
tom phrases they contain. Specifically, it computes the 
precision and recall independently for each consultation 
record s ∈ S , and then take the average over the size of 
the set S. The results are then combined to obtain the F1 
score.

where Ps and Rs denote the precision and recall of the 
consultation record s respectively.

Baseline methods
We consider such a setting that only a symptom dic-
tionary including numerous standard symptom phrases 
is available, while there is no annotated dataset for clin-
ically motivated symptom extraction. In this new set-
ting, we compare our proposed method ComD against 
the well-developed dictionary-based method and the 
deep learning method which have achieved the current 
state-of-the-art on the NER datasets.

• ComD: We leverage the symptom dictionary to 
learn the arrangements of the symptom compo-
nents. By incorporating the position outputs and 
the interaction scores, we are allowed to deduce the 
symptom phrases that are not seen before.

• BERT-CRF [42]: This method obtains its token 
representation from the pre-trained BERT model, 
which is then fed into CRF output layer for token-
level classification over the NER label set. As the 
model requires annotated dataset, for a fair com-
parison, we use the symptom dictionary to retrieve 
the relevant consultation records and make annota-
tions accordingly.

• BiLSTM-CRF [43]: This is a character-based CNN-
BiLSTM-CRF method for Chinese named entity 
recognition, which enhances Chinese character 
representations by character glyphs. The annotated 
dataset used for BiLSTM-CRF is the same as that 
used in BiLSTM-CRF mentioned above.

• BDMM [44]: This is a commonly used word seg-
mentation method based on the given dictionary, 

(9)Macro-P =

∑

s∈S Ps

|S|
× 100%,

(10)Macro-R =

∑

s∈S Rs

|S|
× 100%,

(11)Macro-F1 =
2×Macro-P ×Macro-R

Macro-P +Macro-R
× 100%,

9 https://www.haodf.com/.
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which combines positive maximal matching and 
reverse maximal matching algorithm.

• Dictionary-based: This is a dictionary lookup 
method that relies heavily on exact string match-
ing, where the words, and order of words should be 
exactly the same as the entry in the symptom dic-
tionary.

We implemented ComD in python. To investigate the 
principle of compositionality, we simplify ComD to the 
case in which characters are taken as symptom compo-
nents. We call this method ComD-Character.

Parameter settings
We performed a grid search to tune hyperparameter val-
ues for ComD. Each of these parameters is varied from 
low to high at a fixed interval, and the performance on 
the medical consultation data is measured. Through 
trial and error tuning in our implementation, the fol-
lowing choices of hyperparameters are preferred: We 
set the dimension of word embeddings to 500. We used 
K-means with 500 clusters, and identified the k-nearest 
neighbours, with k = 2000 . We set the scaling parameter 
ν , offset parameter γ and the utility threshold δ to 7.5, 0 
and 0.2 respectively.

Ablation study
To investigate the individual contribution of our posi-
tion modeling and semantic interaction in training, we 
removed them to offer the methods ComD-NoPos and 
ComD-NoInt. Without position modeling, the com-
ponents that interact with each other and appear in a 
sentence are extracted as a symptom phrase. Without 

semantic interaction, the components within the bound-
aries are directly combined into a symptom phrase.

Table  4 reports the macro/micro-averaged results on 
curated data from MedConSult for different IoU thresh-
olds ε from 0.6 to 1.0, all shown in percentage. As can 
be seen, the joint framework shows apparently superior 
performance in terms of macro/micro-average precision, 
macro/micro-average recall, and macro/micro-average 
F1 score. For example, ComD outperforms ComD-NoInt 
by more than 16% when ε = 0.6 , and this improvement 
is even more pronounced when increasing the parameter 
ε . This affirms the necessity of semantic interaction, and 
its ability to retain useful and indispensable components 
within the boundaries. Compared with ComD-NoPos, it 
can be observed that ComD increases its performance by 
an even larger margin. This suggests that position mod-
eling gives more influence to the quality of extractions 
from unstructured text in spoken form.

Overall comparison
We now evaluate the performance of the proposed 
method and other baselines on MedConSult. The 
detailed results are summarized in Table  5. As can be 
seen, our method, ComD, empirically leads to signifi-
cant gains on recall and F 1 metrics, with the precision 
values slightly lower than that of BERT-CRF. Although 
BERT-CRF is able to achieve the highest precision values, 
it is not able to retrieve many symptom phrases shown 
by the low recall values, only a little better than that of 
dictionary-based methods. We believe that the good 
performance of ComD is due to an appropriate design 
of the model according to the compositionality. As a 
counterpart, ComD-Character does not perform as well 
as ComD, albeit its performance superior to the other 

Table 4 Ablation study results on curated data from MedConSult

ε Method Macro/% Micro/%

Precision Recall F1 Precision Recall F1

0.6 ComD 77.82 78.17 77.99 77.62 78.17 77.89

ComD-NoInt 61.62 61.97 61.80 61.54 61.97 61.75

ComD-NoPos 16.20 16.20 16.20 16.20 16.20 16.20

0.7 ComD 75.00 75.35 75.18 74.83 75.35 75.09

ComD-NoInt 51.06 51.41 51.23 51.05 51.41 51.23

ComD-NoPos 9.15 9.15 9.15 9.15 9.15 9.15

0.8 ComD 61.62 61.97 61.80 61.54 61.97 61.75

ComD-NoInt 26.41 26.76 26.58 26.57 26.76 26.67

ComD-NoPos 5.63 5.63 5.63 5.63 5.63 5.63

1.0 ComD 60.92 61.27 61.09 60.84 61.27 61.05

ComD-NoInt 15.14 15.49 15.31 15.38 15.49 15.44

ComD-NoPos 2.11 2.11 2.11 2.11 2.11 2.11
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methods. This is because the semantic units of charac-
ters can have multiple meanings in different words, and 
tend to be confusing indicators for symptom boundaries. 
When one compares performance of ComD and BiL-
STM-CRF, macro-average precision of BiLSTM-CRF at 

ε = 0.7 appears to be comparative, but the others are rel-
atively poor. BiLSTM-CRF has shown promise in learn-
ing Chinese character embeddings. However, it suffers 
from the training issue: we use symptom dictionary to 
provide distant supervision so that it could not exploit its 

Table 5 Performance comparison of the proposed and baseline methods on the MedConSult

The best result with bold font for each parameter/model/characteristic

ε Method Macro/% Micro/%

Precision Recall F1 Precision Recall F1

0.6 ComD 41.02 37.92 39.41 39.01 21.84 28.00
ComD-Character 36.23 33.37 34.74 34.13 13.62 19.47

BERT-CRF 47.17 16.57 24.52 47.16 15.32 23.13

BiLSTM-CRF 36.50 29.58 32.68 34.01 8.43 13.51

BDMM-based 8.23 12.15 9.81 5.92 8.58 7.00

Dictionary-based 13.52 7.72 9.83 13.76 7.72 9.89

0.7 ComD 33.53 30.08 31.71 31.11 17.42 22.33
ComD-Character 28.36 25.76 27.00 26.30 10.49 15.00

BERT-CRF 37.56 13.05 19.38 37.44 12.03 18.21

BiLSTM-CRF 32.00 25.80 28.57 26.18 7.51 11.67

BDMM-based 7.14 10.46 8.49 5.10 7.37 6.02

Dictionary-based 9.51 5.69 7.12 9.48 5.38 6.86

0.8 ComD 27.45 24.26 25.75 25.23 14.12 18.11
ComD-Character 21.81 19.44 20.55 19.78 7.89 11.28

BERT-CRF 27.52 9.48 14.10 27.45 8.82 13.35

BiLSTM-CRF 19.25 14.94 16.82 14.99 3.61 5.82

BDMM-based 6.17 8.77 7.25 4.22 6.15 5.00

Dictionary-based 8.65 5.14 6.44 8.72 4.94 6.31

1.0 ComD 25.05 22.62 23.77 23.37 13.08 16.78
ComD-Character 19.42 17.26 18.28 17.61 7.03 10.04

BERT-CRF 26.56 9.11 13.57 26.55 8.53 12.91

BiLSTM-CRF 15.00 12.52 13.65 12.59 3.03 4.89

BDMM-based 5.94 8.54 7.01 4.10 5.98 4.86

Dictionary-based 8.65 5.13 6.44 8.72 4.94 6.31

Fig. 4 Performance comparison between JSD-based and other distance measures
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full capabilities when facing flexible and variable expres-
sions in the consultation corpus. As expected, BDMM 
and dictionary lookup methods are inferior to machine 
learning algorithms. The poor results can be explained 
by the fact that dictionary based methods are incapable 

of generalizing beyond the provided word sequences and 
this limitation is unlikely to be fully compensated by bet-
ter matching techniques (e.g., BDMM). This also suggests 
that our method effectively utilizes the composition to 
detect more symptoms in the consultation corpus which 
were not present in the symptom dictionary.

In addition to the JSD-based scores presented in 
Sect. 3.3, we also try other distance measures for inter-
action scoring. Figure  4 plots the curves on macro/
micro-average F1 score versus IoU thresholds ε . We 
find that the results decrease quickly within a certain 
interval (In this case from 0.6 to 0.85), and then the 
variations remain slim. This agrees with intuition that 
a large IoU threshold requires a high match between 
the extracted symptom phrases and the ground truth. 
Besides, the larger the value of ε is, the wider the per-
formance gaps between JSD-based and other distance 
measures are. This sheds light on the strength of JSD-
based metric in capturing the semantic interaction in 
high dimensional space.

Fig. 5 δ sensitivity comparison

Table 6 Typical Case
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Sensitivity analysis
We examine how the extraction performance is sensi-
tive against parameter variations. Figure  5 plots the 
curves on average IoU versus the threshold parameter 
δ . We observe that the average IoU has a sharp rise 
when δ exceeds 0.1, while reaching its peak at 0.2. This 
can be attributed to the increased ratio of indispensa-
ble components needed for symptom recognition. It 
is noteworthy that when δ exceeds 0.2, the extraction 
quality drops quickly, and then seems to remain stable 
beyond a certain value (in this case around 0.4). This 
suggests that relatively large δ would incur performance 
loss until all the indispensable intermediate compo-
nents are discarded.

Case study
In this section, we analyze several representative exam-
ples to illustrate the advantages and disadvantages of 
the proposed ComD, as shown in Table  6. Each case 
consists of three columns, the first column being the 
selected cases, the second column being the ground 
truth, and the third column being the extracted results.

• Sentence S1 makes a claim about a patient expe-
riencing a symptom  (ENG: “physi-
cally weak”). In fact, the phrase  
(ENG: “physically weak”) is a Chinese idiom which 
expresses a certain denotation as a whole, and can-
not be split into multiple words by the tokenizer. 
As such, the proposed model fails to recognize the 
symptom phrase.

• Sentence S2 describes a phenomenon 
 (ENG: “ingrown toenails”) 

experienced by a patient, which is further seg-
mented into three words, i.e.,  
(ENG: “ingrown toenails”). In our case, they are 
out-of-vocabulary (OOV) words, and have no word 
embedding representation learned. Hence, they are 
ignored when the proposed model is applied.

• Sentence S3 makes a claim about a patient expe-
riencing the symptom  (ENG: “waist 
pain and soreness”), which composes of two words, 
i.e.,  (ENG: “waist pain”) and  (ENG: 
“soreness”). Here,  (ENG: “waist pain”) 
is an OOV word and ignored during extraction. 
Although  (ENG: “soreness”) is a valid com-
ponent of symptom phrases, it rarely appears at the 
starting position. Without detecting appropriate 
starting boundaries, the model outputs no extrac-
tion results.

• Sentence S4 contains two subsequences relevant to 
patient symptoms, with the primary symptom being 

 (ENG: 
“right side of the congenital cleft lip and palate extends 
to the throat”). The subsequences are annotated as 

  and 
 (ENG: “right side of the congenital cleft lip 

and palate extends to the throat”). For this case, the 
proposed model chooses the most probable bound-
ary, i.e.,  (ENG: “right side”) and  
(ENG: “cleft”), and leave out the annotated compo-
nent  (ENG: “to”) and  (ENG:  “throat”) 
beyond the boundaries.

• Sentence S5 makes a claim about a patient experi-
encing the symptoms  (ENG: “head-
ache and a snotty nose”). However, our method only 
identifies and extracts  (ENG: “headache) , 
leaving  (ENG: “a snotty nose”) unrecog-
nized. This is because the two words appearing in the 
phrase  (ENG: “a snotty nose”) are OOV 
words, and ignored accordingly.

• Sentence S6 is segmented into five words, i.e., 
 (ENG: “Why 

did small pieces of upper teeth fall out?”), where the 
former three relate to the symptoms. Through anno-
tating,  (ENG: “upper”) and  (ENG: 
“teeth”) are both considered as candidate boundaries 
at the beginning. The proposed model discards the 
word  (ENG: “upper”) by mistake according to 
the estimated boundary scores.

• Sentence S7 describes a phenomenon 
 (ENG: “a pimple grow-

ing on the eyelid”) observed by a patient. After 
finding the most probable boundaries, i.e., 

 (ENG: “Some-
thing growing on the eyelid is a pimple”), the pro-
posed model calculates the interaction scores 
between each intermediate component and the 
boundaries, and then keeps both intermediate com-
ponents, one of which is yet semantically redundant 
and unnecessary.

• Sentence S8 and S9 are positive examples that show 
our model can correctly recognize the symptom 
phrases. As can be seen, there are disjoint words pre-
sent in a sentence, which are integral parts of a symp-
tom mention. This is a common phenomenon in col-
loquial expressions. For example, the words  
(ENG: “feet”),  (ENG: “icy cold”) and  
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(ENG: “pain”) in sentence S8 are disjoint but are all 
key components of the symptom  
(ENG: “icy cold feet & pain”), similar cases in sen-
tence S9. Our model captures such composition and 
concatenates them as the extraction result.

Conclusions
In this paper, we explore how using symptom dictionary 
can facilitate identifying symptom phrases from medical 
consultation corpus. The basic idea is to learn models for 
semantic compositionality over linguistic units according 
to the observed symptom phrases. Our method can not 
only support computer-assisted diagnosis systems, but 
can also promote the medical knowledge graph construc-
tion. Experimental results prove the superiority of our 
method. A special emphasis for our future work is placed 
on more effective design patterns of composing words/
characters to form sound symptom expressions. We 
believe that compositionality provides a feasible solution 
for extracting information from unstructured free text 
with scarce labels. Another focus concerns development 
of computer-assisted medical consultation systems inte-
grated with the proposed symptom recognition method.
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