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Abstract 

Background:  Numerous pieces of clinical evidence have shown that many phenotypic traits of human disease are 
related to their gut microbiome, i.e., inflammation, obesity, HIV, and diabetes. Through supervised classification, it is 
feasible to determine the human disease states by revealing the intestinal microbiota compositional information. 
However, the abundance matrix of microbiome data is so sparse, an interpretable deep model is crucial to further 
represent and mine the data for expansion, such as the deep forest model. What’s more, overfitting can still exist in 
the original deep forest model when dealing with such “large p, small n” biology data. Feature reduction is considered 
to improve the ensemble forest model especially towards the disease identification in the human microbiota.

Methods:  In this work, we propose the kernel principal components based cascade forest method, so-called KPCCF, 
to classify the disease states of patients by using taxonomic profiles of the microbiome at the family level. In detail, 
the kernel principal components analysis method is first used to reduce the original dimension of human microbiota 
datasets. Besides, the processed data is fed into the cascade forest to preliminarily discriminate against the disease 
state of the samples.

Results:  The proposed KPCCF algorithm can represent the small-scale and high-dimension human microbiota data-
sets with the sparse feature matrix. Systematic comparison experiments demonstrate that our method consistently 
outperforms the state-of-the-art methods with the comparative study on 4 datasets.

Conclusion:  Despite sharing some common characteristics, a one-size-fits-all solution does not exist in any space. 
The traditional depth model has limitations in the biological application of the unbalanced scale between small sam-
ples and high dimensions. KPCCF distinguishes from the standard deep forest model for its excellent performance in 
the microbiota field. Additionally, compared to other dimensionality reduction methods, the kernel principal compo-
nents analysis method is more suitable for microbiota datasets.

Keywords:  Human microbiota, Supervised classification, Kernel principal components, Cascade forest, Disease 
identification
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Background
The human microbiota is made up of about 100 trillion 
microbial cells. Compared to 10 trillion humanoid cells 
in our body, microbiota provides many missing features 
of human biology [1]. The content and number of gut 
microbes keep a dynamic balance during their hosts’ evo-
lution, and microbes also assist their host to maintain 
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normal physiological functions [2, 3]. There are numer-
ous clinical studies exploring the association between 
microbiome and phenotype, aiming to identify differ-
entially abundant taxa between health and disease [4], 
including inflammation [5], obesity [6–9], autism [10, 
11], immune system diseases [12], neurological diseases 
[13] and cancer [14–16]. Recent advances in sequencing 
technologies have made it feasible to profile the micro-
biome via metagenomic sequencing, which is a tech-
nique to extract DNA from environmental samples [17]. 
Human microbiota genomics cooperative research pro-
grams have been launched internationally in recent years, 
such as the European Metagenomics of the Human Intes-
tinal Tract [18] and the Human Microbiome Project [19]. 
These programs aim to understand the gut microbiota of 
healthy individuals through large-scale sequencing and 
use this as a reference to study the intestinal tract under 
disease conditions.

Biology classifies and names various taxa of organisms 
according to different levels, normally including Domain 
(d), Kingdom (k), Phylum (p), Class (c), Order (o), Family 
(f ), Genus (g), and Species (s). At present, the classifica-
tion of diseases by intestinal microbes is mainly based on 
the genus level [20]. A category at a higher level integrates 
multiple lower-level categories. As a result, the higher the 
level, the fewer sample categories can be classified. More-
over, higher-level categories are easier to obtain. Due to 
microorganisms themselves being very rich at the genus 
level, the established “sample-feature” matrix tends to be 
so sparse leading to unnecessary biological detection and 
calculation. If we can get good identification results from 
a higher level in meta-genome data, it will be more ben-
eficial to be applied in the real application. Attempting to 
improve the performance of the dataset during predic-
tion, our work applies the microbiome data at the family 
level as the diagnosis basis.

Using machine learning algorithms to identify highly 
complex and unknown patterns in datasets (such as 
human microbiota) is of great value [1]. It has been 
demonstrated that several existing supervised classifi-
ers, such as Random Forests (RFs) and Support Vector 
Machine (SVMs) [21], can be effectively used to classify 
and predict the disease based on microbiota popula-
tion. However, because of inconsistent individual studies 
and the lack of standardized data analysis methods, the 
accuracy of classifying and predicting diseases through 
the human intestinal microbiome is still unsatisfactory. 
Enhancing the complexity of an algorithm by deepening 
the network, increases not only the number of comput-
ing functions but also the degree of its embedding. [22] 
published an article, and the concept of “Deep Learning” 
(DL) was officially proposed. DL is a high-level abstrac-
tion algorithm that uses multiple complex structures to 

represent multiple nonlinear changes [23]. Deep Neural 
Networks (DNNs) have been widely exploited recently 
for meta-genomic association studies [24, 25], meta-
genomic classification [26, 27], and disease diagnose 
[28, 29]. Large training data is necessary for DNNs to 
realize good performance, which may not be possible 
in small-scale datasets like biology and medical science. 
For example, almost all CNN faces over-fitting problems 
due to the limitation of data volume and the increase of 
training parameters. That is, the magnitude of the train-
ing set does not match the complexity of the model, and 
the weight learning iterations are overtraining, fitting the 
noise in the training data, and the non-representative fea-
tures in the training examples. Recently, a Deep Forest 
(DF) model called gcForest was proposed by Zhou and 
Feng, which is an ensemble of ensembles decision tree 
method and performs excellently in many experiments 
[30, 31]. The interpretable tree structure can solve the 
problem of non-differentiable. Additionally, compared to 
the time-consuming parameter adjustment, gcForest is 
far more efficient due to fewer hyper-parameters.

In the gcForest model, a multi-grained scanning is con-
ducted first to get its corresponding transformed feature 
representation. Sliding windows are used to scan the 
low-dimension features, and differently grained feature 
vectors will be generated by using multiple sizes of slid-
ing windows. In the following, the instances extracted 
from the same size of windows are used to train the first 
grade of a cascade forest, containing completely-random 
tree forest and random forest. Random forest is an inte-
grated model of random trees, introducing randomness 
to encourage diversity. While for the completely-random 
tree forest, it selects and assigns features completely ran-
domly. The class vectors are generated and concatenated 
as transformed features.

However, the scanning model in gcForest can only con-
sider the original sequence, which will lead to features 
disturbing for the unknown relationship between two 
adjacent features. The microbiota datasets are too sparse 
and contain lots of 0 values in many flora features. When 
the training sets are put into a multi-grained scanning 
package, due to the not yet clear complicated relation-
ships between each microbiota, it can extract representa-
tive new features sometimes but others not. Thus, the 
standard DF model still faces overfitting and ensem-
ble diversity challenges when dealing with such “large 
p, small n” biology data. Many researchers have been 
exploring how to improve the DF algorithm of identifica-
tion for special field [27, 32, 33]. Features are the key to 
determining similarity measurements and classification 
predictions. To highlight some useful information and 
suppress the useless, it is necessary to reduce the input 
features. The original datasets can be transformed at the 
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beginning of the algorithm to adapt to subsequent depth 
learning [34]. The affinity network model was put for-
ward to learn from a limited number of training exam-
ples and generalizes well [35]. The kernel-based model 
can also offset the hyperplane by modifying the kernel 
function caused by the unbalanced data. [36] applied 
the kernel method to feature extraction and proposed 
kernel principal components analysis (kPCA) method. 
The experimental results show that kPCA can not only 
extract nonlinear features but also obtain better recogni-
tion results. KPCA is widely used in various fields such 
as industrial nonlinear process monitoring [37, 38] and 
image classification [39]. We systematically explored 
disease identification by utilizing the kPCA considering 
limited and unbalanced samples and a large number of 
features. To further improve the meta-genomic classifi-
cation accuracy, we use the mixed data fused with asso-
ciated metadata, such as gender, age, and other basic 
information as the diagnosis basis and fed them to the 
proposed model.

Methods
The disease identification can be treated as a multi-class 
classification problem, and all the datasets we use here 
contain three categories. This section presents the data-
sets’ information and detailed procedures of the KPCCF 
method for disease identification. The four microbiota 
datasets used in our paper are introduced first. In the 
following subsection, the kernel principal components 
analysis method is applied to reduce the original dimen-
sion of the microbiota datasets. Then, we use cascade 
forests to preliminarily discriminate against the disease 
state of the sample with the reduced human gut microbi-
ota. Finally, the overall procedure of KPCCF is detailedly 
present.

Microbiota datasets
Sequencing technology can directly sequence microbial 
DNA, generating a large number of microbial sequenc-
ing data. According to the analysis object and experi-
mental purpose, the research of meta-genomics can be 
basically divided into amplicon sequencing and meta-
genomic complete sequencing. The former obtains the 
relative abundance and diversity level of each bacterial 

species to understand the composition and structure of 
the microbial community in the environment, includ-
ing 16s rRNA, etc. The latter is the overall sequenc-
ing and analysis of all meta-genomic DNA, including 
Shotgun metagenomics, etc. Many people now use the 
above sequencing data to carry out prediction research 
[21, 24, 27].

MicrobiomeHD [40] is a standardized database of 
human gut microbiome studies on health and disease. 
This database includes publicly available 16s data from 
published case-control studies and their associated 
patient metadata. In this work, four datasets derived 
from MicrobiomeHD are used to verify the effects of 
the gut microbiome on the occurrence of different dis-
eases in humans. The datasets we chose are related to 
four popular diseases, Clostridium Difficile Infection 
(CDI), Colorectal Cancer (CRC), Inflammatory Bowel 
Diseases (IBD), and Obesity (OB). CDI is the main cause 
of antibiotic-associated diarrhea. With the increase in its 
incidence rate, CDI has already become one of the most 
important public health problems that threaten human 
beings’ health. CRC, the world’s second-largest can-
cer, is malignant cancer caused by the accumulation of 
genetic mutations, which causes a massive proliferation 
and spread of more than 50%. IBD is caused by abnormal 
responses of the immune system of the genetically sus-
ceptible host to environmental factors, including Crohn’s 
disease (CD) and ulcerative colitis (UC). Different disease 
states occur under the combined action of environmen-
tal factors and intestinal microbes. OB measures are the 
incidence of overweight/obesity (OW/OB). Table 1 shows 
the detailed divisions of the used datasets. Specifically, in 
the cdi_schubert dataset [41], the samples consist of 93 
CDI, 89 nonCDI, and 154 H samples, in which nonCDI 
represents patients with diarrhea who tested negative for 
CDI, CDI represents patients that suffer from CDI, and 
H represents the healthy samples. The crc_baxter data-
set [15] consists of 120 CRC​, 198 adenoma, and 172 con-
trols, in which CRC represents tumor disease infection, 
adenoma signifies adenoma infection, and H denotes the 
healthy samples. In the ibd_papa [42] dataset, there are 
24 nonIBD, 43 UC, and 23 CD, in which non-IBD con-
trols are patients with gastrointestinal symptoms but no 
intestinal inflammation. While the ob_goodrich dataset 

Table 1  Number of datasets samples and features

ID Data sources Disease label and sample size f-level features g-level features

1 cdi_schubert [41] CDI(93), nonCDI(89), H(154) 80 198

2 crc_baxter [15] CRC(120), H(172), adenoma(198) 93 255

3 ibd_papa [42] nonIBD(24), UC(43), CD(23) 49 142

4 ob_goodrich [43] OB(185), OW(336),H(428) 79 199
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[43] possess 185 OB (obesity), 336 OW (overweight) and 
428 controls.

The datasets all come from real-world cases. Each data-
set contains a metadata table, an OTU (Operational Tax-
onomic Units) table, and other related information. The 
metadata table involves various physical characteristics 
such as gender, age, and disease state of the patient. OTU 
is an operation classification unit that artificially groups 
sequences according to a certain degree of similarity. 
Since the microbiota community has no explicit relation-
ship so far, there are many types of research carried out 
using RNA sequencing [33], DNA sequencing [34], and 
clinical images [39]. Some experiments choose OTU as 
an additional supplement nowadays. However, only a 
few related types of research use microbiota OTU data 
for research, and the results obtained were not ideal. Our 
paper only used the OTU table for prediction to mine 
the relationship between the patients and their micro-
biota. Thus, our results only generated by OTU are more 
competitive.

To mine the microbiome data, the datasets need to be 
processed and converted into a sample-feature matrix 

first. The procedure of data processing is shown in Fig. 1. 
Step One , split the first column of the original OTU table 
by a semicolon, and connect the split series expanding 
the columns of the original OTU table. Step Two , accord-
ing to the columns of the genus and the family level, the 
flora is hierarchically clustered, and the number of com-
munities of different numbered samples is accumulated 
together. Step Three , transpose the table obtained in 
the previous step to a sample-microbiota features table. 
Step Four , place the disease state in the metadata set as 
the final column. The processed sample dataset is repre-
sented as a sample/feature dimension, and the last col-
umn is the annotation of the disease state.

Kernel principal components based feature reduction
The number of training samples needs to grow expo-
nentially with the feature dimension [44]. That is if N 
training samples are enough to cover the one-dimen-
sional feature space, then N 2 samples are needed to 
cover the two-dimensional feature space of the same 
density, N 3 samples are needed to cover the three-
dimensional feature space, and so on. From the very 

Fig. 1  Introduction to the datasets. Firstly, split the first column of the original OTU table by a semicolon, and connect the split series expanding the 
columns of the original OTU table. Secondly, hierarchically cluster the microbiota, and accumulate different numbered samples. Thirdly, transpose 
the table obtained in the previous step. Fourthly, placing the disease state in the metadata set as the final column
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beginning, as the feature dimension increases, the 
performance of the classifier will gradually increase. 
However, after the number of features reaches a cer-
tain point, the prediction accuracy gradually decreases. 
Both redundant features (which can be derived from 
other features), and irrelevant features (which do not 
affect model training) are catastrophic for machine 
learning algorithms. Dimensional disaster always leads 
to weak generalization, so it is necessary to first reduce 
the dimension to avoid overfitting. Removing unrelated 
features can not only reduce the difficulty and speed 
of learning tasks but also enhance the understanding 
between features and eigenvalues.

Since it is unclear about the biological mechanism of 
action and the relationship between every microbiota 
population, directly eliminating the “useless” features 
may result in information omission. Therefore, we use 
the feature transformation method to reduce the dimen-
sion of data. During the features mapping from one-
dimensional space to another, only the eigenvalues will 
change accordingly. Kernel Principal Components Analy-
sis (kPCA) is a nonlinear extension of the Principal Com-
ponents Analysis (PCA) algorithm. We use the kPCA 
method to reduce the intestinal microbiota characteris-
tics dimension. The process of kPCA is to raise the origi-
nal dimension data to new k-dimensional, and the final 
goal is to make the data linearly separable in the target 
dimension, which is the maximum separability of PCA. 
The kernel-based model can also offset the hyperplane 
by modifying the kernel function caused by the unbal-
anced data. By replacing the original data with a kernel 
function, it is possible to mine the nonlinear information 
contained in the datasets. It describes the correlation 
between multiple features and captures important infor-
mation to achieve better results. What’s more, dimension 
reduction can also remove some noise and unnecessary 
details, and effectively speed up the training process.

We choose the kPCA method depending on the fol-
lowing considerations: (1) the calculation of the kernel 
function is independent of the feature dimension. The 
introduction of kernel function avoids the direct opera-
tion of high-dimensional feature space after transfor-
mation, greatly reducing the calculation amount and 
avoiding the “dimensionality disaster”. Some kernel func-
tions, such as the RBF kernel, make the dimension of fea-
ture space infinite to improve the pattern classification or 
regression ability. (2) There is no need to know the form 
and parameters of the nonlinear transformation function. 
The calculation of kernel function in the original input 
space essentially implicitly corresponds to a high-dimen-
sional nonlinear transformation function. The transfor-
mation overcomes the limitation of the nonlinear feature 
space dimension.

There are no obvious performance metrics to help 
choose the best kernel method and hyper-parameter val-
ues for kPCA, which is an unsupervised learning algo-
rithm. We use the grid search method to select the kernel 
function and gamma values that will allow the task to 
perform optimally and get the best classification accu-
racy. There are many kinds of kernel functions, such as 
linear kernel functions, polynomial kernel functions, sig-
moid kernel functions, and Gaussian kernel functions, 
etc. Gaussian kernel functions, also called Radial Basis 
Function (RBF), are the most commonly used.

Grid Search is a parameter tuning method through 
an exhaustive search. In the selection of all candidate 
parameters, it tries every possible combination of param-
eters through loop traversal and outputs the parameter 
combination gaining the best result. We used four com-
monly used kernel functions, “linear”, “rbf”, “poly”, and 
“sigmoid” for verification. The last three kernel func-
tions all require a common parameter gamma. Gamma 
is equivalent to adjusting the complexity of the model. 
The higher the gamma value, the greater the model com-
plexity, which may easily lead to overfitting. The default 
value of gamma is the reciprocal of the feature number. 
Due to the different characteristics of the datasets we 
used, we combined the information of the four data sets 
to verify the gamma as 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 
0.06. Grid Search is a parameter tuning method through 
an exhaustive search. As shown in Fig. 2, in the selection 
of all candidate parameters, it tries every possible combi-
nation of parameters through loop traversal and outputs 
the parameter combination gaining the best result. In 
the end, a combination with the best result was selected: 
“kernel=rbf, gamma=0.05”. We used this as the param-
eter of the final experiment. The RBF kernel is presented 
as:

where 
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∥x − x′
∥

∥

2

2
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between two feature vectors, σ is a free parameter. It can 
map the input data into infinite dimensions. An equiva-
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is a similar metric representation and decreases as the 
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Ensemble classification model of cascade forest
The main goal of the paper is to explore the relationship 
between microbes and disease occurrence based on 
community and quantity of intestinal microbiota. How-
ever, the abundance matrix data of the microbiome is 
too sparse with the small sample size even after appro-
priate dimensionality reduction. That is, most microbes 
are limited to a relatively small number of samples. A 
deep model is needed to represent and mine the data. 
The integrated cascade forest model is the ensemble of 
both breadth and depth of the traditional forest model.

Cascade forest is an ensemble of ensembles method, 
which is composed of random forests and completely-
random tree forests in its structure. A completely-
random tree forest randomly selects a feature when 
splitting. Each random forest will output features with 
an important factor, then we rank the features after 
the average important factor for all forests and com-
bine features of all levels according to each forest fea-
ture’s importance. In each level, the entire model is 
validated on the training set. Compared to most deep 
neural networks with fixed model complexity, the cas-
cade forest adaptively determines its model complexity 
by terminating training when it is sufficient. This makes 
it suitable for training data at different scales. Finally, 
averaging across all trees in the same forest, and the 
class distribution for each forest is generated.

The overall procedure of Kernel Principal Components 
based Cascade Forest (KPCCF)
KPCCF model is composed of two modules: firstly, 
using kPCA to reduce the high dimension of the input 
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“large p, small n” data; secondly, using the cascade for-
est depth model to improve the model’s classification 
ability.

The overall procedure of the KPCCF algorithm is 
shown in Fig. 3.

Step One Apply feature reduction in divided train-
ing set to adjust the datasets better suitable for disease 
classification prediction. Though not all categories are 
distinguished, it will still catch some similarity factors. 
By RBF kernel function, the unknown correlation high-
dimensional data will be transformed into approximately 
linearly separable data.

Step Two The features extracted from the previous stage 
by kPCA method are fed to the cascade forest. Each layer 
of cascade forest is composed of multiple forests and will 
produce a class vector as its output. The class vector will 
connect with the former stage output, and then inputs 
the next layer. The next layer produces another class vec-
tor, which will further connect with an output produced 
by another branch of kPCA. This process continues until 
reaching the termination condition, such as achieving the 
expected accuracy or reaching the maximum number of 
layers. After getting the final class vector, calculate the 
average value for all kinds of possibilities and select the 
class with the maximum aggregated to be the final clas-
sification result.

KPCCF is a novel decision tree aggregation method, 
and its prediction accuracy is highly competitive with 
deep neural networks in a wide range of tasks. Besides, 
the deep forest is easier to train because it has fewer 
hyper-parameters than deep neural networks. Its perfor-
mance is robust to hyper-parameter settings in different 
domains’ datasets, and it can get excellent performance 
even by using the default setting [30]. Another advantage 

gamma=0.005 gamma=0.01 gamma=0.05

linear
KernelPCA(kernel= linear ,
gamma=0.005)

KernelPCA(kernel= linear ,
gamma=0.01)

KernelPCA(kernel= linear ,
gamma=0.05)

RBF
KernelPCA(kernel= rbf ,
gamma=0.005)

KernelPCA(kernel= rbf ,
gamma=0.01)

KernelPCA(kernel= rbf ,
gamma=0.05)

poly
KernelPCA(kernel= poly ,
gamma=0.005)

KernelPCA(kernel= poly ,
gamma=0.01)

KernelPCA(kernel= poly ,
gamma=0.05)

sigmoid
KernelPCA(kernel= sigmoid ,
gamma=0.005)

KernelPCA(kernel= sigmoid ,
gamma=0.01)

KernelPCA(kernel= sigmoid ,
gamma=0.05)

Fig. 2  The parameters selection in grid search. We used four kernel functions, “linear”, “rbf”, “poly”, and ”sigmoid” for verification, and combined the 
information of the four datasets to verify the gamma as 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06
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is that the model complexity of the deep forest can be 
automatically determined for different training datasets, 
making the deep forest work well even on small datasets. 
Therefore, the advanced feature reduction makes the 
cascade forest algorithm much more suited for disease 
prediction.

Results
In order to verify the proposed method, in this section, 
we tested the performances of various classifiers derived 
respectively from KPCCF and other state-of-the-art 
methods, including Decision Tree (DT) [45], standard 
ensemble method RF [21], the normal deep learning 
algorithm CNN [28], and the original deep forest model 
gcForest(DF) [27, 33, 34] on the four datasets shown in 
Table  1, and evaluated the results through classification 
accuracy.

Experiment design and parameter settings
As the downloaded four microbiota datasets are com-
posed of the most basic hierarchical species microbiome, 
we preprocess the datasets according to procedures in 
Fig. 1 and form the family level microbiota datasets. The 
newly-built ones are composed of a set of input features 
(various microbiota in the unit sample) and disease tags.

Since the division of the training set and the testing set 
largely affects the final model and parameter values, it 
is necessary to use as much data as possible to partici-
pate in the training of the model during model training. 
The LOO-CV (Leave-one-out cross-validation) method 
only uses 1 sample for testing at a time and uses other 
n-1 samples for training, which takes too long. Therefore, 
we use K-Fold Cross-Validation. Cross-validation (CV) is 

a common statistical analysis method used to verify the 
performance of classifiers. Firstly, divide all datasets into 
K parts, and take one of them as the testing set without 
repeating each time. Secondly, use the other K-1 parts 
as the training set to train the model. Then calculate the 
Accuracy and F1 values for the testing set, and K times 
of Accuracy are averaged to get the final Accuracy. The 
fundamental reason for the use of cross-validation is the 
limited sample number of data. In this case, using all 
data to train the model easily leads to overfitting. Such 
low bias and high variance results are not conducive to 
repeated experiments. When the model stability is low, 
increasing the value of K can get better results, but the 
computational overhead must be considered. As a practi-
cal application of medical diagnosis, the efficiency of pro-
viding decision support is also very important. Therefore, 
the k value cannot be set too large, which will easily lead 
to a decrease in calculation efficiency. As for the choice of 
k, sklearn uses 75% of the data set as the training set and 
25% of the data set as the test set by default. And we also 
refer to articles [25] related to our research. Considering 
that the data in the medical field is unbalanced, to guar-
antee the testing set covers all the sample labels when 
the dataset is randomly divided, 1/4 of the data is proper 
to be selected as the testing set. Therefore, in the selec-
tion of K value, we choose 4-fold cross-validation as the 
experimental training test method. The results are evalu-
ated through the prediction error and their square sum. 
For each dataset, the CV process has been conducted 20 
times, and the average performance is evaluated as the 
final result. The samples in each dataset are randomly 
divided into 4 parts evenly. Each part of the samples is 
respectively used as a testing dataset and the remaining 
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parts of the samples make up the training dataset. During 
each fold, the training dataset is fed into different classi-
fiers to train the model, then the testing dataset is used to 
test the trained classifiers.

DT performs as the tree structure. It starts from the 
root node, then tests the corresponding feature attrib-
utes in each item to be classified, and selects the out-
put branch according to its value until the leaf node is 
reached. The category stored by the leaf node is used as 
its result.

One of the improved bagging DT algorithms, RF, is a 
classifier using multiple decision trees to train and pre-
dict samples. Select the category with the most votes in 
the classifier’s voting results as the final classification 
result. For the random forest, the number of trees and 
the max-depth are tested with the grid searching method. 
We set them 100 and 2, respectively. All other parameters 
are left as default, such as max_features (default is auto), 
min_samples_split (default is 2), and min_samples_leaf 
(default is 1). We use the value of Gini impure to calcu-
late properties and select the most appropriate node.

In the model of CNN, the original input 2-dimension 
sample-feature data vector needs to be expanded to the 
3-dimension, that is, turned from 2*2 to 1*2*2 to make 
the dimension conform to the model’s input. We decide 
how many hidden layers are best in the disease classifica-
tion based on experimental tests, errors, and accuracy. 6 
hidden layers are used in this study (including 3 convolu-
tion layers, 2 pooling layers, and 1 fully-connected layer). 
The multi-class classification of this experiment uses cat-
egorical cross-entropy as the loss function. By using the 
method of Stochastic Gradient Descent (SGD), recur-
sively approximating the minimum deviation model, and 
using the chain derivation rule to deduct the nodes of the 
hidden layer, the ultimate goal is to make the loss of all 
training data as small as possible. The disease classifica-
tion result is obtained at the output layer after the trans-
formation of the hidden layer. The loss and the accuracy 
of CNN in different epoch are shown in Fig.  4. We can 
see that the loss function is decreasing as epochs grow, 
and the accuracy outperforms consistently as dimension 
increases. The loss value on the testing set starts to rise 
again after 200 epochs. Because the data is too small, the 
accuracy changes slowly in the early stages. Through the 
curve of accuracy, it can be found that the fit has also 
begun to appear after 200 epochs.

For KPCCF training, suppose that the original 1-D 
microbiome input is of 100 raw features. In the feature 
reduction module, taking the cdi_schubert dataset at the 
family level as an example, each sample has 90 features. 
According to the number of the dataset features, we have 
varied the parameter number of components from 5 to 
90 with the step size of 5, the accuracy is shown in Fig. 5. 

We can abstract 30 principal components at the fam-
ily level as it reaches their peak. However, in the process 
of dimension reduction, the features number in our four 
datasets varies from 49 to 93 at the family level and from 
142 to 255 at the genus level. We cannot find the num-
ber of features that can optimize the final accuracy and 
computing efficiency at the same time. As a result, we 
set the hyper-parameter “ n_components ” as mle at last, 
which means the number of features will be automati-
cally selected to meet the required percentage of vari-
ance. That is, the model will select a certain number of 
principal components features to reduce dimensional-
ity according to the variance distribution of the feature, 
which we find can balance the final accuracy and the 
compute efficiency.

After feature reduction by kPCA, the transformed 
training set will then be used to train the 1st-grade of a 
cascade forest. These data will be used to train two ran-
dom forests and two completely-random tree forests. 
Each forest contains 30 trees generated by randomly 
selecting a feature for a split at each node of the tree 
and growing tree until each leaf node contains only the 
same class of instances. If there are three classes to be 

Fig. 4  The loss and the accuracy of CNN in the different epoch of the 
ibd_papa dataset. The loss function is decreasing as epochs grow, 
and the accuracy outperforms consistently as dimension increases
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predicted, then each of the four forests will produce a 
three-dimensional class vector. Thus, the next level of the 
cascade will receive augmented features. Compared to 
most deep neural networks with fixed model complexity, 
the cascade forest adaptively determines its model com-
plexity by terminating training when it is sufficient. As a 
result, the KPCCF model has a few parameters to adjust.

The performance comparison of various classifiers
In this paper, every dataset has been tested 20 times in all 
6 methods, DT, RF, CNN, CF, DF, and KPCCF, with the 
data being divided differently. And we take the average as 
their final results. Taking the cdi_schubert dataset as an 
example, the confusion matrix of one experiment by six 
algorithms is shown in Fig. 6. As we can see, various algo-
rithms identify diseases with different sensitivity. DT and 
RF identify samples with CDI disease well, while CNN, 
DF, CF, and KPCCF algorithms can identify healthy sam-
ples well. Above all, KPCCF has the best results for its 
diagonal color is the lightest. In specific, KPCCF classi-
fies 22 samples as nonCDI, while 8 of these are supposed 
to be CDI in reality. It predicts 17 to be CDI with 11 to be 
true. 45 of the training samples are diagnosed as healthy, 
and only one of them is wrong.

When the dataset is unbalanced, using accuracy meas-
ures to evaluate the classification performance is not 
enough, some other metrics, like “precision” and “recall”, 

or a combination of the two. In the multi-category prob-
lem, the F1 score is divided into two types, which are 
Macra F1 score and Micro F1 score respectively. The 
n-class classification problem is divided into n two-cate-
gory evaluations, and the F1 score of each two classifica-
tions is calculated. As Macra F1 score is the average of n 
F1 scores and is heavily influenced by the small number 
of samples. The use of Micro F1 score is more reasonable 
in the case of uneven data samples.

We use accuracy (Acc), variance (Var), and MicroF-
1score as model evaluations. As can be seen in Table  2, 
the Acc and the Micro F1 score of the KPCCF algorithm 
are generally better than the other five existing algo-
rithms. In all datasets, CNN always got the lowest accu-
racy except in the ob_goodrich dataset. It’s probably 
because the ob_goodrich dataset has a relatively larger 
dataset, while CNN is easier to over-fitting, especially 
when the datasets are extremely small like what is used 
in this article. When the sample number of the dataset 
is extremely small, such as the ibd_papa dataset, KPCCF 
showed an overwhelming advantage whose accuracy 
reached up to 0.57. It’s a 3-class classification problem 
with only less than 100 samples. And it has much more 
hyper-parameters to adjust. The predictions of CF and 
DF models are not very stable, while kPCA can improve 
the situation. It is also noticeable that the DF model per-
forms well in the ibd_papa and ob_goodrich datasets but 

Fig. 5  Accuracy of different principal components. We have varied the parameter number of components from 5 to 90 with the step size of 5. We 
abstract 30 principal components at the family level as it reaches their peak

Fig. 6  The confusion matrix of 3 classification. Above all, KPCCF has the best results for its diagonal color is the lightest



Page 10 of 15Zhou et al. BMC Medical Informatics and Decision Making          (2021) 21:360 

poorly in the other two datasets. This is because their 
features are relatively smaller compared to their samples’ 
size. Thus, by use of feature reduction method reason-
ably, cascade forest, which is a deep forest model, may 
produce sensible results on the datasets.

To more intuitively display the results in the table, we 
visualize some of the results. In the multi-class classifi-
cation problem, the Micro F1 score is more accurate to 
measure the algorithms. The Micro F1 score of 4 pre-
diction results at the family level respectively is shown 
in Fig.  7. In the thermal map, the darker the color, the 
larger the value. It can be easily found that CDI disease 
is the most adaptive to classification methods for its color 
is always much darker than other datasets. While CRC 
and OB diseases get prediction far from satisfied. That’s 
maybe because the diseases cannot be easily classified by 
our used microbiota data. The differences in the charac-
teristics of the different labels are not as obvious as the 
other two groups. Diseases like obesity’s associations 

with the microbiome remain unclear require potential 
confounders, like host behavior and diet [20]. It needs 
further improvement if it is to be put into practical use. 
Either from the perspective of algorithms or from the 
perspective of microbiota flora processing.

The biggest advantage of KPCCF is that: (1) it has 
excellent performance even with a small amount of data 
as it’s the ensemble of RF, (2) it has fewer hyper-param-
eters compared to DNN, and (3) compared to the multi-
scanning stage of DF, it discovers nonlinear high-order 
correlations between data and removes this correlation 
without knowing the relationships between microbiota 
community in advance.

Discussion
Extended study based on metadata
To explore the relationship between metadata and dis-
ease, here, we use four datasets by fusing their microbiota 
data and the metadata as the mixed datasets covering 

Table 2  The performance comparison of different models in disease identification

The result with the best performance is bold

Disease cdi_schubert crc_baxter ibd_papa ob_goodrich

Acc Var F1 Acc Var F1 Acc Var F1 Acc Var F1

DT 0.66 0.043 0.68 0.40 0.035 0.41 0.48 0.091 0.48 0.39 0.021 0.39

RF 0.63 0.038 0.65 0.41 0.033 0.41 0.52 0.089 0.52 0.47 0.029 0.48
CNN 0.56 0.068 0.54 0.38 0.048 0.37 0.47 0.090 0.43 0.43 0.045 0.41

CF 0.67 0.053 0.69 0.40 0.042 0.4 0.53 0.082 0.54 0.46 0.026 0.44

DF 0.61 0.037 0.64 0.39 0.042 0.37 0.53 0.074 0.57 0.46 0.022 0.46

KPCCF 0.69 0.057 0.71 0.43 0.040 0.48 0.57 0.072 0.57 0.47 0.012 0.48

Fig. 7  The Micro F1 score of 4 prediction results at the family level respectively. CDI disease is the most adaptive to classify



Page 11 of 15Zhou et al. BMC Medical Informatics and Decision Making          (2021) 21:360 	

CDI, CRC, IBD, and OB diseases, and train the KPCCF 
diagnosis model again. Since the information in each 
metadata is different, we add age and gender features in 
the cdi_schubert and ibd_papa dataset, add BMI, age, 
and gender in the crc_baxter dataset, add age in the 
ob_goodrich dataset. Based on the mixed datasets, the 
various models are tested via similar settings as before. 
The performance of microbiota data only and mixed data 
fused with metadata is shown in Table  3. Results show 
that the concatenation improves the accuracy score in 
CRC, IBD, and OB. This means these three diseases may 
have a great relationship with samples’ gender, age, and 
other characteristics and simply concatenating them 
brings better results. The prediction accuracy of CRC 
and OB increased by 0.05 reaching 0.48 and 0.52 respec-
tively, which is great progress. In specific, we find that 
older people are more likely to get sick in these three 

datasets. While there is no obvious relationship between 
CDI and age and gender for the predicted accuracy even 
decreases. However, the accuracy of CDI prediction still 
ranks highest.

Comparative study between the genus level and the family 
level microbiota
Using the family level will be more beneficial to the appli-
cation as we analyzed before. To verify this, we compare 
the prediction accuracy of the genus level and the fam-
ily level in all datasets. Similarly, the KPCCF model has 
been tested 20 times via the genus level dataset and fam-
ily level dataset.

According to the comparison of KPCCF prediction 
results at the genus level and the family level respectively 
shown in Fig. 8, it is found that the algorithm has a cer-
tain variance on each dataset. Among them, the results 
of the first and third datasets fluctuate greatly, and the 
results of some extreme values deviate from the average. 
The results on the second and fourth datasets are rela-
tively stable. In all of the four datasets, the family level 
performs more stable than the genus level. Most of the 
average accuracy is slightly reduced, but the results are 
better on the ibd_papa dataset. In medical diagnosis, 
the stability and the accuracy of the results are equally 
important. The former guarantees the reliability of the 
algorithm, while the latter guarantees the validity of the 

Table 3  The prediction accuracy of microbiota data only and 
mixed data fused with metadata

Disease Microbiota data Mixed data

cdi_schubert 0.69 0.68

crc_baxter 0.43 0.48

ibd_papa 0.57 0.59

ob_goodrich 0.47 0.52

Fig. 8  The accuracy of KPCCF prediction results at the genus level and the family level respectively. The family level performs more stable than the 
genus level
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algorithm. The best result of the experiment is to com-
promise both reliability and validity. What’s more, the 
family level has fewer features, thus time-saving and fur-
ther avoiding overfitting.

Comparative study among various dimension reduction 
methods
To validate the usefulness of our used kPCA method, 
by substituting it with Principal Components Analysis 
(PCA), Singular Value Decomposition (SVD), Linear Dis-
criminant Analysis (LDA), Least Absolute Shrinkage, and 
Selection Operator (LASSO) dimension reduction meth-
ods, respectively, we conduct CV experiments with cas-
cade forest on 4 datasets for comparison. The dimension 
reduction process is shown in Fig. 9.

PCA dimension reduction requires the largest d eigen-
vectors of the sample covariance matrix XTX and then 
using the matrix of the largest d eigenvectors to make low 
dimensional projection dimensionality reduction. SVD 
can also obtain the matrix of the largest d eigenvectors of 
the covariance matrix XTX , but SVD has another advan-
tage. SVD is especially effective when the sample size is 
large. In fact, PCA only uses the right singular matrix 

of SVD, but the left singular matrix can also be used for 
row number compression. In contrast, the right singular 
matrix can be used for the compression of the number of 
columns, that is, the feature dimension.

The principles of LDA and PCA are different. PCA is 
an unsupervised algorithm projected to the direction 
by the sort of data variance. The assumption is that the 
larger the variance, the more information there is. While 
for LDA, it is projected after the selection of the small-
est intra-class variance and the largest variance between 
classes. Considering specific purposes and scenarios, in 
classification problems, the feature reduction criteria for 
LDA are more reasonable.

LASSO raised the problem that the ridge regression 
cannot be parameterized, and it can select parameters 
by parameter reduction to achieve dimension reduction. 
The penalty term is a norm, and some parameters can be 
forced to 0 to achieve the purpose of parameter selection.

We use the Micro F1 score to evaluate different fea-
ture reduction models. The Micro F1 score of 5 algo-
rithms prediction results in each dataset is shown in 
Fig. 10. As we can see, the kPCA model in red color has 
the most prominent performance among these 5 meth-
ods with Micro F1 score 0.71, 0.48, 0.57, and 0.48 respec-
tively. LASSO’s performance ranks in second place with 
Micro F1 score 0.7, 0.41, 0.56, and 0.46 respectively, 
which are very close to the best performance on most 
datasets. While the Micro F1 score in PCA, SVD, and 
LDA fluctuates in different data sets.

Conclusion
Considering the genus level vast microbiota species and 
the difficulty of sequencing, it is more advantageous 
to make a predictive analysis at the family level. In this 
work, we propose a KPCCF model to solve the problem 
of disease identification based on the family level micro-
biome. To prove the superiority of the proposed model, 
we conduct the multi-class classification experiment 
on four different real microbiota datasets and compare 
its performance with other state-of-the-art algorithms, 
including DT, RF, CNN, CF, and DF algorithms. The 
results confirm that our improved cascade forest model 
KPCCF performs comparatively better, while cascade 
forest can adapt to larger datasets and get better results. 
Furthermore, we carry out the extended study by com-
bining the microbiota data with the corresponding meta-
data and finding the insertion of the metadata that can 
effectively improve the accuracy of disease identifica-
tion. In the end, we explore different mainstream feature 
reduction algorithms and find kPCA is the best selection 
for our microbiota datasets.

The contributions of our work are summarized as: 
(1) we introduce the kPCA method into the cascade 

Dimension reduction

Feature Transformation

PCA kPCA SVD

Meet the
requirement

N

Y

Fig. 9  Process of comparative study among various feature 
reduction methods. We make a comparison between Principal 
Components Analysis (PCA), kernel Principal Components Analysis 
(kPCA), Singular Value Decomposition (SVD), Linear Discriminant 
Analysis (LDA), Least Absolute Shrinkage, Selection Operator (LASSO) 
dimension reduction methods
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forest algorithm, which can both effectively reduce the 
feature dimension and improve the classification accu-
racy; (2) instead of the traditional two-class disease 
diagnosis problem, we explore a multi-class classifica-
tion model to solve the disease identification problem 
with more than three disease states; and (3) in practi-
cal application, we only utilize numbers of microbiota 
at the family level for supervised learning and find ways 
to improve disease identification accuracy, which is a 
great challenge. However, due to the difference between 
individuals, when there is a small number of samples, 
the trained model may lack generalization ability. In 
our future works, we will focus on improving the gen-
eralization ability of our KPCCF model. One feasible 

way is using transfer learning to construct more sam-
ples from the samples with different diseases or health 
states.
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