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Abstract 

Background:  Although deep neural networks (DNNs) are showing state of the art performance in clinical gait analy-
sis, they are considered to be black-box algorithms. In other words, there is a lack of direct understanding of a DNN’s 
ability to identify relevant features, hindering clinical acceptance. Interpretability methods have been developed to 
ameliorate this concern by providing a way to explain DNN predictions.

Methods:  This paper proposes the use of an interpretability method to explain DNN decisions for classifying the 
movement that precedes freezing of gait (FOG), one of the most debilitating symptoms of Parkinson’s disease (PD). 
The proposed two-stage pipeline consists of (1) a convolutional neural network (CNN) to model the reduction of 
movement present before a FOG episode, and (2) layer-wise relevance propagation (LRP) to visualize the underlying 
features that the CNN perceives as important to model the pathology. The CNN was trained with the sagittal plane 
kinematics from a motion capture dataset of fourteen PD patients with FOG. The robustness of the model predictions 
and learned features was further assessed on fourteen PD patients without FOG and fourteen age-matched healthy 
controls.

Results:  The CNN proved highly accurate in modelling the movement that precedes FOG, with 86.8% of the strides 
being correctly identified. However, the CNN model was unable to model the movement for one of the seven 
patients that froze during the protocol. The LRP interpretability case study shows that (1) the kinematic features 
perceived as most relevant by the CNN are the reduced peak knee flexion and the fixed ankle dorsiflexion during the 
swing phase, (2) very little relevance for FOG is observed in the PD patients without FOG and the healthy control sub-
jects, and (3) the poor predictive performance of one subject is attributed to the patient’s unique and severely flexed 
gait signature.

Conclusions:  The proposed pipeline can aid clinicians in explaining DNN decisions in clinical gait analysis and aid 
machine learning practitioners in assessing the generalization of their models by ensuring that the predictions are 
based on meaningful kinematic features.
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Background
Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, impacting over 6 million 
people worldwide [1]. Freezing of gait (FOG) is one 
of the most debilitating symptoms of PD, given that an 
estimated 20-60% of falls and fall-related injuries for 
this group can be directly attributed to this paroxysmal 
symptom [2, 3]. Moreover, FOG is common in PD, with 
approximately 70% of Parkinson’s disease patients devel-
oping FOG over the duration of the disease [4, 5]. FOG is 
clinically defined as a “brief, episodic absence or marked 
reduction of forward progression of the feet despite the 
intention to walk” [6]. PD patients describe freezing of 
gait as “the feeling that their feet are glued to the ground” 
[7]. PD patients with FOG have more anxiety and falls 
[8–12], and an overall lower quality of life [13]. Freezing 
episodes are most frequently provoked when traversing 
small spaces, during turning and gait initiation, and while 
dual-tasking [14, 15]. However, and especially in gait lab-
oratories, it is common that FOG does not occur, despite 
providing adequate FOG-provoking conditions [15].

To date, Levodopa is the gold standard intervention for 
the treatment of PD. Levodopa shows a positive effect 
on FOG [16], with 95% of PD patients showing FOG 
to a lesser degree after Levodopa is administered [17]. 
However, the relationship between FOG and Levodopa 
remains complex, as Levodopa often only elicits a par-
tial response in the more advanced stages and may even 
exacerbate FOG [18, 19]. Non-pharmaceutical interven-
tions, such as sensory cueing, have shown to improve gait 
and reduce the severity of FOG [20–24]. The notion of 
sensory cueing relates to the provision of spatial (visual) 
stimuli to regulate stride placement and amplitude, or 
temporal (auditory or somatosensory) stimuli to regu-
late stride timing and regenerate gait. PD patients have 
shown to adapt to cueing, reducing the effectiveness of 
the intervention over time [25]. Hence, the provision of 
continuous stimuli carries the risk of habituation, which 
may also negatively impact patient compliance [26]. Fur-
thermore, it has been suggested that the optimal cue tim-
ing is before the onset of a FOG episode, as providing 
cues during a FOG episode may result in cognitive over-
load [26, 27].

To facilitate research in on-demand preventive cue-
ing, there is a clear need for an automated approach to 
objectively predict the onset of FOG [27]. Several studies 
have attempted to characterize and predict FOG [28–31], 
typically by relying on manually extracted features and 

traditional machine learning techniques. However, the 
pathophysiology of FOG is complex and characterized 
by highly variable gait patterns between subjects [32–34]. 
Moreover, FOG is characterized by several apparent gait 
sub-types: (1) Akinetic FOG, characterized by a complete 
absence of movement in the lower and upper limbs. (2) 
Trembling FOG, characterized by an alternating tremble 
of the legs at a frequency of 3 to 8hz. (3) Shuffling FOG, 
characterized by small shuffling steps with minimal for-
ward displacement [16]. These characteristics make it 
challenging to hand-engineer features that generalize 
across subjects and sub-types. Therefore, there is increas-
ing interest in Deep learning (DL) techniques to model 
FOG [35–40].

Owing to their large parametric space, deep learn-
ing techniques can infer relevant features directly from 
the raw input data, a technique called end-to-end learn-
ing [41]. However, the large parametric space has as 
a downside that deep learning models are considered 
to be black-box algorithms, i.e. there is a lack of direct 
understanding of the models’ ability to identify relevant 
features [42]. For FOG prediction, where an interven-
tion to alleviate FOG may be triggered before an episode 
has visually occurred, it will be especially challenging to 
motivate the provision of the stimuli. This phenomenon 
hampers further insight into the complex characteristics 
that define FOG. Therefore, clinical applications tend to 
avoid deep learning techniques and use simpler and more 
interpretable techniques [43].

Interpretability methods have been developed to ame-
liorate this concern by providing a way to explain the pre-
dictions of black-box deep neural networks (DNN). The 
essential idea behind these methods is to decompose the 
predicted probability of a specific target into a set of attri-
bution values, sometimes also termed “relevance scores”, 
to each input sample of the network [44]. The present 
study goes further than deep learning-based FOG predic-
tion by presenting a two-stage pipeline consisting of: (1) a 
convolutional neural network (CNN) to model the char-
acteristic kinematic features that differentiate gait cycles 
that directly precede FOG from their functional counter-
parts, and (2) layer-wise relevance propagation (LRP) [45] 
to interpret the trained model and visualize the features 
that the model perceives as important to the classifica-
tion problem. LRP is a recently developed gradient-based 
attribution technique, that has been previously employed 
to explain DNN predictions in MRI-based Alzheimer’s 
disease classification [46], EEG classification [47], and to 
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explain the unique characteristics of individual gait pat-
terns [48]. To the best of our knowledge, this is the first 
study that applies an interpretability method in clinical 
gait analysis in general and FOG prediction in particular. 
The proposed pipeline aims to aid clinicians in explaining 
DNN decisions, and aid machine learning practitioners 
in assessing the generalization of their DNN models.

Methods
Subject characteristics
An existing dataset [49] of twenty-eight patients diag-
nosed with PD and in Hoehn & Yahr stage II or III while 
on medication, and fourteen healthy age-matched con-
trols was used. The PD diagnosis was established by a 
movement disorders neurologist. Patients were further 
classified as PD with FOG, from now on called “freezers”, 
by the New Freezing of Gait Questionnaire [50], when 
they reported that they had experienced FOG in the past 
month after showing them a video of different types of 
freezing episodes, including very mild ones (NFOGQ ≥ 
1). Patients without FOG, called “non-freezers”, reported 
not to have had such episodes over this period (NFOGQ 
= 0). Freezers who did not freeze during the actual exper-
iments are indicated as “NoLab-freezers”. The study was 
approved by the local ethics committee of the University 
Hospital Leuven and all subjects gave written informed 
consent. The clinical characteristics of the three subject 
groups are presented in Table 1.

Procedure
Gait analysis was performed using an eight-camera Vicon 
3D motion analysis system recording at a sampling fre-
quency of 100Hz (Fig.  1: Phase 1). Thirty-four retro-
reflective markers were placed on anatomical landmarks 
according to the full-body plug-in-gait model [51, 52]. 
Two retro-reflective markers placed .5 m from each other 
indicated where subjects either had to (1) walk straight 
ahead, (2) turn 180◦left, (3) turn 180◦right, (4) turn 360◦

left, or (5) turn 360◦right. The five experimental condi-
tions were offered randomly and performed with or 
without a verbal cognitive dual-task, namely the color 

classification task [53, 54]. All experiments were done 
during the off-state of the subjects’ medication cycle 
(after an overnight withdrawal of their normal medica-
tion intake), except for clinical testing which was con-
ducted ON-medication [49].

Two researchers, blinded for NFOG-Q score, visually 
detected all FOG episodes. The onset of FOG, defined as 
the start of delayed knee flexion, was detected by visual 
inspection of the knee-angle data (flexion-extension) in 
combination with the Vicon 3D images. Termination of 
FOG was determined at the time point when at least two 
consecutive movement cycles were regained [55].

The last complete gait cycle before the onset of the 
freezing episode was chosen as the positive class. To 
obtain representative data for functional gait, each pre-
FOG cycle was matched with one functional gait cycle 
(FGC) of the same subject (if possible) and one FGC of 
one of the seven “NoLab-freezers” that did not freeze 
during the experiments. For the pre-FOG and FGC 
matching, preference was given to functional strides that 
occurred during the same experimental protocol and 
within the same section of the turning radius that was 
utilized to elicit the FOG episode. This matching protocol 
was not always possible if, for example, a patient was una-
ble to complete a certain experiment without freezing. To 
preserve class imbalance if no identical matching FGC 
could be found, the mismatched FGCs were left included 
in the training dataset, however, the mismatched pairs 
were excluded during the attribution analysis. This pro-
tocol allowed us to control for class imbalance while 
ensuring that the variability of all fourteen freezers 
remained present in the dataset. To prevent human bias 
and error, our data-driven model [35] was used to auto-
matically extract the gait cycles. It should be noted that 
the gait cycles termed as “functional gait” were extracted 
from all fourteen freezers. These functional gait cycles 
thus included highly impaired movement and it cannot 
be ensured that had the experiment continued would 
not have amounted to a freezing episode. However, this 
more conservative protocol allows the network to model 
the characteristic movement that precedes FOG, rather 
than general movement that differentiates freezers from 
non-freezers.

Data preprocessing and problem formulation
The balanced dataset of pre-FOG and functional gait 
cycles [{X1,Y1}, {X2,Y2}, . . . , {XM ,YM}] is a collection of 
M pairs {Xi,Yi} , where each gait cycle Xi is a collection 
of joint trajectories and Yi its respective label. Each gait 
cycle was low-pass filtered with a cut-off frequency of 7 
Hz [56] using a forward-backward fourth-order butter-
worth filter and was resampled to 101 samples such that 
each sample corresponds to one percent of the gait cycle. 

Table 1  Subject characteristics of the fourteen healthy controls 
(controls), fourteen PD patients without FOG (non-freezers), and 
fourteen PD patients with FOG (freezers) in terms of mean ± SD 
as measured during the ON-phase of the medication cycle

Controls Non-freezers Freezers

Age (years) 65.2 ± 6.8 66.7 ± 7.4 68.6 ± 7.4

Disease duration (years) 7.8 ± 4.8 9.0 ± 4.8

UPDRS III [81] 34.4 ± 9.9 37.9 ± 14.0

H&Y [82] 2.4 ± 0.3 2.5 ± 0.5
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Each input signal Xi = x1, x2, . . . , x101 thus consists of 
101 real-valued joint trajectories, where the joint trajec-
tories x ∈ R

1×3 are composed of the sagittal plane kin-
ematics xh, xk , xa , respectively the hip, knee, and ankle 
components. To ensure an equal contribution of all joint 
trajectories [57], each joint trajectory xi was individually 
re-scaled to a range of [−1, 1] . Y ∈ R

M×2 is the one-hot 
encoded label vector, where each element Yi ∈ {0, 1} , is 
equal to 1 if the gait cycle Xi is preceding a FOG episode 
and 0 if it is a functional gait cycle. The goal of a deep 
learning model is to classify the multivariate input signal 
Xi ∈ R

101×3 into its corresponding label Yi (Fig. 1: Phase 
2).

Model definition
Deep Neural Networks (DNNs), such as Convolutional 
Neural Networks (CNNs), have shown state of the art 
results in time series classification [58]. A CNN [59] 
consists of altering convolutional and pooling layers and 
comprises three phases. In the first phase, the input sig-
nal is convolved in a convolutional layer with a set of fil-
ters, where each filter is defined by a weight matrix W 
and bias b. These convolutions consist of element-wise 
multiplications and summations of the input signal and 
have an interesting property called parameter sharing, 
i.e. the same convolution (filter values W and b) is used 
for all time samples of the input signal [60]. This prop-
erty enables a CNN to learn features that are invariant 
across the time dimension [58]. In the second phase, the 
output of the convolution is passed through a non-linear 
activation function. In the third phase, the non-linearity 
is followed by a local pooling layer to reduce the dimen-
sionality of the convolutional layer output.

The result is a p-dimensional feature vector, where p is 
equal to the number of filters. The feature vector is fed 
into a global average pooling layer [61], which drastically 
reduces the number of parameters compared to a tradi-
tional summation. The pooled features are then trans-
formed to predictions over the output label through a 
softmax activation function. To improve regularization, 
dropout [62] along with max-norm regularization, and a 
sigmoidal decaying learning rate was used.

During training, the weights are optimized to mini-
mize the error between the model prediction Ŷi and the 
observed data Yi , defined as the loss function. To account 
for class imbalance, a weighted categorical cross-entropy 
loss was used [60]:

where L is the loss and αi the weighing factor of class i.
As a simple baseline, a support vector machine (SVM) 

[63, 64] with a linear kernel was implemented. For the 

(1)L(Yi, Ŷi) = −
∑

i

αiYilogŶi,

simple baseline, the Linear Support Vector Classifier 
(LinearSVC) of the scikit-learn toolbox [65] was used 
with a regularization parameter C of 0.01.

Model selection
To find a good set of hyperparameters, a recently pro-
posed Bayesian optimization algorithm was used [66]. 
For a complete overview of the optimized hyperparam-
eter space, the reader is referred to Table  1 in Addi-
tional file 1: Table S1. Model selection and training was 
done by following a nested cross validation approach, 
with training and validation folds split by subject, as 
formalized in Table  2. To assess generalization of the 
model to a different cohort of subjects, a pre-trained 
model on the fourteen freezers was used to predict the 
gait cycles of the fourteen non-freezers and fourteen 
healthy control subjects. Since the dataset consists out 
of balanced pre-FOG and functional pairs for the PD 
patients with FOG that froze during the experiments 
and solely functional cycles for the NoLab-freezers that 
did not freeze during the experiments, the results were 
summarized in terms of accuracy:

For the fourteen freezers, the models’ predictions were 
additionally summarized with the positive and negative 
predictive values (PPV and NPV), the sensitivity, and the 
specificity, defined as:

(2)Accuracy =
Number of correct predictions

Number of all predictions
%

Table 2  Visual overview of the nested leave one subject out 
cross validation

For simplicity, the visualization is given for five subjects (S1–S5). The dashed lines 
are added to denote that the visualization is limited to a single iteration of the 
outer loop, visualizing the tuning procedure for left-out test subject S1. For this 
single iteration of the outer loop, subject 1 (S1) is left-out as a true holdout set. 
The remaining subjects (S2–S5) are utilized to optimize the network parameters 
in the inner loop. For each hyperparameter set, the inner loop computes the 
prediction accuracy by iteratively using each inner loop subject as a holdout 
validation set. The hyperparameter set that results in the highest average 
accuracy on the inner loop subjects is utilized to train a model on all subjects 
of the inner loop (S2–25). This trained model is utilized to compute the metrics 
and explanations of the left-out test subject (S1). This process is repeated for all 
subjects
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To determine if the differences in predictive perfor-
mance between the two evaluated methods are statisti-
cally significant, a McNemar’s test was performed [67]. 
The McNemar’s test, sometimes also called a “within-
subjects chi-squared test”, is a non-parametric statistical 
test for paired nominal data that can be used to compare 
the performance of two classifiers [68]. McNemar’s test 
evaluates the null hypothesis that there is no difference 
in the classification performance of the two methods. For 
the statistical evaluations, the significance level was set 
to 95%, which means that the differences are considered 
statistically significant if the calculated p-values are lower 
than 0.05.

(3)

PPV =
Number of true positives

Number of true positives + false positives
%

(4)

NPV =
Number of true negatives

Number of true negatives + false negatives
%

(5)

Sensitivity =
Number of true positives

Number of true positives + false negatives
%

(6)

Specificity =
Number of true negatives

Number of true negatives + false positives
%

Model interpretation
Layer-wise Relevance Propagation (LRP) [45] was used 
to improve transparency and provide insight into the 
predictions of the DL model (Fig. 1: Phase 3). LRP is a 
commonly used attribution technique that decomposes 
the prediction of a particular output Yi , computed over 
a gait cycle Xi , down to relevance scores of each input 
sample. Formally, LRP computes the relevance by back-
propagating over the following equation:

where R(l)
i  is the relevance of unit i of layer l. This decom-

position results in a relevance map (heatmap) 
∑

x R
(1)
x  , 

which demonstrates the importance of each input sam-
ple xi to the prediction of the output. This study uses the 
epsilon variant of LRP ( ǫ-LRP), as implemented in [44]:

where the term ǫ is added to the denominator of Equa-
tion 10 to avoid numerical instabilities. For a theoretical 
deduction of LRP the reader is referred to [69], where the 
authors show how LRP can be theoretically justified as a 
deep Taylor decomposition.

(7)

R
(l)
i =

∑

j

zij∑
i′ zi′j

R
(l+1)
j with zij = x

(l)
i w

(l,l+1)
ij ,

(8)R
(l)
i =

∑

j

zij∑
i′ zi′j + ǫ sign(

∑
i′zi′ j

)
R
(l+1)
j ,

Fig. 1  Visualization of the proposed methodology. The proposed methodology consists of two-stages (1) a convolutional neural network (CNN) 
to model the dramatic reduction of movement present before a freezing of gait (FOG) episode (Phase 2), and (2) layer-wise relevance propagation 
(LRP) to interpret the underlying features that the CNN perceives as important to model the pathology (Phase 3). The CNN was trained with the 
sagittal plane kinematics as recorded by a motion capture system (Phase 1). The figure illustrates the benefit of interpretation in a deep learning 
framework
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Results
Freezing proved difficult to elicit in front of the cameras. 
FOG was provoked for ten of the fourteen freezers dur-
ing the test period, but only seven patients froze in vis-
ibility of the cameras. Most freezing episodes occurred 
during directional change, i.e. after initiating the 180 or 
360-degree turn. Subject 1 froze eighteen times, subject 
2 thirteen times, subject 3 seven times, subject 4 three 
times, subject 5 five times, subject 6 nine times, and sub-
ject 7 froze once, amounting to a total of fifty-six freez-
ing episodes. The CNN model and the SVM baseline 
showed excellent classification accuracy. For the fourteen 
PD patients with FOG, both models achieved compara-
ble accuracy (p = 0.56), with an accuracy of 86.8% and 
85.9% by the CNN and SVM, respectively. Interestingly, 
an analysis of the false detection shows that the lower 
sensitivity of the CNN is attributed to subject five, for 
whom all strides were falsely predicted as FGC. Fur-
thermore, most false FGC detections of both models are 
attributed to subject thirteen and fourteen, two of the 
three patients that froze during the test period, but not 
in front of the cameras. For the PD patients without FOG 
and healthy control subjects, a total of 2421 and 2258 
strides were extracted, respectively. For these subjects, 
the CNN proved the most robust (p = 2.40e-07), with 
only 26 strides falsely classified for the PD patients with-
out FOG and only a single stride falsely classified for the 
healthy control subjects. All the results are summarized 
in Table 3.

Mean attribution plots were obtained for six of the 
seven freezers who experienced FOG during the protocol 
(Fig. 2a), with the excluded subject for which the model 
did not perform well (subject five) discussed separately 
(Fig.  2b), and the fourteen non-freezers and fourteen 
healthy control subjects (Fig.  2c). The attribution plots 
visualize the gait characteristics that were the most rel-
evant to the prediction. The mean and standard deviation 
of the time normalized and re-scaled hip, knee, and ankle 
joint trajectories in the sagittal plane are plotted and col-
orized with the relevance map (heatmap) 

∑
x R

(1)
x  from ǫ

-LRP. Positive relevance (red) indicates contribution to 
FOG, while negative relevance (blue) indicates contribu-
tion to FGC.

The attribution analysis of the freezers (Fig.  2a) indi-
cates that the most relevant kinematic features that char-
acterize the movement preceding FOG are the fixed knee 
extension during the stance phase, reduced peak knee 
flexion during the swing phase, and fixed ankle dorsiflex-
ion during the swing phase. For FGC, the most relevant 
features are the peak hip extension and peak knee flexion 
during the swing phase.

An attribution plot of subject five (Fig. 2b) was created 
to assess if the heatmaps can uncover an explanation for 
the poor predictive performance on this subject. Sub-
ject five contributed 5 pre-FOG and FGC pairs, with the 
model classifying all strides as FGC. The lower extrem-
ity kinematics indicate that this subject has a severely 
stooped posture, characterized by large hip and knee 
flexion. The attribution analysis highlights a near-com-
plete absence of features with a positive contribution to 
pre-FOG. Additionally, the analysis highlights that the 
large hip and knee flexion apparent during both pre-FOG 
and FGC are features that contribute to FGC, indicating 
that the gait characteristics that uniquely describe this 
subject are utilized to wrongly classify pre-FOG as FGC.

The attribution analysis of the non-freezers and healthy 
controls (Fig.  2c) indicates a near complete absence of 
features with a positive contribution to FOG. The most 
relevant features to classify FGC for this cohort of sub-
jects are the peak hip and knee flexion during the swing 
phase.

Discussion
To tackle the problem of explainable freezing of gait 
(FOG) prediction, this paper proposed a two-stage 
pipeline of: (1) a convolutional neural network (CNN) 
to model the dramatic reduction of movement present 
before a FOG episode, and (2) layer-wise relevance prop-
agation (LRP) to visualize the underlying features that the 
CNN perceives as important to model the pathology. The 
CNN was trained end-to-end on a dataset that consists 
of fourteen PD patients with FOG. The patients were 
instructed to complete a FOG provoking protocol of 180 
and 360-degree turning, with or without a verbal cogni-
tive dual-task. FOG proved difficult to elicit, with a total 
of 56 FOG episodes provoked to train the models. This 

(See figure on next page.)
Fig. 2  Mean and standard deviation of the hip, knee, and ankle joint trajectories in the sagittal plane for six of the seven freezers who experienced 
FOG during the protocol (a), with the excluded subject discussed separately (b), and the fourteen non-freezers and fourteen healthy control 
subjects (c). The joint trajectories are colorized with the relevance map (heatmap) 

∑
x
R
(1)
x  using ǫ-LRP. To ensure an equal contribution, six strides 

(three pre-FOG and three FGC) are used of each freezer, with exception of subject seven who only froze once. For the non-freezers (NF) and healthy 
control (HC) subjects, all 2421 and 2258 strides were used. For the attribution plots of the freezers (a and b), the error clouds depict the standard 
deviations of the pre-FOG trajectories (gray) and FGC trajectories (green). For the attribution plots of the NF and HC (c), the error clouds depict 
the standard deviations of NF trajectories (green) and HC trajectories (gray). Positive relevance (red) indicates contribution to FOG, while negative 
relevance (blue) indicates contribution to FGC
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Fig. 2  (See legend on previous page.)
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phenomenon is not uncommon, with previous literature 
also reporting low numbers of freezing episodes occur-
ring in experimental situations, pointing to the unpre-
dictability of FOG [70]. Based on these 56 episodes, a 
training dataset was created which consists of the time 
normalized gait cycles directly preceding FOG, each 
matched with one functional gait cycle (FGC) of the same 
subject and one FGC of one of the seven NoLab-freezers 
that did not freeze during the experiments. Despite the 
relatively low amount of FOG and FGC matched pairs 
in the training dataset, this study confirms that the dra-
matic reduction of movement present before freezing can 
be accurately modelled with DL. After training the CNN 
to separate movement preceding FOG from normal 
functional gait, heatmaps were created with LRP. These 
heatmaps provide insight into the model predictions by 
quantifying the contribution of each joint trajectory at a 

certain percentage of the gait cycle to the classification 
prediction.

From a machine learning perspective, direct com-
parisons with other studies that researched the motor 
patterns that precede FOG is challenging because of 
different underlying study designs. For example, in [29, 
71], and [72] the authors extracted time domain and fre-
quency domain features from inertial sensors. Next, the 
extracted features were used to train a linear discrimi-
nant analysis classifier [29], ensemble classifiers [71], or a 
SVM [72]. In [29] the authors additionally quantitatively 
assessed the statistical significance of the extracted fea-
tures. In contrast, DNNs extract features automatically 
from the raw input signal. To identify whether these 
features are based on noise or on meaningful kinematic 
patterns, a qualitative assessment is performed by using 
heatmap-based attribution methods. To the best of our 
knowledge, no studies have either: (1) trained a DNN on 
MoCap-based kinematic data to model the movement 
that precedes FOG, or (2) used an attribution method to 
gain insight into a DNNs ability to identify meaningful 
kinematic patterns that precede FOG.

From a clinical perspective, in [73] the authors found 
that prior to freezing subjects had severely decreased 
range of motion in the sagittal plane joint trajecto-
ries (with the reduction in the range of motion varying 
between 31% and 61.5%) of the hip, knee, and ankle. In 
the interpretability case study, the heatmaps indicated 
that the CNN model also identified the reduced range 
of motion as a relevant feature to model the move-
ment preceding FOG. This finding supports the notion 
that DNN decisions are based on meaningful features. 
For one of the seven freezers, the CNN was unable to 
model the movement preceding FOG. The heatmaps 
indicated that the stooped posture, characterized by 
a dramatic increase in knee and hip flexion, were the 
features that the CNN model used to wrongfully clas-
sify FOG as FGC. This finding supports the notion that 
heatmap-based visualizations can aid in uncovering an 
indication of which features a DNN wrongfully associ-
ates with the underlying pathology and thereby allow 
machine learning practitioners to assess the generali-
zation of their models. Interestingly, the heatmaps also 
suggest that FOG affects the stance limb to a sufficient 
degree to influence the prediction, with the fixed knee 
extension during the stance phase seen as a relevant fea-
ture. In [73] the authors only considered FOG events 
that occurred without directional change. Therefore, 
future quantitative research should assess whether the 
stance limb influencing the model predictions is due to 
the different underlying study designs and thus based on 
a meaningful kinematic pattern or is the result of noise 
picked up by the model.

Table 3  Results of the convolutional neural network (CNN) and 
support vector machine with linear kernel (LSVC)

All scores are given in terms of accuracy (%), assessing the performance of the 
DL models (and LSVC) on the fourteen freezers individually (Subject 1–14), with 
a summarized score for the 2421 and 2258 strides extracted from the fourteen 
non-freezers and fourteen healthy controls, respectively. For the fourteen 
freezers, the performance is additionally assessed in terms of the sensitivity (%), 
specificity (%), positive predictive value (PPV) (%), and negative predictive value 
(NPV) (%). The asterisk (*) is used to denote the seven freezers that froze during 
the protocol. The dagger ( † ) is used to denote the three freezers that froze off 
camera. The rounded brackets denote the number of extracted strides. For the 
fourteen freezers, the number of extracted FGCs were controlled for protocol 
and class imbalance, as explained in the procedure

Subject Number CNN LSVC

1* (FOG: 18, FGC:15) 90.9 90.9

2* (FOG: 13, FGC:9) 72.7 63.6

3* (FOG: 7, FGC:6) 100 100

4* (FOG: 3, FGC:3) 83.3 83.3

5* (FOG: 5, FGC:5) 50.0 70.0

6* (FOG: 9, FGC:9) 100 94.4

7* (FOG: 1, FGC:1) 100 100

8 (FGC: 10) 100 100

9 (FGC: 6) 100 100

10 (FGC: 7) 100 100

11 (FGC: 9) 100 100

12† (FGC: 11) 100 81.8

13† (FGC: 8) 62.5 62.5

14† (FGC: 9) 55.6 55.6

Mean accuracy ± SD 86.8 ± 18.7 85.9 ± 16.5

Sensitivity 82.1 85.7

Specificity 88.9 84.3

PPV 79.3 73.8

NPV 90.6 91.9

Non-freezers (FGC: 2421) 97.6 95.8

Controls (FGC: 2258) 99.9 99.9

Mean accuracy ± SD 98.7 ± 1.66 97.9 ± 2.89
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This study also has important limitations. Firstly, the 
interpretability case study uses a heatmap-based visu-
alization of the learned features. The main limitation of 
heatmap-based visualizations is the lack of ground-truth, 
which means that the visualizations can solely be quali-
tatively assessed [46]. Secondly, the interpretability case 
study applied to FOG prediction is a proof-of-concept 
and further research is needed to assess generalization 
to other use-cases in gait analysis. Thirdly, from a mod-
elling perspective, it should be noted that the threshold 
model of FOG [74] states that freezing is characterized 
by continuous degradation of the movement pattern until 
a threshold is reached and the FOG episode occurs. In 
this study, the movement preceding FOG is modelled 
based on the kinematics of a single gait cycle. Therefore, 
better predictive performance may be achieved by mod-
elling the movement preceding FOG as a sequence of gait 
cycles, rather than treating each gait cycle as condition-
ally independent. However, a larger pool of participants 
with a more varied FOG-provoking protocol will be 
required to verify this hypothesis. Lastly, the small cohort 
of PD patients with FOG in this study may not be repre-
sentative of all freezers, making the conclusions here gen-
eralizable to only a small subset of PD patients with FOG.

Conclusions
Due to the black-box nature of deep learning, clinical 
gait analysis applications tend to avoid DNNs and retreat 
to simpler and more interpretable techniques. Using 
the use-case of FOG prediction, this paper proposed a 
two-stage pipeline of: (1) a CNN to model the dramatic 
reduction of movement present before FOG, and (2) LRP 
to visualize and interpret the underlying features that the 
CNN perceives as important to the respective classifica-
tion. The proposed methodology shows that CNNs are 
capable of modelling the dramatic reduction of move-
ment present before FOG. More importantly, this paper 
confirms the notion that model interpretation is a pow-
erful tool that allows detailed insight into the complex 
intertwining between DNN predictions and FOG.

In conclusion, it can be established that the benefit of 
the proposed interpretability pipeline is two-fold: (1) it 
can assist expert clinical opinion in explaining DNN pre-
dictions by visualizing the kinematic features that the 
model has learned, and (2) it can aid machine learning 
practitioners in assessing the generalization of their mod-
els by ensuring that the predictions are based on mean-
ingful kinematic features. Future work is now possible 
in which the proposed pipeline can be used as an auto-
mated and objective approach to trigger preventive inter-
ventions, i.e. the provision of external stimuli, for FOG. 
In such work, the interpretations will allow: (1) the clini-
cian to motivate the provision of external stimuli, and (2) 

a detailed assessment of the efficacy of the intervention 
by visualizing whether the strides following the interven-
tion show reduced relevance for FOG.
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