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Abstract 

Background:  While random forests are one of the most successful machine learning methods, it is necessary to 
optimize their performance for use with datasets resulting from a two-phase sampling design with a small number of 
cases—a common situation in biomedical studies, which often have rare outcomes and covariates whose measure-
ment is resource-intensive.

Methods:  Using an immunologic marker dataset from a phase III HIV vaccine efficacy trial, we seek to optimize 
random forest prediction performance using combinations of variable screening, class balancing, weighting, and 
hyperparameter tuning.

Results:  Our experiments show that while class balancing helps improve random forest prediction performance 
when variable screening is not applied, class balancing has a negative impact on performance in the presence of 
variable screening. The impact of the weighting similarly depends on whether variable screening is applied. Hyperpa-
rameter tuning is ineffective in situations with small sample sizes. We further show that random forests under-perform 
generalized linear models for some subsets of markers, and prediction performance on this dataset can be improved 
by stacking random forests and generalized linear models trained on different subsets of predictors, and that the 
extent of improvement depends critically on the dissimilarities between candidate learner predictions.

Conclusion:  In small datasets from two-phase sampling design, variable screening and inverse sampling probability 
weighting are important for achieving good prediction performance of random forests. In addition, stacking random 
forests and simple linear models can offer improvements over random forests.
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Background
Prediction of a binary disease outcome from a collec-
tion of clinical covariates and biomarker measurements 
is a common task in biomedical studies. Many machine 
learning methods have been used with great success 
in solving problems as diverse as early prognosis and 
diagnosis of a cancer type [1], identifying rare disease 

[2], and prediction of infectious disease risk [3]. How-
ever, machine learning methods have not been widely 
adopted in the context of prevention clinical trials using 
two-phase sampling designs. Two-phase sampling [4] 
is a method to design substudies on selected subjects 
from a cohort to avoid measuring expensive covariates 
for every participant in the cohort. Typically, subjects 
in the cohort are classified into several strata based on 
the cohort information, and then a subset of subjects is 
randomly sampled without replacement from each stra-
tum (see Additional file 1: Section D for a more detailed 
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explanation.) Studies using the two-phase sampling 
designs often have a small number of disease endpoints 
and a high cost associated with measuring biomark-
ers such that only a small representative subset of con-
trols have biomarker measurements. Most conventional 
machine learning methods tend to be unsuccessful in sit-
uations with small sample sizes because the methods 
require a substantial amount of training data.

Random forests [RF; 5] are a popular machine learning 
method that have been increasingly used in biomedical 
applications. For example, RF have been used to recog-
nize cancer-associated biomarkers from clinical trial data 
[6], to predict protein-protein interactions [7, 8], and to 
identify informative genes for a disease from microarray 
gene expression data [9, 10]. RF has many advantages: it 
is fast in both model training and evaluation, is robust 
to outliers, can capture complex nonlinear associations, 
cope with class imbalance data, and produces competi-
tive performance for high dimensional data [11, 12]. It 
has also been shown to handle challenges arising from 
small sample sizes [13]. In this manuscript, we seek to 
optimize random forest prediction performance using 
combinations of variable screening, class balancing, 
weighting, and hyperparameter tuning.

Methods
We conduct our experiments on RF using an immuno-
logic marker dataset from the HIV Vaccine Trials Net-
work (HVTN) 505 trial, a phase III HIV preventative 
vaccine efficacy trial [14]. The trial contained a nested 
biomarker study to examine immunologic correlates of 
risk of infection using a two-phase sampling design, in 
which the vaccine recipients were stratified by body mass 
index (BMI) and race/ethnicity, five controls were ran-
domly sampled from a stratum for each case therein, and 
an array of HIV-1-specific vaccine-induced T cell and 
antibody biomarkers were measured in 25 cases and in 
125 controls [15–17].

It is of great interest to build a model that best predicts 
HIV infection risk from the set of immune response bio-
markers and clinical covariates measured in the HVTN 
505 trial. However, two potential challenges related to 
the small sample size can result in poor prediction per-
formance. The first is that the immunologic marker data-
set from the HVTN 505 study, which we will refer to as 
the HVTN 505 dataset, is high-dimensional: the total 
number of the biomarkers is 420, compared to the 150 
observations. The second challenge is class imbalance, 
since the ratio of cases to controls is 1:5. In general, when 
the number of input variables is larger than the number 
of observations and the class distribution is skewed, the 
prediction performance of machine learning methods 
can deteriorate [11, 18].

We first give a brief introduction to RF, and then, we 
study variable screening, class balancing, and inverse 
sampling probability weighting. We also investigate the 
impact of hyperparameter tuning on the performance 
of RF. Furthermore, we compare the prediction perfor-
mance of RF to that of generalized linear models (GLM) 
and propose several stacking models that combine the 
predictions of RF and GLM.

Results
Random forest optimization
Random forests
Random forests [RF; 5] are a popular classification and 
regression ensemble method. The algorithm works by 
building multiple individual classifiers (or regression 
functions) and then aggregating them to make a final 
prediction. The most widely used implementations of RF 
are tree-based ensembles consisting of classification and 
regression trees [CART; 19]; however, other methods can 
be applied as well. Random forests are trained by gener-
ating bootstrapped datasets from an initial training data-
set; next, trees are fitted on the bootstrapped datasets 
to maximal depth without pruning [5, 20]. To construct 
each individual tree, the algorithm searches for the best 
split criterion on a random subset of the variables instead 
of all variables at each node. This randomness causes 
trees to be more diverse; as a result, aggregating multiple 
uncorrelated trees significantly reduces the variance of 
the estimator and improves overall performance. For pre-
diction on a given test observation, the class predicted by 
each individual tree is aggregated to make a final predic-
tion using a simple majority vote in classification prob-
lems. We present a flow diagram of the algorithm in the 
context of classification in Fig. 1.

Variable screening, class balancing, and inverse sampling 
probability weighting
Following a slightly simplified version of the analysis plan 
of [17], we consider the task of predicting HIV infection 
using four different sets of immunologic markers: (1) all 
measured markers, (2) T cell markers, (3) antibody mark-
ers, and (4) no markers. In all analyses we also include 
the clinical covariates age, BMI, and behavior risk score 
unless otherwise specified. Set (2) includes T cell mark-
ers from [15]. Set (3) includes IgG, IgA, and IgG3 binding 
antibody markers, along with antibody Fc effector func-
tion markers [16, 17]. Set (1) is equal to the union of sets 
(2) and (3).

To evaluate prediction performance, we calculate the 
five-fold cross-validated area under the receiver oper-
ating characteristic curve (CV-AUC). As is common 
in many biomedical datasets with variables requiring 
resource-intensive laboratory measurement, the HVTN 
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505 immunologic marker dataset does not contain bio-
marker data for every participant from the full cohort. 
Instead, data are available from a subset of participants 
from a two-phase stratified sampling plan [4]. To account 
for this sampling design, the CV-AUC is computed using 
inverse sampling probability weighting (IPW), which are 
the inverse of the sampling probabilities determined by 
the two-phase sampling plan. Typically, all the cases are 
sampled because they are rare, thus their weights are 
1. Only a small subset of controls is randomly sampled 
due to the abundance of controls, thus their weights are 
greater than 1. The weights for the HVTN 505 immuno-
logic markers dataset are listed in Additional file 1: Table 
A.1. By incorporating the IPW in the CV-AUC calcula-
tion, prediction performance of a model based on two-
phase samples can be generalized to the full cohort, and 
the formula [21] is defined as

where i and j are the case and control indexes, respec-
tively; D1 and D0 are the case and control groups; w is 
the vector of IPW weights; and P is a prediction score, 
for RF models, it is the fraction of trees predicting cases. 
To obtain more stable CV-AUC estimates, we calculate 
the five-fold CV-AUC one-hundred times by using differ-
ent random seeds to split the data and report the average 
CV-AUC over the one-hundred replications.

The performance of RF can suffer when there are too 
many input variables and when the numbers of cases 
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and controls are imbalanced [18, 22]. Hence, in this sec-
tion we consider the use of variable screening and class 
balancing to improve performance. Variable screening 
is a dimension-reduction technique often used in high-
dimensional settings, and works by removing irrelevant 
variables and selecting informative variables. Screen-
ing algorithms can generally be classified into two cat-
egories: supervised and unsupervised screening [23]. 
The former screens variables based on the associations 
between input variables and an outcome; a representa-
tive example is penalized least squares or penalized 
likelihood. The latter considers only the input vari-
ables; well-known methods include clustering-based 
screening [24] and correlation-based screening [25]. 
In this paper, we employ lasso screening (a supervised 
method) that eliminates variables with zero coefficients 
estimated from lasso logistic regression models [26], 
which include the immunologic markers and the clini-
cal covariates and employs five-fold cross-validation to 
select the lasso penalty.

Class imbalance occurs when one class has a much 
smaller number of observations than the other classes. 
In situations with class imbalance, most machine learn-
ing methods are biased toward the majority class (in 
the HVTN 505 example, the controls), and ignore the 
minority class; as a result, the performance of these 
methods can be unsatisfactory [18, 22]. Class balancing 
is a potential solution, wherein the class distribution 
is artificially rebalanced by randomly under-sampling 
the majority class or over-sampling the minority class. 
Many machine learning methods require the data to be 

Fig. 1  A flow diagram for the random forest algorithm in the context of classification
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pre-processed if class balancing is used; in contrast, RF 
can naturally incorporate class balancing since it can fit 
trees on class-balanced bootstrapped datasets that are 
obtained by modifying the sampling scheme when the 
ensemble is initialized. We study both under- and over-
sampling separately to determine which results in the 
most improved performance in our setting.

To study the effects of variable screening, class bal-
ancing, and inverse sampling probability weighting on 
the performance of RF, we compare four RF models, 
each with and without variable screening (Table 1). The 
first is standard RF without class balancing or weight-
ing, implemented using the ranger R package [27] with 
default settings. More detailed information on the 
default settings can be found in the Additional file  1: 
Section B. The second is RF with under-sampling, while 
the third is RF with over-sampling. In the five-fold 
cross-validation scheme, each training dataset has 20 
cases and 100 controls. Thus, RF with under-sampling 
fits trees on bootstrap datasets with 20 cases and 20 
controls, and RF with over-sampling fits trees on boot-
strap datasets with 100 cases and 100 controls. These 
two methods are implemented using the case.weights 
and sample.fraction arguments in the ranger package. 
The former controls weights for bootstrap sampling, 
where observations with larger weights are more fre-
quently represented in the bootstrap datasets, and the 
latter controls the fraction of observations to be sam-
pled in the bootstrap datasets. Specifically, under-sam-
pling is achieved by setting the argument case.weights 
equal to 5 for the cases and 1 for the controls, and set-
ting the argument sample.fraction equal to 40/120. 
Some pre-processing is necessary for over-sampling, 
because the ranger package does not allow sample.frac-
tion to be greater than 1. Here, we first create a training 
dataset that has 100 cases and 100 controls by randomly 
over-sampling the cases, and then fit a RF model on the 
modified training dataset by setting case.weights equal 
to 1 for all observations and sample.fraction equal to 

200/200. The final model we consider is RF with IPW. 
This is implemented by setting case.weights equal to the 
IPW weights.

The results of this experiment are presented in Table 1. 
All RF models with screening outperform their counter-
parts without screening. This is most likely due to exces-
sive overfitting when variable screening is not applied. 
The RF algorithm constructs individual trees with maxi-
mal depth without pruning [5]. Without screening, the 
RF algorithm will by chance use many noisy predictors in 
the tree construction and the resulting model will fail to 
generalize well. We examine this in more detail in Addi-
tional file 1: Section C.

The effects of under- and over-sampling depend on 
whether variable screening is applied. Without screening, 
class balancing methods confer substantial improvement 
over the standard RF. This is a well-known phenome-
non [28] and can be attributed to the fact that RF mod-
els construct trees to minimize Gini impurity, which, 
unlike AUC, is sensitive to class prevalence [19, 29]. 
With screening, using class balancing methods leads to 
a slight decrease in performance in some sets of mark-
ers. That variable screening can counter class imbalance 
has been observed before [30, 31], though the reasons for 
this are not well understood. The decrease in prediction 
performance may be because under-sampling and over-
sampling lead to degradation in data quality by throwing 
away data in the majority class and introducing duplicate 
data in the minority class, respectively.

The effects of using IPW also depend on variable 
screening. This is because on the one hand, using IPW 
makes the criterion function in the training step align 
more closely with the prediction performance metric; on 
the other hand, IPW may exacerbate the class imbalance 
problem in RF training. The results show that when vari-
able screening is not applied, the RF with IPW performs 
worse than the standard RF in almost all sets of mark-
ers. This result makes sense because IPW gives more 
weights to the controls, which make the bootstrapped 

Table 1  Comparison of CV-AUCs obtained by standard random forest (RF), random forest with under-sampling (RF_under), random 
forest with over-sampling (RF_over), and random forest with inverse sampling probability weights (RF_ipw), including results obtained 
without variable screening and results obtained with variable screening

Clinical covariates (age, BMI, and a risk behavior score) are always included

No screening Screening

RF RF_under RF_over RF_ipw RF RF_under RF_over RF_ipw

All markers 0.679 0.732 0.711 0.657 0.824 0.806 0.806 0.824

T cell markers 0.718 0.714 0.715 0.708 0.812 0.780 0.799 0.819

Antibody markers 0.605 0.656 0.628 0.579 0.708 0.722 0.696 0.711

No markers 0.442 0.452 0.448 0.443 0.442 0.452 0.448 0.443
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datasets even more imbalanced. When variable screening 
is applied, the overall impact of using IPW is reversed. 
With and without using IPW performs similarly for all 
markers and no markers; using IPW weighting performs 
slightly better for T cell markers and antibody markers.

Hyperparameter tuning
The performance of RF may be further improved by tun-
ing its hyperparameters. Although there are many hyper-
parameters in the RF algorithm, we explore three that 
have been shown to have the most impact on prediction 
performance [32]. These are (1) the number of variables 
randomly sampled as candidates at each split, (2) the 
minimum size of terminal nodes, and (3) the number 
of observations that are drawn for each tree. Note that 
tuning the size of terminal nodes is equivalent to tun-
ing the depth of trees. We use the tuneRanger R package 
[33] to search over a grid of these hyperparameters for 
an optimal set of the hyperparameters based on out-of-
bag AUC, which is AUC calculated on out-of-bag data 
that are not selected into the bootstrapped data in the 
initial stage of the RF algorithm (Fig. 1), through sequen-
tial model-based optimization. The optimal set is a set 
of hyperparameters that achieves the highest out-of-bag 
AUC among 50 to 100 sets of hyperparameters. More 
detailed information for the tuneRanger R package can be 
found in the Additional file 1: Section B.

To explore the effect of hyperparameter tuning, we 
compare the performance of standard RF and tuned RF. 
The standard RF is fit using the default hyperparameter 
values specified in the ranger R package, while the tuned 
RF is fit using the tuneRanger R package. For both meth-
ods, we use variable screening, but not class balancing 
or inverse sampling probability weighting. The design 
of the experiment is the same as before. Table  2 shows 
that tuning does not have a clear-cut effect on perfor-
mance. When antibody markers alone or no markers 
are used, tuning increases performance; but when either 
all markers or T cell markers alone are used, tuning 
decreases performance. This is likely due to overfitting 

to the out-of-bag samples under small sample sizes, a 
phenomenon that has been observed in the economet-
rics literature [e.g. 34]. A similar phenomenon has also 
been observed in Kaggle competitions, where there are 
two testing datasets, a public leaderboard dataset and a 
larger private leaderboard dataset, and overfitting to the 
public testing dataset can decrease performance on the 
private testing dataset [35]. Another potential reason for 
explaining the observation may be that out-of-bag AUC, 
an optimization criterion in the tuning algorithm, does 
not consider IPW and would not align with the predic-
tion performance metric CV-AUC, which incorporates 
IPW. It might select a sub-optimal set of hyperparam-
eters, and tuning was not always successful. In Table  2 
the CV-AUCs for both standard and tuned RF are below 
0.5 when no markers are used. This is still true if we 
evaluate CV-AUC without using weights. One explana-
tion for these results is overfitting to the training subset. 
For simplicity, suppose there is a single clinical covari-
ate, and it shows no association with the outcome in a 
dataset. When the dataset is split into a training subset 
and a validation subset, by chance there may arise some 
association in the training subset. And because there is 
no overall association in the full dataset, there will also 
be association in the opposite direction in the validation 
subset, which will lead to CV-AUC less than 0.5.

Summary of approaches
Based on the results in Tables 1 and 2 , for the remain-
der of our analyses we will perform random forest model 
training with variable screening, without class balancing 
and without hyperparameter tuning. The choice of using 
IPW is more nuanced. Since using IPW leads to some 
improvement when variable screening is applied, we will 
use IPW in RF training.

Stacking random forest and generalized linear models
When the outcome and the input variables have a simple 
linear relationship, it is possible that RF based on non-
linear modeling may be overly complex and ineffective. 
We see this in the case of clinical covariates only, where 
the CV-AUC of RF is 0.443; in contrast, a generalized lin-
ear model (GLM) has a CV-AUC of 0.624, where we use 
a logistic regression model as GLM. It suggests that the 
bias-variance trade-off associated with using RF may not 
always work in its favor in small-sample settings. To fur-
ther examine this issue, we compare the performance of 
RF and GLM on each of the four sets of markers defined 
before, with and without the clinical covariates. Variable 
screening and inverse sampling probability weighting 
are applied for both methods, and we implement GLM 
using the glm R function with the weights argument for 
the weighting, which controls prior weights for subjects. 

Table 2  Comparison of CV-AUC of standard random forest (RF) 
and tuned random forest (tRF). Screening is applied to both 
methods, but not class balancing or inverse sampling probability 
weighting

Clinical covariates (age, BMI, and a risk behavior score) are always included

RF tRF

All markers 0.824 0.807

T cell markers 0.812 0.802

Antibody markers 0.708 0.721

No markers 0.442 0.455



Page 6 of 9Han et al. BMC Medical Informatics and Decision Making          (2021) 21:322 

The results, given in Table 3, show that the performance 
of GLM improves when the clinical covariates are added 
to each of the four sets of markers. The impact of add-
ing clinical covariates on the performance of RF depends 
on the set of markers to be analyzed. For all markers 
and T cell markers, adding the clinical covariates results 
in improved performance; for antibody markers and no 
markers, adding the clinical covariates decreases perfor-
mance. Furthermore, RF outperforms GLM for all mark-
ers and T cell markers when the clinical covariates are 
included, and GLM outperforms RF for antibody mark-
ers and no markers whether or not the clinical covariates 
are included. These results motivated us to consider an 
approach that incorporates different models and marker 
sets to improve prediction performance.

Stacking [36] is an ensemble machine learning method 
that combines several different candidate learners into 
one meta-learner to improve prediction performance. 
The algorithm is composed of two steps: first, it trains 
several candidate learners and generates out-of-sample 
prediction scores, which are the estimated probabilities 
of being a case, by splitting the training data into a sub-
set for fitting and a subset for making prediction scores; 
second, a meta-learner aggregates the out-of-sample pre-
diction scores into a single prediction. Breiman [37] fur-
ther developed the method by restricting to nonnegative 
weights when combining candidate learner prediction 
scores.

We propose using stacking to combine GLM learn-
ers and RF learners to further improve prediction per-
formance. Based on the results in Table  3, we consider 
stacking GLM trained on antibody markers and clinical 
covariates and RF trained on T cell markers and clini-
cal covariates. For comparison, we also examine three 
related stacking models by replacing antibody markers 
and/or T cell markers with all markers.

We implement stacking using the caretEnsemble 
R package [38], with ten-fold cross-validation [rec-
ommended by 37] for fitting candidate learners and 
obtaining out-of-sample prediction scores. To combine 
prediction scores from the different learners, we use 
logistic regression models with nonnegative coefficients. 
Finally, we use an outer loop of five-fold cross-validation 
to evaluate the performance of stacking and repeat the 
entire process one-hundred times as described before.

Table 4 shows the average CV-AUC of the four stacking 
models, along with the CV-AUCs of two RF models to 
facilitate comparison. The impact of stacking on the per-
formance appears to depend on which candidate learners 
are used. In the top three rows, where the two stack-
ing methods are based on RF trained on T cell markers 
and clinical covariates, the two stacking models show a 
relatively large improvement over RF, and the Pearson 
correlation coefficients between out-of-sample predic-
tion scores from the RF model and those from the two 
GLM models are 0.26 and 0.65 (average over 100 repli-
cates), respectively. In the bottom three rows, where the 
two stacking methods are based on the RF trained on all 
markers and clinical covariates, the performance of the 
two stacking models is rather close to the RF, and the 
Pearson correlation coefficients between out-of-sample 
prediction scores from the RF model and those from the 
two GLM models are 0.49 and 0.80 (average over 100 
replicates), respectively. These observations are consist-
ent with the well-known fact that stacking tends to be 
ineffective when the candidate learner prediction scores 
are similar to each other and the most effective stacking 
is achieved by combining dissimilar prediction scores 
[37].

For the best stacking model (RF: T cell markers + 
GLM: Antibody markers), the logistic regression model 
meta-learner combines the prediction scores from RF 
and GLM with coefficients 0.686 and 0.314 (average over 
100 replicates), respectively. This suggests that there is 

Table 3  Comparison of CV-AUCs of generalized linear models 
(GLM) and random forest (RF), with and without clinical 
covariates

Screening is applied for both GLM and RF, but class balancing is not done for RF. 
Inverse sampling probability weights are used in both GLM and RF training
a Denotes theoretical values

GLM RF

No 
covariates

Covariates No 
covariates

Covariates

All markers 0.810 0.813 0.808 0.824

T cell markers 0.781 0.793 0.806 0.819

Antibody 
markers

0.759 0.768 0.729 0.711

No markers 0.500a 0.624 0.500* 0.443

Table 4  Comparison of CV-AUCs of four stacking models and 
two random forest models

Screening is applied for both GLM and RF, but class balancing is not done for 
RF. Inverse sampling probability weights are used in both GLM and RF training. 
Clinical covariates are included in the predictors of all RF and GLM models

CV-AUC​

RF: T cell markers + GLM: antibody markers 0.838

RF: T cell markers + GLM:       All markers 0.831

RF: T cell markers 0.819

RF:    All markers + GLM: ntibody markers 0.821

RF:    All markers + GLM:       All markers 0.821

RF:    All markers 0.824
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more information in the T cell markers than in the anti-
body markers. The reason we stack together RF trained 
on the T cell markers and GLM trained on the antibody 
markers and not the other way around is because Table 3 
suggests that RF works better than GLM on the T cell 
markers and GLM works better than RF on the antibody 
markers. Indeed, the stacking model RF: Antibody mark-
ers + GLM: T cell markers has an estimated CV-AUC of 
0.797.

To help elucidate how stacking helps improve predic-
tion performance, we examine the prediction scores from 
RF, GLM, and the stacking model for one 5-fold cross-
validation replicate. The top row of Fig.  2 shows three 
boxplots of prediction scores by cases and controls. We 
focus on two cases (study volunteers 180 and 183) that 
are plotted with triangle plotting symbols. Neither RF nor 
GLM prediction scores set them apart from all the con-
trols, but their stacking prediction scores are higher than 
all the controls. The bottom-left panel of Fig. 2 shows a 
scatterplot of the RF and GLM prediction scores. There 
are six samples between the two vertical dashed lines, 

including three cases and three controls. All six samples 
have high RF prediction scores, but only study volun-
teers 180 and 183 have high GLM prediction scores. The 
bottom-right panel of Fig. 2 shows a scatterplot of the RF 
and stacking prediction scores. The stacking prediction 
scores of study volunteers 180 and 183 are higher than 
all the controls. Since subjects with high RF prediction 
scores have low levels of T cell markers and subjects with 
high GLM prediction scores have low levels of antibody 
markers, these results suggest that if a subject has both 
low levels of T cell markers and low levels of antibody 
markers, they are more likely to be infected with HIV.

Conclusion
In this paper we studied the optimal use of random for-
est (RF) for classification on a dataset from a two-phase 
sampling design, a common situation in prevention stud-
ies of public health importance, which often have a small 
number of disease endpoints. We considered the HVTN 
505 phase III HIV vaccine efficacy trial dataset, which 
contains 25 cases and hundreds of immunologic markers.
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Fig. 2  Top: boxplots of three prediction scores by cases and controls from one 5-fold cross validation. Bottom: scatterplots of these prediction 
scores. Cases are shown in red, and controls are shown in black. Study volunteers 180 and 183 are plotted as triangles
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First, we found that variable screening before apply-
ing RF substantially improves RF prediction per-
formance, as measured by weighted CV-AUC. This 
improvement is likely a result of avoiding overfitting. 
Second, while class balancing improves RF prediction 
when variable screening is not applied, it has a nega-
tive impact on performance when variable screening 
is applied. Third, the impact of inverse sampling prob-
ability weighting (IPW) similarly depends on whether 
variable screening is applied. Without variable screen-
ing, IPW led to poorer performance due to the class 
imbalance problem in the RF training step. Relatively 
more weighting to the majority class causes boot-
strapped samples to be even more imbalanced, result-
ing in trees with poor prediction performance for the 
minority class. However, with variable screening, IPW 
actually improved performance for almost all subsets 
of markers. Inverse sampling probability weighting 
almost always leads to better results for GLM, regard-
less of whether variable screening is applied (Addi-
tional file  1: Table A.2). Fourth, we investigated the 
impact of hyperparameter tuning on the performance 
of RF. Tuning was not always successful, possibly due 
to overfitting to the out-of-bag data under small sample 
sizes. Lastly, we found that RF under-performed simple 
linear methods such as GLM for some marker sets, and 
the use of stacking to combine RF and GLM models 
achieved improved prediction performance. The per-
formances of the stacking models were tied to the simi-
larities between candidate learner prediction scores. 
The best performance came from stacking a random 
forest model trained on the T cell markers and the 
clinical covariates and a GLM trained on the antibody 
markers and the clinical covariates, and their Pearson 
correlation coefficient was 0.26, the lowest among the 
four stacking models we tried.

The differences in CV-AUC between the best stacking 
model and the other models in Table 4 range between 
0.007 and 0.019. Differences of this magnitude can be 
clinically meaningful [e.g. 39, 40]. One way to assess the 
variability of these differences is to examine their dis-
tributions across the 100 replicates of 5-fold cross vali-
dation and perform Wilcoxon signed rank tests. All the 
p-values from the tests are highly significant at < 0.001 , 
suggesting that the performance of the best stacking 
model does not depend on a specific random split of 
the data. Evaluating the variability of the CV-AUC on 
the population level is a more challenging problem, 
e.g., there is no known theoretical results that ensure 
the success of the Efron bootstrap [41] procedure for 
CV-AUC, and will be an interesting future research 
direction.
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