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Abstract 

Background:  Diagnosis-related groups (DRGs) are a payment system that could effectively solve the problem of 
excessive increases in healthcare costs which are applied as a principal measure in the healthcare reform in China. 
However, expert-oriented DRG grouping is a black box with the drawbacks of upcoding and high cost.

Methods:  This study proposes a method of data-based grouping, designed and updated by machine learning algo-
rithms, which could be trained by real cases, or even simulated cases. It inherits the decision-making rules from the 
expert-oriented grouping and improves performance by incorporating continuous updates at low cost. Five typical 
classification algorithms were assessed and some suggestions were made for algorithm choice. The kappa coeffi-
cients were reported to evaluate the performance of grouping.

Results:  Based on tenfold cross-validation, experiments showed that data-based grouping had a similar classifica-
tion performance to the expert-oriented grouping when choosing suitable algorithms. The groupings trained by 
simulated cases had less accuracy when they were tested by the real cases rather than simulated cases, but the kappa 
coefficients of the best model were still higher than 0.6. When the grouping was tested in a new DRGs system, the 
average kappa coefficients were significantly improved from 0.1534 to 0.6435 by the update; and with enough com-
putation resources, the update process could be completed in a very short time.

Conclusions:  As a new potential option, the data-based grouping meets the requirements of the DRGs system and 
has the advantages of high transparency and low cost in the design and update process.

Keywords:  Diagnosis-related groups (DRGs), Grouping, Machine learning, China, Healthcare

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In the most recent healthcare reform, China has made 
substantial progress in improving equal access to care and 
enhancing financial protection. However, gaps remain in 
efficiency in the delivery and control of health expendi-
tures [1]. With the enhancement and standardisation of 
medical information systems and clinical pathways, the 
Chinese government has paid closer attention to payment 

reform and enhanced supervision of the quality of medi-
cal care in the new round of healthcare reform, hoping 
to curb soaring medical expenditures [2, 3]. One of the 
core measures is provider payment reform, in which 
diagnosis-related groups (DRGs) payment is perceived as 
a valuable alternative to the conventional fee-for-service 
(FFS) payment method. In 2009, the Chinese government 
announced the initiation of the prospective DRG-based 
payment reform. Until 2016, two national DRG group-
ings, CN-DRGs and C-DRGs, were developed and tested 
in Sanming, Shenzhen and Karamay, and nearly twenty of 
the thirty-two provinces in mainland China implemented 
the simplified DRGs.

Originating from Yale University and first implemented 
in the United States in 1983 [4], DRGs is a payment 
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system that can gather patients with similar clinical 
symptoms and similar resource consumption patterns 
into the same group. The medical expenses that patients 
and medical insurance need to pay are only related to the 
results of grouping [5, 6]. In the DRGs system, excessive 
drugs and treatment provided by hospitals will not be 
paid for, which improves healthcare quality and stabilises 
costs [7].

Aiming at allowing for more ‘outside’ control on hos-
pital expenditure, several pieces of common grouping 
software have been developed to standardise and facili-
tate hospital payments in China. However, as in many 
other countries, the basic DRGs structure has undergone 
numerous revisions since its creation, leading to a less 
stable, more complex, and often confusing process [8]. 
The grouping, an exhaustive patient case classification 
system, is the core design characteristic of a DRG-based 
payment system [9]. Treatment trajectory encoding 
information about a patient and their clinical treatment 
is put through a large formal decision tree—the group-
ing, which consists of thousands of decision rules, each 
evaluating to either true or false. By traversing these deci-
sion rules, a care product is defined and determined [10]. 
As the grouping is a black box, the decision-making rules 
of which are not disclosed to the public, its algorithmic 
nature makes reimbursing a highly technical endeav-
our. Due to the complexity and lack of transparency of 
the grouping software, on the one hand, it might spark a 
public debate about whether providers and professionals 
might use the system to further their interest [10]; on the 
other hand, as clinicians have stated, the grouping soft-
ware has rendered the payment process too complex and 
error-sensitive, leading to remuneration errors and sub-
sequent loss of hospital income [11].

Moreover, with the purpose of cost control, DRGs pay-
ment is usually supported by the mechanism of Global 
Budget and a maximum growth percentage for hos-
pital care in the government’s pilot practices of DRGs 
[12]. Thus, in the special context of healthcare reform 
in China, the grouping software of DRGs is embedded 
within political concerns and measurements. Though it 
is necessary to keep the care code correct by updating it, 
most of the pilot reforms have a tendency towards sci-
entism, elitism, and mysticism, leading to bureaucratic 
powers playing a leading role in the processes of group-
ing, pricing, and quality assurance of DRGs [13], as stated 
by local researchers. As a result, the effects of DRGs pay-
ments on healthcare were mixed. Empirical evidence 
demonstrated that DRGs payment may mildly improve 
the efficiency but impair the quality and equity of health-
care, and may yield upcoding of medical records [14].

However, it is challenging for expert-oriented group-
ing to solve these problems. For example, in October 

2019, the National Healthcare Security Administration in 
China officially promulgated “the technical specification 
of China Healthcare Security Diagnosis Related Groups 
(CHS-DRG)” [15]. As shown in Fig. 1, this specification 
proposed a traditional DRG grouping, which divided the 
grouping into two parts. One part contains decision-
making rules based on clinical similarities in cases, the 
other part contains decision-making rules based on indi-
vidual similarities in patients including the length of stay, 
age, complications, etc. They are connected by the core 
diagnosis-related groups which were named ADRGs.

Figure 2 employs a flow diagram to show how a tradi-
tional expert-oriented DRG grouping works. As shown 
in the figure, both the design and update of the group-
ing rely heavily on the decisions of experts. When doc-
tors get DRG grouping software, because it is a black box 
that could not give any effective suggestions on improve-
ment. What is more, it is completely impossible to pro-
vide localised grouping for different hospitals, when the 
design or updating of any grouping requires the input 
of many professional medical associations, specialist 
experts and consultants via a series of scientific, and rig-
orous procedures such as committees, expert hearings 
and consultations [16, 17].

Currently, machine learning provides many new tools 
for groupings design. There is a growing body of litera-
ture discussing machine learning and various algorithms 
for DRG grouping and resource allocation [18–20]. These 
studies focus on applying machine learning to improve 
the accuracy of DRG groupings and proving that machine 
learning could effectively assist in hospital management 
and resource allocation. However, they do not discuss 
further whether machine learning provides a new DRG 
grouping pattern which is data-based to eliminate unnec-
essary human intervention and restriction.

The data-based structure is an attractive DRG group-
ing design concept because it could avoid easily the draw-
backs of the expert-oriented structure. Both providers 

Fig.1  The CHS-DRG grouping
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and consumers could access, modify and validate deci-
sion-making rules in the data-based groupings through 
exposed machine-learning methods, and machine-
learning methods also endow groupings with strong 
growth capacity with the support of sufficient computing 
resources. In this research, we propose such a data-based 
grouping and try to explore a data-based grouping built 
by machine learning, which could replace the current 
expert-oriented grouping with higher transparency and 
simpler design processes.

Available/generated data
Since real cases involve personal privacy, it is quite dif-
ficult for researchers to obtain enough real cases directly 
to design groupings. It is, however, much easier to get the 
feature distribution of real cases through some statistical 
reports from the governments. Therefore, we generated 
2,000,000 simulated cases based on the feature distribu-
tion of real cases in Zhejiang province in 2018, which 
was provided by the Health Commission of Zhejiang 
Province for groupings training. What is more, we also 
got 1,062 real cases from the Dongyang People’s Hospi-
tal from November 2019 to December 2019 to verify the 
performance of groupings. All cases consist of features as 
shown in Table 1. A simple description of patient charac-
teristics of the real cases is summarised in Table 2.

In any case, categorical variables are encoded numeri-
cally to the positive number, such as major diagnosis, sex, 
etc. The encoded data can adapt to scikit-learn while is 
a widely used machine learning toolkit in Python and 
is normalized by Min–Max scaling. There is no fea-
ture information loss in the simulated data and the real 
data, and the data generation algorithm and the hospital 
information system guarantee their integrity. However, 

to make sure that each case can be converted to a data 
format that the model can accept, we need to popu-
late some features according to the following rules. For 
patients who are not infants, there are no features of 
neonatal days, birth weight of the new-born, and birth 
weight of the new-born, and not everyone normally has 
a major operation. We use the value of − 1 to make up 
them because this value is impossible to appear in nor-
mal neonatal cases. What’s more, the number of second-
ary diagnoses varies greatly from case to case which is up 
to five. To balance the calculation complexity and simula-
tion authenticity, both the simulated data and real data 
have three secondary diagnoses which are arranged from 
small to large according to the encoding. If the number of 
secondary diseases in the original data is less than three, 
the missing features will be made up with the value of − 1 
as well.

The simulated cases and real cases obtained the 
ADRG labels and DRG labels by being imported into the 

Fig.2  Execution flow diagram of expert-oriented grouping

Table 1  The features contained in cases

Case sample variables

Major diagnosis (ICD-10)

Major operation (ICD-9)

Secondary diagnosis (ICD-10)

Age

Sex

Length of stay

Neonatal days

Birth weight of the new-born

Weight of new-born at the time of diagnosis

Total treatment expense
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CN-DRGs-B grouping which is executed through soft-
ware. The real cases have another set of ADRG labels and 
DRG labels, which were provided by the local healthcare 
security administration. In the experiment, these local 
labels were seen as the revised labels based on the actual 
local medical cost. Finally, three datasets were set up for 
different validation goals. The size and a brief description 
of the datasets are shown in Table 3.

Methods
Machine‑learning models
In the optimised grouping, we use machine-learning 
algorithms to replace all the non-professional work of 
experts and propose a data-based grouping. Its execu-
tion flow is shown in Fig.  3. Taking advantage of real 
or simulated cases labelled by existing grouping, the 
new grouping could be designed by training. Then, the 
grouping is updated with respect to improperly grouped 
cases and their revised labels. The design and update 
are implemented by machine-learning algorithms rather 
than experts’ evaluation. Decision-making rules based 
on clinical similarities are open to experts and users. 
Experts still audit these rules according to their profes-
sional knowledge. Although the rules based on individual 
similarities may still be a black box, upcoding could be 
avoided because rules are invisible to both the designer 
and the user and are entirely determined by the data 
when the design method is open.

As shown in Fig.  4, machine-learning algorithms are 
organised by a rule generation method and a multiclass 
classification method. They are applied to manage the 
part based on clinical similarities and the part based on 

Table 2  Patient characteristics of the real cases

Variable Sample size

Gender

Male 456

Female 606

Age (years)

≤ 20 142

21–40 107

41–60 330

> 60 483

Length of stay (days)

≤ 5 441

6–15 512

> 15 109

Major diagnosis distribution

Circulatory disease and dysfunction 42

Neurological disease and dysfunction 430

Musculoskeletal disease and dysfunction 245

Diseases and dysfunction of the female reproductive 
system

219

Neonatal and other perinatal neonatal diseases 127

Table 3  Description of the validation datasets

Dataset Description Sample size

A Simulated cases with labels gener-
ated by the CN-DRGs-B grouping

2,000,000

B Real cases with labels generated by 
the CN-DRGs-B grouping

1062

C Real cases with local labels 1062

Fig. 3  Flow diagram of the execution of data-based grouping
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individual similarities respectively. The details of both 
methods are described in the following sections.

A rule generation method
The rule generation method needs to provide experts and 
users with a decision-making rules model which is easy 
to search and modify. The tree structure is an appropriate 
choice, which gives a compact intuitively interpretable 
representation of the statistical model. Trained by cases 
that only have the features of the major diagnosis and 
the major operation, a binary decision tree can be built 
by the CART algorithm [21]. The CART algorithm is an 
effective means to create conjunctive rules [22], which 
uses the Gini index to select partition attributes. The Gini 
index represents the purity of the dataset, so each node 
selects the rule that can minimise the Gini index of the 
divided dataset. The tree will grow until either the homo-
geneity of the nodes cannot be improved significantly or 
additional stopping criteria are met.

Splitting nodes are called internal nodes, and nodes 
without successors are termed terminal nodes. In the 
decision tree built by cases, every internal node has a 
decision-making rule and every terminal node can be 
interpreted as an ADRG label. Trees constructed in 
the CART algorithm tend to have too many internal 
nodes and layers for a classifier applicable to all DRGs, 
although it depended on a number of factors, such as 
the number of branches of each node. To solve this 

problem, the tree should be reconstructed and com-
pressed since all decision-making rules have only two 
features. As shown in Fig.  5, the decision tree can be 
exported as a two-layer rules tree by tracing back from 
each terminal node to the top node and combining 
node rules with the same feature and same ADRG label, 
which is easy for computers. In the rules tree, the inter-
nal node in the first layer contains rules which are only 
based on the major diagnosis, and the internal nodes 
in the second layer contain rules which are only based 
on the major operation. Every internal node has several 
successors and every terminal node represents a differ-
ent ADRG label. In order to facilitate readers’ under-
standing, we will give a specific example to illustrate 
the rule tree creation process. Since different samples 
will not affect the creation process, we have selected a 
small number of samples for easy presentation in the 
article. Their details are shown in the following Table 4 
and the creation process is shown in Fig.  6. The doc-
tor injects six kinds of data shown in Table  4 into the 
model. The decision tree algorithm will continuously 
divide the data set until there is only one ADRG in 
each data set. At this time, each ADRG rule has at most 
three decision-making rules, which can be obtained by 
backtracking the nodes of the binary tree. The com-
puter calculates the set of major diagnostic and major 
operations in this data set and splits both sets with the 
decision-making rules corresponding to each ARDG to 

Fig. 4  The framework of machine learning algorithms
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obtain the final rules shown on the right side of Fig. 6. 
This example shows that the algorithm can guarantee 
that no matter how many kinds of data, only as many 
rules will be output as the number of ADRG types and 
each rule contains at most two decision-making rules. 
In practice, there are often thousands of data types, 
and this algorithm can effectively and quickly generate 

concise and accurate classification rules for doctors and 
researchers.

In the update process, we generate a candidate rules 
tree by revised cases or new cases. The terminal nodes 
of the candidate rule tree only include the ADRG labels 
which have been changed. Experts can easily update the 
grouping by comparing the conflicting rules between the 
candidate rules tree and the original rules tree, and judg-
ing whether to modify them.

A multiclass classification method
Dividing cases from ADRGs into DRGs is a complex 
multiclass classification problem involving several case 
features. Traditional decision-making rules cannot have 
both low design costs and accurate classification results 
in solving this problem, while there are many machine-
learning algorithms employed in developing high-per-
formance classification models. What’s more, in order 
to improve the multiclass classification capability of each 
method and reduce the workload of model updating, all 
algorithms work with the one-vs-all (OVA) strategy.

Fig.5  The process of generating a rules tree from a decision tree

Table 4  Sample characteristics of the example

Major 
diagnostic 
(ICD-10)

Major operation (ICD-9) ADRG label Sample size

S06.000 01.3900 × 003 BB1 15

S06.000 BY2 34

M17.000 81.5400 × 007 IC1 11

M87.002 81.51 IC1 9

I20.900 44.1300 × 001 FS1 28

G56.000 4.43 IH1 5

Fig.6  A specific example of the rule tree creation process
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The OVA strategy, as shown in Fig. 7, consists of fitting 
one grouping per class. For each grouping, the class is fit-
ted against all the other classes. Adopting this strategy 
will not reduce the classification accuracy [23], and can 
ensure that the grouping still has good interpretability. 
Since in this part the cases are classified from ADRGs 
into DRGs, and each ADRG contains no more than ten 
DRGs, so when training the model, the amount of train-
ing data for each DRG class is relatively balanced. If an 
ADRG contains dozens of DRGs as the grouping is con-
tinuously updated and expanded, we can choose an 
appropriate grouping to divide this large ADRG into two 
parts, and then continue to implement the OVA strategy.

In the update process, we first record which DRGs in 
the new training data have been changed, and then we 
just need to retrain their corresponding groupings. This 
method avoids retraining all groupings for each update, 
reduces the cost of computations resources, and makes 
updating easier.

Model selection
In the multiclass classification method, many machine 
learning algorithms can be chosen. We describe and 
access five typical classification algorithms in this paper: 
Naive Bayes, Support Vector Machines (SVM), Classifi-
cation and Regression Trees (CART), Extreme Gradient 
Boosting (XGBoost), and random forest, which is a ref-
erence for users to select algorithms. The CART deci-
sion-tree algorithm has been described in the previous 
section.

Naive Bayes algorithm
Naive Bayes algorithm was designed with the assump-
tion of conditional independence between every pair of 
features given the value of the class variable called class 
conditional independence [24]. Given class variable y 
and dependent feature vector x1 to xn , in Naive Bayes 

algorithm, the posterior probability of a sample can be 
expressed as follows:

The sample will be classified into the class with the 
highest posterior probability and in this paper, the likeli-
hood of the features is assumed to be Gaussian.

Support vector machines (SVM) algorithm
The Support vector machines (SVM) algorithm was pro-
posed by Cortes and Vapnik [25] and quickly became a 
mainstream technology in machine learning. The SVM 
algorithm can construct a hyper-plane or set of hyper-
planes in transformed input space to divide different 
classes and a good classification performance can be 
achieved by choosing the hyper-plane which has the larg-
est distance to the closest data points of any class. To per-
form non-linear classification, the radial basis function 
was chosen as the kernel function.

Random forest algorithm
Random forest algorithm is an ensemble learning algo-
rithm using a decision tree as the base learner proposed 
by Breiman [26]. It grows multiple decision trees by 
searching for the best feature among a random subset of 
features and merges their classification results to decide 
the final classification with the bagging method.

XGBoost algorithm
XGBoost stands for “Extreme Gradient Boosting” which 
is a superior implementation of gradient boosted deci-
sion trees designed for speed and performance proposed 
by Chen and Guestrin [27]. The algorithm is optimized 
in the utilization of computations resources; thus, it has 
been widely used and well evaluated in machine learn-
ing competitions. As the original algorithm, the Gradi-
ent boosted decision trees algorithm is also an ensemble 
learning algorithm using a decision tree as the base 
learner, but it uses a boosting method in which each tree 
attempts to minimize the errors of the previous tree and 
decide final classification with different importance or 
weights [28].

Evaluation metrics
All classifiers in this paper are designed as multi-clas-
sification tools, so commonly used binary classifica-
tion error evaluation metrics are not applicable. Overall 
accuracy can well represent the classification accuracy 
and was applied by other researchers in DRGs classifier 
evaluation [20]. However, the sample sizes tend to be 
uneven across categories. Without adjustment on this 
unbalanced data set, the model is easy to favour the large 

(1)P(y | x1, . . . , xn) =
P(y)

∏n
i=1 P(xi | y)

P(x1, . . . , xn)

Fig. 7  The one-vs-all (OVA) strategy
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category and abandon the small category (for example, 
the ratio of positive and negative samples is 1:9, directly 
predicting all negative, overall accuracy also has 90%. But 
the positive sample is completely “thrown away”). High 
overall classification accuracy does not necessarily mean 
excellent performance of the classifier. Finally, we have 
chosen the kappa coefficient to quantify the accuracy of 
the grouping. Kappa coefficient is a score that expresses 
the level of agreement between two annotators on a clas-
sification problem [29]. In this paper, two annotators 
represent the case reference labels and the results of the 
grouping. Kappa coefficient is defined as

where po is the empirical probability of agreement on 
the label assigned to any sample, and pe is the expected 
agreement when both annotators assign labels randomly. 

(2)K = (po − pe)/(1− pe)

For a confusion matrix as shown in Table 5, po and pe can 
be calculated as:

where N  is the number of samples. r is the number of 
classes. A higher kappa coefficient indicates stronger 
classification accuracy than a lower one, and it can be 
interpreted referring to the guidelines [30] in Table 6.

In the process of models training, a tenfold cross-val-
idation method is used to avoid any overfitting caused 
by unbalanced sample splitting. In the tenfold cross-val-
idation, the dataset is divided into ten complementary 
subsets called folds. Then nine folds are used to train the 
groupings and the remaining fold is used as a test set. The 
process is repeated ten times until every fold has been 
used as a test set [31]. The final classification accuracy 
is calculated by the averaging performance of the ten 
groupings on their associated test sets.

Results
Performance of groupings
We would like to show that the rule generation method 
and the multiclass classification method can design a new 
grouping with similar performance to the original expert-
oriented grouping. We also compare the performance of 
the five classification algorithms when they are applied 
in the multiclass classification method to give a refer-
ence for algorithm choice. Dataset A is used to train and 
test the groupings. Table 7 summarises the performance 
of the grouping which is trained and tested by simu-
lated cases. Especially, the kappa coefficients of the rule 
generation method measure the classification accuracy 

(3)po =

∑r
i=1 xii

N

(4)pe =

∑r
i=1 (xi+ × x+i)

N 2

Table 5  Confusion matrix schematic

Class C1 C2 … SUM

C1 x11 x12 x1+

C2 x21 x22 x2+

…

SUM x+1 x+2 x++

Table 6  Guidelines for interpreting the relationship between the 
kappa coefficient and classification accuracy

Kappa 
coefficient

0.01–
0.20

0.21–
0.40

0.41–
0.60

0.61–
0.80

0.81–1.00

Agreement Slight Fair Moderate Substan-
tial

Almost 
perfect or 
perfect

Table 7  Kappa coefficients of the data-based grouping trained by simulated cases

Folds The rule generation 
method

Naive Bayes SVM CART​ Random forest XGBoost

1 0.9996 0.7141 0.7375 0.9218 0.9609 0.9680

2 0.9994 0.7104 0.7342 0.9221 0.9598 0.9710

3 0.9994 0.7067 0.7300 0.9218 0.9675 0.9688

4 0.9994 0.7069 0.7336 0.9192 0.9673 0.9712

5 0.9995 0.7101 0.7328 0.9197 0.9662 0.9669

6 0.9996 0.7064 0.7314 0.9216 0.9635 0.9709

7 0.9996 0.7126 0.7312 0.9210 0.9608 0.9676

8 0.9995 0.7067 0.7308 0.9202 0.9608 0.9719

9 0.9996 0.7067 0.7303 0.9210 0.9594 0.9703

10 0.9994 0.7120 0.7362 0.9207 0.9643 0.9680

Average 0.9995 0.7093 0.7328 0.9209 0.9631 0.9695
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of ADRG labels rather than DRG labels. The rule gen-
eration method achieves an average kappa coefficient of 
0.9995, which proves that we can learn almost all clinical 
decision-making rules from existing expert-based group-
ings. The machine-learning algorithm related to the deci-
sion tree performs better in the multiclass classification 
method with average kappa coefficients of more than 0.9. 
Because the traditional grouping is also a tree structure, 
some features cannot satisfy class conditional independ-
ence, which leads to the relatively poor performance of 
the naive Bayes algorithm. Meanwhile, on multidimen-
sional large datasets, SVM consumes a lot of time and 
memory but fails to achieve an excellent performance.

To verify that the grouping trained by simulated data 
could also be used in real data, Dataset B is used to test 
the groupings trained by Dataset A. To evaluate the effec-
tiveness of the data-based update approach, the grouping 
with the best classification performance in the last exper-
iment is selected to be the original grouping. The perfor-
mance of groupings that are trained by simulated cases 
and tested by real cases is displayed in Table 8. Compared 
with being tested in the simulated cases, the groupings 
tested by the real cases have less accuracy, but the kappa 
coefficients of CART, random forest, and XGBoost algo-
rithms are still higher than 0.6, which means that the 
results of these three groupings are still of the reference 
value and that these algorithms show good generalisation 
ability. Thus, designing grouping by simulated cases is a 
feasible idea when access to many real cases is severely 
restricted due to concerns about citizen privacy.

In both experiments, the ensemble learning algorithm 
has a higher classification accuracy than the single deci-
sion-tree algorithm, but this improvement is not obvi-
ous. In the case of huge data and a lack of computation 
resources, a single decision-tree algorithm is still a good 
choice.

Grouping update validation
Dataset C is divided like the tenfold cross-validation, 
and ten pairs of comparison data can be collected by 
testing every fold through the original grouping and 
the new grouping updated by the other nine folds. The 
performance comparison of the original grouping and 
updated grouping is shown in Table  9. The original 
grouping could not work accurately in the relabelled 

cases, which indicates that the effective decision-making 
rules for Dataset C are quite different from the rules in 
the CN-DRGs-B grouping. After being updated with 
a few relabelled cases, the average kappa coefficients of 
the grouping are significantly improved, from 0.1534 to 
0.6435. Compared with the expert-oriented update, with 
enough computational resources, the update process can 
be completed in a very short time.

Discussion
A data-based grouping is proposed in this study. We 
apply machine-learning algorithms to replace the non-
professional work of experts in the process of grouping so 
that the grouping can be designed and updated based on 
data. Other research using machine-learning algorithms 
in DRG grouping [15, 18, 20] has focused on improving 
the performance of groupings or assisting hospitals in 
allocating medical resources, while we manage to prove 
that data-based grouping is feasible and superior to 
expert-based grouping.

Unlike traditional expert-oriented grouping, which is 
a black box, the design method and clinical-related rules 
of data-based grouping are disclosed. In addition, the 
rules of the non-public part of the data-based grouping 
are also dependent on the cases rather than on health-
care providers. Thus, this grouping could well avoid the 
problem of upcoding [32, 33]. The new method of group-
ing also gets rid of the dependence on experts, so we 
can use the cases whose labels are revised based on the 
actual local medical costs to update the original results 
of groupings. When the computation resources are suffi-
cient, the groupings can be updated quickly at a low cost. 
When data-based groupings run in hospitals, with con-
tinuous feedback updates, the data-based grouping will 
correct the errors of expert-oriented groupings and grow 

Table 8  Kappa coefficients of the data-based grouping trained 
by simulated cases

Naive Bayes SVM CART​ Random 
forest

XGBoost

Kappa coef-
ficient

0.4274 0.3509 0.6454 0.6401 0.6803

Table 9  Kappa coefficients of the original grouping and 
updated grouping

Folds Original grouping Updated 
grouping

1 0.1536 0.6167

2 0.1639 0.6691

3 0.1736 0.5877

4 0.1851 0.6556

5 0.1766 0.7090

6 0.1577 0.7304

7 0.1648 0.6850

8 0.1374 0.5874

9 0.0836 0.5863

10 0.1379 0.6074

Average 0.1534 0.6435
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with the advancement of healthcare reform and medical 
technology, thus providing the government and hospitals 
with real-time, localised management tools.

Since it involves patient privacy, it is very difficult for 
researchers to obtain enough real cases to run a study. 
This paper proposes a method to replace real cases 
with simulated cases that are generated by referring 
to the feature distribution of real cases. The groupings 
trained by the simulated data still have a good perfor-
mance on the real data test set, so in the study of apply-
ing machine learning to DRG grouping, simulated data 
can help researchers verify their assumptions on the use 
and optimisation of algorithms in the exploration phase. 
In order for a data-based grouping to be well supervised 
and understood, simulated data preserve the interface of 
expert participation and ensure good interpretability by 
generating a rule tree and taking the OVA strategy.

We also compare five typical machine-learning clas-
sification algorithms. Based on the experimental results, 
we recommend that users choose the CART algorithm 
as the core of the multiclass classification method when 
computation resources are tight, and choose XGBoost 
when they are not.

Conclusion
In this paper, we propose a data-based grouping based on 
machine learning, and completely demonstrate its design 
and update method. Through experiments, a data-based 
grouping was verified that meets the requirements of 
the DRGs system and has the advantages of high trans-
parency and low cost in the design and update process. 
Hence, compared with the export-oriented grouping, the 
data-based grouping provides a more transparent poten-
tial option.

In the future, we will communicate with the govern-
ment to obtain more real case data for training and 
improving groupings, while ensuring patient privacy. 
More experts will be invited to evaluate the problem of 
primary data, who will identify upcoding and the accu-
racy of diagnosis as well. We will also test our proposed 
grouping in cooperative hospitals, and improve our 
grouping according to feedback and suggestions from 
hospitals over a longer period, which also encourages 
health policy innovation [34].
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