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Abstract 

Background: The historical data of rare disease is very scarce in reality, so how to perform drug repositioning for 
the rare disease is a great challenge. Most existing methods of drug repositioning for the rare disease usually neglect 
father–son information, so it is extremely difficult to predict drugs for the rare disease.

Method: In this paper, we focus on father–son information mining for the rare disease. We propose GRU-Coopera-
tion-Attention-Network (GCAN) to predict drugs for the rare disease. We construct two heterogeneous networks for 
information enhancement, one network contains the father-nodes of the rare disease and the other network contains 
the son-nodes information. To bridge two heterogeneous networks, we set a mapping to connect them. What’s more, 
we use the biased random walk mechanism to collect the information smoothly from two heterogeneous networks, 
and employ a cooperation attention mechanism to enhance repositioning ability of the network.

Result: Comparing with traditional methods, GCAN makes full use of father–son information. The experimental 
results on real drug data from hospitals show that GCAN outperforms state-of-the-art machine learning methods for 
drug repositioning.

Conclusion: The performance of GCAN for drug repositioning is mainly limited by the insufficient scale and poor 
quality of the data. In future research work, we will focus on how to utilize more data such as drug molecule informa-
tion and protein molecule information for the drug repositioning of the rare disease.
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Background
A disease is defined as a rare disease if it affects less 
than 200,000 people in the United States [1], or less 
than 1/2000 of the population in Europe [2]. Accord-
ing to a global report of rare diseases, many people may 

be affected by one of about 6000 known rare diseases in 
the world [3]. Therefore, the treatment of rare diseases is 
very important and significant. But the rare disease lacks 
the important information including the drug molecule 
information, the gene information, the protein three-
dimensional structure information. Thus, the treatment 
of rare diseases is difficult to be found, how to complete 
drug repositioning for rare diseases is a valuable problem.

At present, drug repositioning methods are mainly 
divided into three types [4]: (1) Structure-based methods 
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[5], (2) Ligands similarity-based methods [6], (3) Machine 
learning-based methods [7]. Structure-based meth-
ods mainly focus on the molecular information of com-
plexes in biology. For example, AutoDock [8], proposed 
by Morris in 2009, combines long experience freedom 
and lamarckian genetic algorithm for modeling, which 
makes full use of the information of protein’s molecu-
lar structure to predict the relationship between ligands 
and protein through genetic algorithm. AutoDock usu-
ally requires the detailed molecular information and 
three-dimensional structure of proteins, however, many 
existing rare disease-related proteins are not yet known, 
which limits the development of such methods for drug 
repositioning. Some methods that based on the similar-
ity of ligands: which use a large number of known protein 
ligands and then calculate the similarity score of each 
group of ligands. But ligands similarity-based methods 
may leaks data information in the processing of predict-
ing results, and the accuracy of the prediction model is 
far from the actual accuracy. Since this method has irre-
versible high-risk problems, ligands similarity-based 
methods are not suitable for rare diseases [9].

Deep learning-based models with higher predictive 
capacity have also been developed in various drug dis-
covery settings [10–15]. MSCMF, proposed by Zheng in 
2013, calculates the similarity of related drugs and genes 
through matrix factorization operation, but these opera-
tions could cause a lot of information lost, which would 
affect the entire model. Some methods like DTINet [7] 
proposed by Luo in 2017 and HNM [16] proposed by 
Wang in 2014, which could greatly improve the accuracy 
of prediction. But these methods still could not solve the 
problem of limited information in data. DTINet uses an 
unsupervised way to learn low-dimensional feature rep-
resentations of related drugs and genes from Heteroge-
neous Network(HN) data, and uses an induction matrix 
[17]. DTINet may not be sufficient to capture the com-
plex hidden features behind HN data. Recent advances in 
information transfer and aggregation techniques extend 
Convolutional Neural Networks(CNN) to large-scale 
graphical data, which significantly improves the predic-
tive performance of models associated with HNs and 
helps us use deep learning models to discover complex 
information from HNs. Some of methods mentioned 
above have good performance in the field of drug repo-
sitioning [18, 19], but those methods for drug reposition-
ing [20] usually requires lots of labelled data for training. 
With the development of Internet medical services in 
recent years, more and more medical knowledge is stored 
in the form of HNs. How to fully explore the data in HNs 
for drug repositioning is very important. The first step to 
utilize the knowledge in HNs is to use HN embedding 
method to represent the knowledge.

PtransE is one of the traditional path-level HN embed-
ding methods. Compared with the TransE [21] model, 
it adds relational reasoning to HN embedding. How-
ever, our method pays more attention to the relationship 
sequence than the entity sequence, which causes the loss 
of entity information. Many methods only focus on the 
information of entity or relationship [22–24]. Different 
from these methods, our method uses DeepWalk [25] in 
the HN embedding and uses a unified random walk to 
sample the path in the networks, which can fully mine 
the path information from HN data. node2vec [26] uses 
biased random walk to enhance the path’s sampling of 
HNs. Our method can smoothly control the direction 
of walking, which could be biased towards depth-first 
search or breadth-first search. The mechanism that we 
propose in this paper that is biased samples the father–
son relationships is inspired by node2vec, father–son 
nodes mean some disease nodes that have a hierarchical 
relationship, the distance between these nodes is within 
two hops, and they belong to the same type of disease in 
the biological definition. Many HN embedding methods 
usually focus on clusters or communities of related nodes 
without considering the semantics and direction of the 
relationship, such as structure2vec [27], SSE [28] and JK-
Net [29].

HN embedding is already a mature research topic, the 
Trans-series model is proposed for translational embed-
ding, such as TransE, TransH [30] and TransR [31]. 
ComplEx [32] enhanced the basic DistMult [33] model 
through embedding HNs into the complex space. RotatE 
[34] is a rotation that defines each relationship as a head 
entity to a tail entity. Some recent studies have shown 
that HN embedding can also improve the performance 
of entity alignment models. MtransE [35] can train dif-
ferent HN embedding separately and learns the transi-
tion between HN embedding. BootEA [36] is a method 
of entity alignment based on HN embedding by using 
a fine algorithm to update the alignment in the itera-
tive process. KDCoE [37] is an HN embedding method 
that trains entity relationships and semantics together, 
but it requires additional pre-training multilingual 
word embedding and description. GCN-Align [38] is a 
HN embedding method of neighboring neighborhoods 
based on Graph Convolutional Networks (GCN). But 
our method does not consider the semantics of relations 
between entities. In the above methods, the TransE-
based model is difficult to obtain the dependence of the 
long-term relationship of HNs, and it is difficult to dis-
seminate information between different HNs. The GCN-
based network does not use the semantic information 
of the relationship. Recurrent Skipping Networks (RSN) 
[39] network can alleviate the above problems, but it is 
difficult to obtain the hierarchical information of the 
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nodes, which leads to insufficient performance of the 
model in the very sparse HN data.

To solve the problem of limited information, we extract 
disease data matching rare diseases from open data 
source and merge it with real data from hospital. The data 
are transformed into tuples of HNs, so that the relation-
ship between nodes can be found through the path-level 
information between different nodes [40]. We mainly 
focus on rare disease nodes with hierarchical relation-
ships and the nodes within two hops, named as father–
son nodes. We design a biased random walk mechanism 
to collect the information of father–son nodes, which is 
helpful to explore the possibility of treatment of rare dis-
eases with conventional drugs.

The main contributions of our paper lie in three points: 

(1) We have realized drug repositioning for rare dis-
eases with limited information through public data 
and the data of Peking Union Medical College Hos-
pital.

(2) We use path-level information to predict the nodes 
in rare disease data from two HNs and enhance the 
connection between them.

(3) We use the Gated Recurrent Unit (GRU) network 
to strengthen the weights of nodes near the source 
node and input its output to the attention network 
for optimization, thus making full use of the limited 
information.

Methods
Problem formulation
In a HN, nodes with hierarchical relationship and dis-
tance less than two hops are called father–son nodes. A 
drug often has a therapeutic effect on the diseases that 
have a father–son relationship. For example, Gaucher 
type III is a sub-category of gaucher disease, both imiglu-
cerase and taliglucerase alfa could cure the two diseases. 
To make full use of the father–son relationship, we use 
a combination of two HNs to embed data. We set father 
nodes and son nodes in HN1 and HN2, respectively. The 
two HNs are connected by a matrix with two columns. 
One column indicates father nodes of HN1, the other 
column indicates son nodes of HN2. We use a path-based 
model with biased random walk mechanism to smoothly 
sample the path information of related nodes, which can 
obtain the path information between father nodes and 
son nodes.

We choose GRU [41] network to model the related 
path. Since the current output of the GRU network only 
depends on the output of the previous node and the cur-
rent input, which could ignore the role of closely related 
nodes in sequence prediction. On this basis, we add the 

father node information and the neighboring node infor-
mation in the current path information to the hidden 
information through a cooperative mechanism to help 
the model predict the drug. Experiments prove that our 
model GCAN has excellent performance in the drug 
repositioning of rare diseases.

To solve the problem of drug repositioning for rare 
diseases, we propose a new method named as GRU-
Cooperation-Attention-Network (GCAN). We use the 
biased random walk mechanism to control our model 
to collect the information of father–son nodes smoothly. 
What’s more, we present a sampling method to enrich 
the information of rare disease. GCAN use the coopera-
tion mechanism based on GRU units to make full use of 
data, we processed the outputs of GRU units by attention 
mechanism to further improve the computing power of 
the model.

GCAN is a prediction model based on deep learning, 
which consists of three parts: (a) biased random walk, 
(b) cooperation mechanism, (c) attention mechanism. 
We first use (a) biased random walk to collect informa-
tion from HN, which is more inclined to collect the infor-
mation about father–son nodes. Then, (b) cooperation 
mechanism is employed to enhance the ability of predic-
tion for GRU network. What’s more, to further improve 
the ability of prediction for model, we use (c) attention 
mechanism to enhance the model and improve the ability 
of our model.

Path‑level embedding
The rare disease nodes are usually independent of each 
other and not connected to a HN. Therefore, we select 
some related common diseases in the same format to 
form a certain scale of HN. Finally, we constructed a net-
work with complex path relationships. Due to the scar-
city of information on rare diseases, we processed all 
data in the form of [disease, gene, drug], which is more 
useful to mine the hidden information. There are two 
types of relationships between the nodes: the pathogenic 
relationship between a disease and a gene, the therapeu-
tic relationship between a drug and a disease. However, 
HNs with only a small amount of data are difficult to 
train models with higher accuracy. In this case, it is easy 
to cause prediction errors in drug repositioning. In view 
of the unity of the relationship in the existing data, we 
use genes as the connection between diseases and drugs, 
and enrich the types of relationship through the diversity 
of genes. At this time, we process the data into a triple 
format: T = (h, r, t), where h and t represent the disease 
entity and the drug entity, and r represents the gene con-
necting the disease and the drug [21]. The traditional 
methods explore the shift-invariance of head entity for 
embedding network, tail entity and relation in the vector 
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space. However, the potential information contained in 
the triple data is too scarce, and the model is difficult 
to find the favorable information for prediction, so we 
model a longer relationship chain information to obtain 
hidden information of long-distance related nodes. We 
use biased random walk to collect the information from 
nodes, it would be more like to collect father–son nodes, 
which is useful for model to get important information. 
Thus, we can get a sequence (Xt

1,X
r
2 ,X

t
3, . . .X

r
n−1,X

t
n) to 

represent the path information, where Xt
i  is a node, and 

Xr
i  is the relation. Xt

1 is the starting node, Xt
3 is the related 

nodes obtained by biased random walk.

GRU‑Cooperation‑Attention‑Network
As shown in Fig.  1, we use the RNN(Recurrent Neural 
Network)-based model to predict drugs, because RNN-
based model have stable and excellent performance in 
sequence prediction. We use the path information of the 
node as the input of RNN. At current time, the output of 
RNN is:

where Wh is the weight, ht−1 is the hidden state of pre-
vious node and b is a bias term. We use the GRU net-
work to model this problem, GRU is a variant network 
of RNN by adding a gating mechanism to the network. 
GRU can more effectively optimize the spread of hidden 
information and mine the deep potential information of 
sequence. Considering that the GRU network will pro-
cess the components of the sequence information indis-
criminately, which means that the GRU network will 
treat the nodes and relationships in the relation-entity 
chain as an element. In this case, how to fully mine data 

(1)ht = tanh(Whht−1 + b)

information is a key issue. Therefore, we use the coopera-
tion mechanism, which allows the input of current node 
Xt to participate in the prediction, and at the same time, 
it can directly participate in the prediction by adjust-
ing the weights, which can more fully mine the data and 
obtain the information. Given the hidden state of the pre-
vious node ht−1 and the input Xt , we can obtain the hid-
den layer ht at time t by the following formula.

We predict the drugs for the treatment of diseases 
based on the information of the existing node’s associa-
tion chains. Not all the node information obtained during 
the biased random walk has a key effect on the predictive 
ability of the model. To optimize the weight of different 
nodes in the model prediction process we use attention 
mechanism to process the output from the GRU coop-
eration network. Our method could perform weighting 
operations for each predicted result. The weight vector 
formula at t time is:

The node vector formula is:

Deep learning networks can automatically fit the val-
ues of weights. And we can use the softmax function 
to obtain the attention weight vector, then the formula 
becomes:

(2)ht = tanh(Whht−1 +WxXt+b)

(3)αti= hTt Wαhi

(4)ct=

t−1
∑

i=1

atihi.

Fig. 1 The architecture of GCAN
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Biased random walk
As shown in Fig.  2, to obtain more correlated path 
information, we choose to sample the relationship path 
deeper and more biased direction toward the father 
and son nodes. To this end, we use two HN data sets 
HN1 = (h1, r1, t1) , HN2 = (h2, r2, t2) to provide enough 
space for walking. To allow the random walking mecha-
nism to find the father node, we set up a relationship 
subset to bridge two HN data sets through the mapping 
with the father–son relationship node: S ⊂ HN1 ×HN2 
The walking direction of the conventional random walk-
ing mechanism [25] follows the following probability 
distribution:

where ei is the first node, ei+1 is the collected node, Pr() 
is the function of probability distribution. The conven-
tional random walk mechanism is only subject to depth-
first search or breadth-first search, which often only use 
one-sided path information, and it is impossible to obtain 
the information of neighbor nodes comprehensively. 
Considering the importance of the father and son nodes 
of rare diseases, we employ biased random walk, which 
combine with breadth-first search and depth-first search, 
to smoothly control the nodes. When we search for the 
neighbor nodes of ei , the candidate nodes include e1i+1 in 
the same network, and the father node e2i+1 in another 
HN. Because we are more inclined to find father–son 
nodes and the deeper nodes, the final searched node is 
e2i+1 . The biased walk mechanism obeys the following 
probability distribution:

where ei represents the target node, e2i+1 and e1i+1 indi-
cates father node and son node, respectively.

(5)αt=Soft max([αt1,αt2, . . . αt(t−1)])

(6)

Pr(ei+1|ei) =

{

πei→ei+1
N ∃ r ∈ R : (ei, r, ei+1) ∈ G

0 otherwise

}

(7)P(ei+1|ei) =

{

∂ (ei, e
2
i+1)

1− ∂ (ei, e
1
i+1)

}

where yt represents the predicted target at time t, σ(·) 
indicates sigmoid function, k is the number of negative 
samples, q(yi) is the sample obtained from the noise prob-
ability distribution, yi is the occurrence frequency in the 
data.

Results
Experimental setting
To match as much data similar to rare diseases as pos-
sible, we extracted data of 24 rare diseases from the data 
provided by Peking Union Medical College Hospital, and 
found father–son relationships from the existing HNs. 
We also used drug or gene as keywords to look for rele-
vant disease data on DrugBank to add to the data. Finally, 
we got 7000 tuples of related data. The data were divided 
into training set and test set in a ratio of 2:1. The hidden 
layer size of the neural network is 256, the number of lay-
ers is 2, the size of batch is 512 and learning rate is 0.003.

The experiments were implemented on a computer 
with an Intel(R) Core(TM) i7-8700CPU processor, and an 
NVIDIA GeForce GTX Titan Xp GPU card with scalable 
link interface (SLI).

We choose Hits@10 and mean reciprocal rank (MRR) 
as the evaluation metrics. Hits@10 indicates the propor-
tion of the results in the test set among the top-10 pre-
diction results. MRR only considers the top real matched 
ratio in the prediction results.

Comparison with state‑of‑the‑arts
We compared GCAN with many traditional HN embed-
ding methods such as GCN-Align [38], TransR [31], 
MtransE [35], BootEA [36] and RSN [39]. The drug repo-
sitioning results are shown in Table  1. GCN-Align is a 
convolutional computational model on graph nodes that 
does not exploit the semantic information of the nodes. 
TransR and MtransE both belong to path-level models 
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Fig. 2 Biased random walk: Father nodes are more inclined to collect 
relationship chain information from the Son node

Table 1 Drug repositioning results of GCAN and many 
traditional HN embedding methods

Methods Hits@10 MRR

GCN-AlignE [38] 0.067 0.042

TransR [31] 0.124 0.143

MtransE [35] 0.204 0.187

BootEA [36] 0.272 0.199

RSN [39] 0.403 0.205

GCAN 0.454 0.231
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and have good interpretability and good predictive abil-
ity. BootEA and RSN are improved on the basis of the 
previous models to increase accuracy. Table  1 shows 
that the performance of GCN-Align is poor, because it 
does not consider the importance of the relationship in 
model prediction, and the convolution-based method 
is not as reliable as the path-level embedding method. 
Both TransR and MtransE are improved methods based 
on TransE. Although they belong to path-level models, 
they also ignore the importance of relational informa-
tion in the prediction process. Comparing with some 
recent models, they are relatively simple and cannot fully 
mine the hidden information from data, so the accuracy 
of the model is still low. Therefore, we tried some recent 
models such as BootEA and RSN. The predictive ability 
of these models has been significantly improved com-
pared with the previous models because they can mine 
data information more deeply. RSN model adds the rela-
tional information to participate in the prediction, so it 
performs better than the previous model. What’s more, 
we improved GRU-network for RSN. Table 1 shows that 
GCAN has the best performance under Hits@10 and 
MRR. The accuracy of the RSN model has increased by 
5.1%, which has valuable reference for drug reposition-
ing of rare diseases. To further explore the influence of 
the data link in the model, we use biased random walk 
at different depths and employ cooperation attention 
mechanism to explore the hidden information from data. 
The experimental results in Table 1 show that the above 
improvements can significantly enhance the performance 
of GCAN model for drug repositioning.

Ablation study
To illustrate the effectiveness of each proposed module, 
we conduct a detailed analysis next. The results using dif-
ferent modules are shown in Table 2. RSN is the baseline 
model using RNN network. When we use GRU network 
instead of RNN network for modeling, it can achieve a 
better performance, because GRU network can obtain 
the long-term memory information for prediction. On 
this basis, we add a cooperation mechanism to enhance 
the ability to minimize hidden information. The result 
shows that it can significantly improve the ability of our 
model. Among them, the collection of data information 

is particularly important in the whole work, so we tried 
to use an ordinary random walk to collect path informa-
tion, and the result shows that it is quite different from 
the accuracy of our biased random walk. Moreover, to 
improve the accuracy of the model, we use an attention 
mechanism to calculate the output of the GRU network 
and assigns weight to the results. Experimental results 
prove that the attention mechanism enhances the pre-
dictive ability of the model. The above experimental 
results prove that each of our works are essential for drug 
repositioning.

The effect of random walk length
To explore the most efficient walking depth, we explored 
Hits@10 from 5 to 21 hops as shown in Fig. 3. The accu-
racy of GCAN increases faster before 15 hops because 
longer path is useful for the expansion of the information, 
which can more fully explore the links between data. But 
after 15 hops the accuracy of the model grows very slowly 
and the time of calculation increases significantly. The 
experimental results of RSN and BootEA models also 
demonstrate the similar rule. Therefore, we finally chose 
the depth of 15 hops considering the calculation cost.

Case study
We show the process of drug prediction by GCAN model 
using Gaucher disease as an example. The pathway infor-
mation and prediction results for drug repositioning of 
Gaucher disease are shown in Fig. 4. In Fig. 4, the solid 
line indicates the existing relationships in HNs, and the 
dashed line indicates the relationships predicted by 
GCAN model.

Gaucher disease includes type I Gaucher disease and 
type III Gaucher disease, which are father–son nodes in 
the network. In the embedding representation phase, we 
connect nodes with two hop distances in a hierarchical 
relationship in two HNs and use a biased random walk 
mechanism to collect information from the father and 
child nodes. When using type III Gaucher disease as the 

Table 2 Drug repositioning results using different modules

Methods Hits@10 MRR

RSN 0.403 0.205

GCAN-normal-random-walk 0.425 0.213

GRU-Cooperation-Network 0.443 0.226

GCAN 0.454 0.231
Fig. 3 Under the hit@1 evaluation index, the influence of walking 
depth from 5 hops to 21 hops
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starting node on two HNs with biased random walk-
ing, the adjacent type I Gaucher disease nodes and their 
therapeutic drugs will be collected first to perform pre-
diction. As shown in Fig. 4, two drugs for type I Gaucher 
disease predicted by GCAN are proved to be effective. 
The results proved that GCAN maintains the predic-
tive capability for long-range nodes while enhancing the 
weight of short-range node information in the network 
layer.

Discussions
In this paper, we use GCAN to investigate drug reposi-
tioning for rare diseases. GCAN captures the path infor-
mation of disease nodes smoothly using a biased random 
wandering mechanism, and place more emphasis on 

feature capture of father–son node information. The 
experimental results shows that GCAN significantly out-
performed the state-of-the-art HN embedding methods. 
Because GCAN addresses the problem of sparse rare 
disease data and makes full use of father–son informa-
tion to augment the data size as well as the connectivity 
between data. In the experiments, we expand the scale 
of the data by using two different HNs, one HN contains 
the father nodes of the disease and the other one con-
tains the son nodes. The father–son nodes are used as a 
bridge to connect the two HNs and control the direction 
of node path collection. Using two HNs enrichs the path 
information of nodes in the path acquisition process. In 
addition, the GRU cooperative attention mechanism 
optimizes the weight distribution of path information in 

Fig. 4 The pathway information and prediction results for drug repositioning of Gaucher disease
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the propagation process and focuses more on learning 
the feature information of nodes that have father–son 
relationship with the rare disease nodes, which enhances 
the prediction ability of the model for rare diseases.

The experimental results also show that the perfor-
mance of GCAN is still limited by insufficient scale and 
low quality of the data. The existing data need to be 
improved in both scale and quality. However, it is diffi-
cult to obtain a large scale of data related to rare diseases. 
Therefore, the future work for drug repositioning in rare 
diseases is to collect more valuable data and to make bet-
ter use of the current limited data

Conclusion
In this paper, we proposed a HN embedding model called 
GCAN to perform drug repositioning for rare diseases. 
GCAN enhances the mining of hidden information about 
rare diseases through biased random walk mechanism, 
GRU-cooperation mechanism and attention mechanism. 
The drug repositioning experiment shows that GCAN 
significantly outperforms the existing HN embedding 
methods. The performance of GCAN model is still lim-
ited by the scale and quality of the data. In the future 
we will employ additional data such as protein structure 
information in combination with current data for drug 
repositioning of rare diseases.
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