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TECHNICAL ADVANCE

Interpretable time‑aware 
and co‑occurrence‑aware network for medical 
prediction
Chenxi Sun1,2*  , Hongna Dui3 and Hongyan Li1,2 

Abstract 

Background:  Disease prediction based on electronic health records (EHRs) is essential for personalized health-
care. But it’s hard due to the special data structure and the interpretability requirement of methods. The structure 
of EHR is hierarchical: each patient has a sequence of admissions, and each admission has some co-occurrence 
diagnoses. However, the existing methods only partially model these characteristics and lack the interpretation for 
non-specialists.

Methods:  This work proposes a time-aware and co-occurrence-aware deep learning network (TCoN), which is not 
only suitable for EHR data structure but also interpretable: the co-occurrence-aware self-attention (CS-attention) 
mechanism and time-aware gated recurrent unit (T-GRU) can model multilevel relations; the interpretation path and 
the diagnosis graph can make the result interpretable.

Results:  The method is tested on a real-world dataset for mortality prediction, readmission prediction, disease 
prediction, and next diagnoses prediction. Experimental results show that TCoN is better than baselines with 2.01% 
higher accuracy. Meanwhile, the method can give the interpretation of causal relationships and the diagnosis graph 
of each patient.

Conclusions:  This work proposes a novel model—TCoN. It is an interpretable and effective deep learning method, 
that can model the hierarchical medical structure and predict medical events. The experiments show that it outper-
forms all state-of-the-art methods. Future work can apply the graph embedding technology based on more knowl-
edge data such as doctor notes.
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Background
Electronic Health Records (EHRs) are increasingly pop-
ular and widely used in hospitals for better healthcare 
management. A typical EHR dataset consists of much 
patient information, including demographic informa-
tion and medical information. The medical information 

is an irregular hierarchical patient-visit-code (patient-
admission-diagnosis) form, shown in Fig.  1a: (1) Each 
patient has many visit records as he/she may go to see a 
doctor many times. The visit records have corresponding 
time stamps and form a sequence; (2) Each visit contains 
many codes, which are usually disease diagnoses. The 
codes have the co-occurrence relation without order. For 
example, in a patient record, the chronic kidney disease 
is recorded after a cold record, but we can’t conclude that 
the patient didn’t have chronic kidney disease before he 
caught a cold. Two diagnoses have an uncertain time 
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relation. We call such issues as the co-occurrence rela-
tion, such as complication, causation, and continuity. 
Thus, EHR has both the time relation and the co-occur-
rence relation.

Medical tasks such as disease prediction [1–3], concept 
representation [4, 5], and patient typing [6–8] are essen-
tial for personalized healthcare and medical research. 
Nevertheless, the tasks are challenging for physicians, 
considering the complex patient states, the amount of 
diagnosis, and the real-time requirement. Thus, a data-
driven approach by learning from large accessible EHRs 
is the desiderata.

In recent years, the Deep Learning (DL) model has 
made remarkable achievements due to its strong learning 
ability and flexible architecture [9–13]: some DL meth-
ods can model the sequential time relation of medical 
data. For example, RETAIN [3] utilizes gated recurrent 
unit (GRU) [14, 15] to predict medical events, Dipole 
[1] uses Bidirectional RNN (BRNN) [16] to integrate the 
information in the past and the feature, and T-LSTM [8, 
17] injects the time decay effect to handle irregular time 
intervals. Using these methods, the EHR structure is 
modeled as Fig. 1b; Some DL methods can model the co-
occurrence relation of medical data. For example, Word-
2Vec [18, 19], Med2Vec [4], and MiME [5] model the 
medical relations to better express the original data by 
the idea of representation learning [20–23]. Using these 
methods, the EHR structure is modeled as Fig. 1c.

However, no method can model both relations simul-
taneously. Because t there is a conflict between the two 
relations: The time relation makes data distributed lon-
gitudinally but the co-occurrence relation makes data 
distributed bipartite graph-like. If considering both these 
two relations, the EHR structure is shown in Fig. 1d.

Meanwhile, in the real-world application, the data-
driven method is required to be interpretable to facilitate 
the use of doctors [24–26]. However, the DL method is 
the black-box model which is troubled by poor interpret-
ability [27–32].

To address the above issues, in this work, we define 
EHR as the hierarchical co-occurrence sequence and 
propose a novel model called Time-aware and Co-occur-
rence-aware Network (TCoN). TCoN can not only model 
the two relations simultaneously but also has the ability 
of interpretation. TCoN has the pre-train and fine-tune 

mechanism for the imbalanced data and is more accurate 
than all baselines in medical prediction tasks.

Materials and methods
In this section, we first introduce the MIMIC-III dataset 
and the data preprocessing process. Then, we describe 
the proposed methods in detail.

Dataset description and preprocessing
MIMIC-III is a freely accessible de-identified medical 
dataset, developed and maintained by the Massachusetts 
Institute of Technology Laboratory for Computational 
Physiology [33]. Based on MIMIC-III dataset, we selec-
tively extract data and form three data sets:

Overall dataset
We extract records with more than one visit from 
MIMIC-III. The new dataset comprises 19,993 hospital 
admissions of 7537 patients and 260,326 diagnoses with 
4,893 unique codes defined by the International Classifi-
cation of Diseases-9 version (ICD-9). For one patient, the 
visit number is 2.66 on average. For one visit, the code 
number is 13.02 on average and up to 39.

Sepsis dataset
Following the latest sepsis 3.0 definition [34], we extract 
1232 sepsis patients whose SOFA is greater than or equal 
to 2.

Heart failure dataset
According to ICD-9 code, we extract 1608 heart failure 
patients who have diagnoses of 428.x code.

In sepsis dataset and heart failure dataset, the extracted 
data is the records for the first time that these two diag-
noses appear. And these two datasets are imbalanced. 
The detailed statistic is shown in Table 1.

Problem formulation

Definition 1  (Electronic Health Record | EHR) EHR 
is the hierarchical co-occurrence time sequence data. 
It consists of a set of records R = {ri|i = 1, . . . ,M} 
with M patients P . Each record ri has a visit sequence 
V = {vi|i = 1, . . . ,N } mapped in time. For each 

(See figure on next page.)
Fig. 1  The data structure of EHR based on different methods. a Original EHR data structure. b EHR data structure based on time relation. c EHR data 
structure based on co-occurrence relation. d Data relation under our TCoN model. The data form b arranges codes in a random order, but different 
sequences have different effects on results. For example, the sequence ‘heart disease —> influenza —> coronary’ has closer relation between ‘heart 
disease’ and ‘influenza’ than the sequence ‘heart disease —> coronary —> influenza’. The data form c can make every two codes have the equal 
relation, but if ‘heart disease’, ‘atrial fibrillation’ and ‘diabetes’ are in three different visits, the equal relation will fail as there are different time intervals 
among them. The data form d is the combination. it describes both the equal code relation in the same visit and the time relation in different visits
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Fig. 1  (See legend on previous page.)
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vi , it contains a time stamp ti and many codes 
ci = {cij|cijεC , j = 1, . . . , J } . C is a diagnoses database. 
Meanwhile, the demographic information I is recorded 
to patients P.

Definition 2  (Medical prediction tasks) They use a 
set of medical records R to predict the specific target 
Y =

{
y1, y2, . . . yn

}
 . If n = 2 , it is a two-classification task. 

If n > 2 , it is a multi-classification task. The prediction 
task is fp : R → Y .

Definition 3  (Interpretation Path) Interpre-
tation uses the correlations R of medical pairs 
Q to build an Interpretation Path P . Q is a set 
of tuple 

{
(a, b)|aεC ∪ V , bεC ∪ V ∪ P ∪ Y

}
 , 

the pair correlation is aRb , and 
P = c1 →R1 c2 →R2 . . . →Rn−1 cn →Rn prediction 
interprets how TCoN predicts.

Analysis strategy
Task 1 (Mortality prediction). To predict if the patient will 
die during the hospitalization.

Task 2 (Readmission prediction). To predict if the patient 
will be hospitalized again.

Task 3 (Disease prediction). Two disease prediction 
tasks: Sepsis and heart failure. Early diagnose is critical for 
improving patients’ outcome [35].

Task 4 (Next diagnoses prediction). To predict the diag-
noses of the patient in the next admission.

Note that Task 1, 2, 3 are binary classification tasks and 
Task 3 is a multi-classification task.

Evaluation 1 (AUC-ROC). The area under the curve of 
the True Positive Rate (TPR) and the False Positive Rate 
(FPR). TN, TP, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively.

(1)
TPR =

TP

TP + FN

FPR =
FP

TN + FP

Evaluation 2 (PR-AUC). The area under the curve of 
Precision (P) and Recall (R). It is a better measure for 
imbalanced data [36].

Evaluation 3 (Accuracy@k). The probability of the 
positive predictions in top-k prediction values. It is the 
evaluation metric of multi-classification tasks.

TCoN model structure
As shown in Fig. 2, our TCoN model contains the code 
block and the visit block: The code block is implemented 
by Co-occurrence-aware Self-attention (CS-attention); 
The visit block is implemented by Time-aware Gated 
Recurrent Unit (T-GRU); Two blocks are connected by 
Attention connection.

CS‑attention
Self-attention [32] in natural language processing con-
siders the semantic and grammatical relations between 
different words in sentences. For each input, it has three 
vectors, Query (Q), Key (K), and Value (V). The multi-
head self-attention is designed as:

In this work, we redesign the self-attention as CS-
attention (Eq. 5) to deal with the relations of EHR codes. 
CS-attention has two different heads—Local Head and 
Global Head. The local head learns the co-occurrence 
relations between every two codes in the same visit. A 
code is affected by the other codes equally. The global 
head learns the co-occurrence relations between every 
two codes in different visits. A code has different effects 
from the other codes according to different time intervals 
between visits. These two types of heads can learn a new 
representation C̃ of each code C by its neighbors Cnb.

(2)
P =

TP

TP + FP

R =
TP

TP + FN

(3)Accuracy@k =
# of true positive in top k

min(k , |ct |)

(4)

Attention(Q,K ,V ) = softmax

(
QKT

√
Dk

)
V

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)W
O

headi = Attention
(
QW

Q
i ,KWK

i ,VWV
i

)

(5)

C̃ = Attention(C) = softmax

(
Q1K

T
1√

dk
,
(Q2K

T
2 )TT√
dk

)

(C ,Cnb)

Table 1  Statics of extracted MIMIC-III dataset

Sepsis codes SOFA ≥ 2

Heart failure codes 428.x

Avg. rate of in-hospital mortality 12.58% (5854/46,520)

Avg. rate of readmission to ICU 16.20% (7537/46,520)

Avg. rate of sepsis 6.16% (1232/19,993)

Avg. rate of heart failure 8.04% (1608/19,993)
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C is the original matrix of input codes. C̃ is the new 

representation matrix. Qi,Ki,Vi is same as Eq.  (4). i = 1 
represents the local head and i = 2 represents the global 
head. dk is the dimension for Q and K  . T  is the time decay 
function g(�t) in Eq.  4. Both the number of local head 
and global head can be change.

T‑GRU​
As shown in Eq.  3, T-GRU comprises an update gate 
zt and a reset gate rt . They control the extent to which 
the previous state ht−1 is brought into the current 
state ht and how far the previous state is brought into 
the current candidate state h̃t . For modeling the time 
irregularity, we build a time gate dt . This gate takes 
time interval into account and control delivered infor-
mation from the previous visit to the current visit by 
time decay function g(�t) . The time decay function can 
determine how much the history state can be injected 
into the current unit. In Eq.  3, xt is the current input 
data, W ,U , b are parameters. The output is the current 
state h.

We propose three time decay functions (Eq. 7). Δt is 
the time interval between two visits, α is the decay rate. 
When α = 1 , the exponential form is more suitable for 
the small elapsed time, the logarithmic form is more 
suitable for the large elapsed time, and the reciprocal 
form is a compromise.

Attention connection
Between code block and visit block, we design the con-
nection method (Eq.  8). Where Xvi is the ith input of 
visit v , Ci is the output matrix with each row for one i-
th visit’s code, Wβ is a parameter vector. When we 

(6)

Time gate : dt = g(�t)

Time decayed history state h∗t−1 : h∗t−1 = ht−1 · dt
Update gate zt : zt = σ

(
xt ·Wz + h∗t−1 ·Uz + bz

)

Reset gate rt : rt = σ
(
xt ·Wr + h∗t−1 ·Ur + br

)

Candidate state h̃t : h̃t =
(
xt ·Wh + h∗t−1 · rt ·Uz + bh

)

Current state ht : ht = zt · h∗Tt−1 + (1− zt) · h̃t

(7)

Reciprocal form g(�t) =
1

1+ α�t

Logarithmic form g(�t) =
1

log(e + α�t)

Exponential form g(�t) = e−α�t

Fi
g.

 2
 T

Co
N

 s
tr

uc
tu

re
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consider the demographic information I  . The input will 
be a concatenation form: Xvi = concate

(
β̃TCi, Ii

)
.

Besides, we propose a method to interpret TCoN. It is 
achieved by the correlation values among codes, visits, and 
predictions.

Interpretation path
It is based on the correlations R , containing two correla-
tions: The code-code correlation is obtained from α̂ of 
CS-attention. α̂ij means the effect of code j on code i , and 
large α̂ij means that code j could be the cause, complica-
tion, or early symptoms of code i ; The code-visit correla-
tion is obtained from 

∼
β of the Attention connection. Larger ∼

β means the closer relation.
The interpretation path is a code sequence obtained by 

the reverse lookup starting with the prediction results. For 
a prediction P , the last visit is vn . In vn , we find the code cni 
that contributed the most to vn according to 

∼
β . For cni , we 

find the closest code c(n−1)i in visit vn−1 according to the 
largest α̂∗Cni . Similarly, we find c(n−2)i, c(n−3)i, . . . c1i . So 
far, we find a path c1i → · · · → cni → P . This path can be 
described: a disease c1i most likely infers c2i , then c2i most 
likely infers c3i , … and c(n−1)i most likely infers cni , finally, 
cni most likely causes P.

Finally, we apply a training method that enables TCoN to 
handle imbalanced data [37, 38].

Pre‑train and Fine‑tune
In the pre-train process, we apply an auto-encoder network 
fae with a minimum loss (Eq. 9) for the unsupervised rep-
resentation learning task. In the fine-tune process, we use 
parameters of the encoder layer as the initial parameters of 
TCoN when training by the prediction objective in Eq. (10). 
For TCoN, the input layer is represented by Eq. (8), Skip-
connection is Eq. (12), layer normalization [29] is Eq. (13), 
and feed forward layer is Eq. (14).

(8)

β = CiWβ + bβ

β̃ = softmax(β)

Xvi = β̃TCi

(9)Lemb = −1

n

n∑

i

xilogfae(xi)

(10)Lpre = −1

n

n∑

i

yilogfpre(xi)

(11)a = emb(x) = ReLU(x ·W + b)

(12)x′ = RC(x) = x + f (x)

Complexity analysis
The self-attention-based algorithm is parallel, but the 
RNN-based algorithm is serial [32]. TCoN has both struc-
tures and they are connected in series. Thus, the com-
plexity of TCoN is O

(
n2 · d

)
= O

(
n2 · d

)
+ O

(
n · d2

)
 . 

d is the representation dimension and n is the sequence 
length. O

(
n2 · d

)
 is the complex of CS-attention with n2 

for operations of every two inputs. O
(
n · d2

)
 is the com-

plex of T-GRU with d2 for sequential operation. In our 
data, the dimensionality d is smaller than the data length 
n , so that the complex of TCoN is O

(
n · d2

)
.

Results
Experimental setup
For data, we right align the time series and use padding 
and masking to make them equal in length. Each code is 
represented by a one-hot vector with 4,893 dimensions 
(number of ICD-9 codes). Training, validation, and test-
ing set is in 0.75:0.1:0.15 ratio.

For model, we set 2 local heads and 2 global heads. 
We choose α = 1 logarithmic  time decay with year 
as the decay unit. We apply Adam Optimizer [39] with 
α = 0.001 , β1 = 0.9 and β2 = 0.999 . We use the learning 

rate decay method αcurrent = αinitial · γ
global step
decay steps with decay 

rate γ = 0.98 and decay step = 2000 [40]. Before the pre-
diction task, we carry out the pre-train step and use the 
early stop with 5 epochs. We use the fivefold cross-vali-
dation. The code implementation is publicly available at 
https://​github.​com/​SCXsu​nchen​xi/​MTGRU

Baselines

•	 Time-aware methods (RNN-based methods)

•	GRU [14]. It uses GRU to embed visits and make 
the final prediction.

•	T-LSTM [8]. It uses elapsed time weight to change 
previous memory in LSTM.

•	 Co-occurrence-aware methods (Word2Vec-based 
methods)

(13)x′ = γ
x − µ√
σ + ε

+ β

(14)c = FF(b) = Relu(b ·W1 + b1) ·W2 + b2

https://github.com/SCXsunchenxi/MTGRU
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•	Med2Vec [4]. It applies the skip-gram model and 
multi-layer perceptron to get the representation of 
codes and visits.

•	Dipole [1]. It uses BRNN along with three atten-
tion mechanisms to measure the relation of differ-
ent visits for the final prediction.

Prediction results
TCoN predicts more accurately than all baselines. The 
results of binary classification (mortality, readmission, 
sepsis, and heart failure) and multi-classification (next 
diagnoses) are shown in Table  2(a, b). Baselines may 
not match EHR characteristics and partially model data 
features. For example, T-LSTM has the worst perfor-
mance as it is not suitable for short visit sequences like 
MIMIC-III.

TCoN performs well on imbalanced datasets. In binary 
classification tasks, all datasets are imbalanced, especially 
the sepsis dataset (6.16%). But the results show that the 
more imbalanced the data, the greater the advantage of 
TCoN over baselines.

TCoN can accurately predict multiple diagnoses in the 
next admission. In the multi-classification task, we evalu-
ate methods with k = 5, 15, 25, 35. As shown in Table 2b, 
as k increases, the accuracies of all methods decrease, but 
the advantage of our approach is still obvious.

Model parameters experiments
We change the dimension of representation vector in 
hidden layers. The results in Fig. 3a show that TCoN per-
forms better than other methods under all dimensions. 

Then, we set different numbers of heads for TCoN. Fig-
ure  3b shows that the number of heads = 2 is the key 
turning point.

Case study of interpretation path
We choose a patient numbered 32,790 in MIMIC-III (a 
white man with 3 admission records and died at 80) to 
describe how TCoN produces the interpretation path. 
Figure 4a is the heat map of α̂ for the death prediction. 
The diagnosis ‘hypoxemia’ contributes the most to the 
last admission as its weighted vector’s norm is the big-
gest. For ‘hypoxemia’, the closest diagnosis is ‘pulmonary 
collapse’ with the biggest α̂∗i = 0.892 . For ‘pulmonary 
collapse’, the closest diagnosis is ‘unspecified pleural 
effusion’ with the biggest α̂∗i = 0.803 . And for ‘unspeci-
fied pleural effusion’, the closest diagnosis is ‘unspecified 
sleep apnea’ with the biggest α̂∗i = 0.782 . So far, an inter-
pretation path ‘unspecified sleep apnea —>  unspecified 
pleural effusion —> pulmonary collapse —>  Hypoxemia 
—>  death’ is found as shown in Fig. 4b.

Figure 4c shows cases of interpretation paths of sepsis 
prediction and heart failure prediction. Each path is the 
summary results by using the most frequent diagnosis. 
Thus, we find sepsis-related pre-diagnoses/symptoms, 
such as ‘Fever’, ‘Chills’, ‘Immunity disorders’, ‘Anemia’ and 
‘Coma’. And we find heart failure-related pre-diagnoses/
symptoms, such as ‘Ventricular fibrillation’, ‘Myocarditis’, 
‘Coronary atherosclerosis’ and ‘Hypertension’.

Discussion
In recent years, deep learning (DL) technology has 
shown its superior performance in medical applications 
[41–44], such as medical image recognition [45] and 

Table 2  Prediction results of mortality, readmission, sepsis, heart failure and next diagnoses

Method Mortality Readmission Sepsis Heart Failure

ROC-AUC​ PR-AUC​ ROC-AUC​ PR-AUC​ ROC-AUC​ PR-AUC​ ROC-AUC​ PR-AUC​

(a) Results of binary classification prediction

GRU​ 0.7902 0.7400 0.7023 0.6713 0.6202 0.6063 0.6525 0.6187

Med2Vec 0.8025 0.7950 0.7125 0.6833 0.8211 0.7943 0.7225 0.7101

Dipole 0.8133 0.8103 0.7341 0.7243 0.8001 0.7823 0.7067 0.6923

TLSTM 0.7893 0.7392 0.7256 0.7023 0.6432 0.6189 0.7432 0.6033

TCoN 0.8224 0.8134 0.7403 0.7278 0.8433 0.8233 0.7698 0.7313

Accuracy@5 Accuracy@15 Accuracy@25 Accuracy@35

(b) Multi-classification result of next diagnoses prediction

GRU​ 0.7723 0.6298 0.5801 0.4523

Med2Vec 0.8025 0.7061 0.6250 0.5025

Dipole 0.8043 0.6514 0.6012 0.5044

TLSTM 0.7833 0.6367 0.5814 0.4515

TCoN 0.8398 0.7223 0.6577 0.5113
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medication recommendations [46]. And many methods 
have achieved good performance for specific disease 
prediction, such as Alzheimer’s disease [47], sepsis [48], 
and heart disease [49, 50]. However, most of them pur-
sue the task accuracy but ignoring the interpretability. 
DL-based approaches are black-box models, which is not 
easy to understand for non-professionals, especially doc-
tors without artificial intelligence backgrounds. Thus, the 
explainable DL method is needed. This study aims at this 
problem and puts forward a solution, interpretation path, 
to make the predictions explainable.

In EHR, the patient’s records are irregular in time due 
to the unpredictability of the diseases and inevitable data 
loss. The current disease could be more closely related 

to the disease a week ago than the disease a year ago 
[8, 9]. Thus, the time perception mechanism is needed. 
This study aims at this issue and proposes a time gate to 
explicitly learn the irregular time information by the time 
decay function.

The experiments show that using two kinds of head for 
relations of inter-visit and intra-visit is necessary. The dif-
ference between these two relations is not just the time 
interval, but also the pathology. We emphasize the code 
relations are more likely to be complications in the same 
visit, but causations and continuities among different 
visits. For example, in our experiments, the relation of 
‘diabetes’ with ‘cellulitis and abscess of legs’ in one visit 
is more prone to be a short-term complication, but the 

Fig. 3  The classification accuracy under different model parameters
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Fig. 4  Interpretation path
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relation of ‘diabetes’ and ‘long-term use of insulin’ in two 
different visits is more prone to be causation. Thus, for 
each patient, we can give a disease association graph. 
The weight of the edges between two diagnoses in the 
same admission represents the adjoint coefficient, and 
the weight of the edges between two diagnoses in differ-
ent admissions represents the causal coefficient. Figure 5 
shows the diagnosis graph case of patient 32,790.

The interpretation path is not symmetrical, which 
means α̂ij  = α̂ji . α̂ij=# of i−j occurrences

#of i occurrences  and 
α̂ji = # of i−j occurrences

# of j occurrences  , they have different denominators. 
For example, code i , j , k represent the diagnoses of 
‘malaria’, ‘fever’, ‘periodic cold fever’ respectively. In our 
experiment, i is mostly accompanied by j as α̂ij = 0.762 . 
But j is not always accompanied by i as α̂ji = 0.023 . It is 
mostly accompanied by code k with α̂ki = 0.701 . Com-
paring α̂ji and α̂ki , the results show that ‘periodic cold 
fever’ is a better explanation for ‘malaria’ than ‘fever’. In 
research [51], ‘periodic cold fever’ is a special clinical 
manifestation of ‘malaria’ and there are very few other 
diseases with this symptom. It illustrates that our inter-
pretable method can explain the results by reflecting the 
relation (such as complication, causation, and continuity) 

between the diagnoses and α̂∗i is a more important stand-
ard to find the maximum co-occurrence code for i than 
α̂i∗.

In medical applications, the data is usually imbalanced. 
The normal state of patients is the majority, while the dis-
ease records may be the small sample. But the small sam-
ple is more important for the disease prediction. Thus, a 
DL model should be robust on the imbalanced dataset. 
In this paper, our pre-train and fine-tune framework can 
help.

Further, there is room for further improvement. The 
current modeling method is based on pure EHRs data. 
Integrating prior information will make the results of 
the data relation modeling and medical prediction more 
accurate and reasonable. The available method is knowl-
edge graph embedding based on ICD code. Besides, more 
data in EHRs such as doctor notes, medications, and lab-
oratory tests can be used for better performance. Future 
work will focus on these aspects.

Conclusion
The data-driven medical prediction method based 
on interpretable deep learning is essential for health-
care management. In this paper, we propose an 

Fig. 5  Diagnosis graph of patient 32,790. Patient 32,790 has 7 visits, shown as 7 blocks with different colors. For clarity, we only show the ICD-9 
code of diagnoses in visit 3, 4. The black line represents the code relations in the same visit, the blue lines represent the code relations in different 
visits. The relation closeness is measured by the edge weight. Every edge between code i  and j  has two weights αij and αji . Three tables record the 
relations between code 995.52 (sepsis), code 427.31 (atrial fibrillation), code 274.9 (gout) with other codes
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interpretable Time-aware and Co-occurrence-aware 
Network (TCoN) for data modeling and medical pre-
diction. It can perceive hierarchical data structures 
with the time relation and the co-occurrence rela-
tion, give an interpretation path to explain the predic-
tion, and build a diagnosis graph for every patient. The 
experiments show that TCoN outperforms the state-of-
the-art methods.
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