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Abstract 

Background:  Undernutrition is the main cause of child death in developing countries. This paper aimed to explore 
the efficacy of machine learning (ML) approaches in predicting under-five undernutrition in Ethiopian administrative 
zones and to identify the most important predictors.

Method:  The study employed ML techniques using retrospective cross-sectional survey data from Ethiopia, a 
national-representative data collected in the year (2000, 2005, 2011, and 2016). We explored six commonly used ML 
algorithms; Logistic regression, Least Absolute Shrinkage and Selection Operator (L-1 regularization logistic regres-
sion), L-2 regularization (Ridge), Elastic net, neural network, and random forest (RF). Sensitivity, specificity, accuracy, 
and area under the curve were used to evaluate the performance of those models.

Results:  Based on different performance evaluations, the RF algorithm was selected as the best ML model. In the 
order of importance; urban–rural settlement, literacy rate of parents, and place of residence were the major determi-
nants of disparities of nutritional status for under-five children among Ethiopian administrative zones.

Conclusion:  Our results showed that the considered machine learning classification algorithms can effectively pre-
dict the under-five undernutrition status in Ethiopian administrative zones. Persistent under-five undernutrition status 
was found in the northern part of Ethiopia. The identification of such high-risk zones could provide useful information 
to decision-makers trying to reduce child undernutrition.

Keywords:  Composite index for anthropometric failure (CIAF), Confusion matrix, Covariate selection and ranking, 
Multicollinearity, Receiver operating characteristics (ROC)
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Background
Proper nutrition is so crucial to lead a healthy lifestyle. 
Malnutrition, particularly undernutrition, is a global 
concern for the health condition and survival of children 
[1–5]. Almost half of the deaths of children in developing 

countries were directly or indirectly linked to malnutri-
tion [3, 6]. Malnourished children are more vulnerable 
to different illnesses compared to their counterparts [1–
6]. A considerable number of studies investigating the 
issue targeting under-five children malnutrition and the 
risk factors associated with this age group. These stud-
ies employed classical models such as generalized linear 
(mixed) models [4, 5, 7–10]. The finding from the investi-
gations, among others, showed that the nutritional status 
of children of this age group has gradually improved over 
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the last 2 decades in Ethiopia. Particularly, it has been 
found that the prevalence of under-five children under-
weight in Ethiopia was 47.1% in 2000, 38.5% in 2005, 
28.8% in 2011, 23.3 in 2016, and 20.56% in 2019, while the 
prevalence of stunting was 51.22% in 2000, 46.5% in 2005, 
44.3% in 2011, 38.3% in 2016, and 36.9% in 2019. Simi-
larly, 10.7% of under-five children were wasted in 2000, 
10.5% in 2005, 9.9% in 2011, 10.1% in 2016, and 7% in 
2019. The prevalence of having at least one of the under-
nutrition indicators measured in terms of the composite 
index for anthropometric failure (CIAF) was 61.38% in 
2000, 56.58% in 2005, 51.58% in 2011, 46.49% in 2016, and 
42.4 in 2019. Moreover, the CIAF is computed by group-
ing different forms of anthropometric failure as such: 
B-wasting only, C-wasting and underweight, D-wasting, 
stunting and underweight, E-stunting and underweight, 
F-stunting only, and Y-underweight only. The CIAF, 
calculated by aggregating these six (B–Y) categories 
[11–15]. Most of such studies conducted in this country 
depicted the effects of socio-economic and demographic 
covariates that were associated with under-five children 
undernutrition status using the classical regression mod-
els [4, 5, 7, 8]. Those traditional models are widely used 
for causal inferences and with the selection of built-in 
features, with a relatively small number of covariates [16, 
17]. Correlations between covariates (multicollinearity) 
and a large number of factors are the common analytical 
challenges in traditional modeling [18–21]. Moreover, as 
compared to those classical models, the machine learn-
ing (ML) methods have the qualities of using a larger 
number of predictors, requiring fewer assumptions, 
incorporating “multi-dimensional correlations”, and pro-
ducing a more flexible relationship among the predictor 
variables and the outcome variables [16–18, 20–22]. In 
addition, the ML models can create models for predic-
tion purposes that show superiority in taking care of 
classification problems when compared with the classi-
cal approaches [16–18, 21, 23]. In the present paper, we 
focused to predict CIAF in Ethiopia using this tool draw-
ing on the nationally representative data. Machine learn-
ing employs methods developed within the disciplines of 
statistics, computer sciences, mathematics, and artificial 
intelligence which allow the formation of algorithms that 
can learn from and make predictions using data [24–29]. 
As such, it is applicable in different disciplines, such as 
in medical sciences; for diagnosis and outcome predic-
tion [23, 30–44], disease modeling [33], disease predic-
tion [34–37], child mortality [23, 38], and it is also used 
in industrial applications [39–41]. Just only a few studies 
had investigated the role of this tool to create prediction 
models of childhood for malnutrition [42–44]. Moreo-
ver, the study is conducted at the administrative zones in 
Ethiopia. This is because, in the country, the zonal health 

departments have the mandate to plan, follow up, moni-
tor, and evaluate health activities of Woreda health offices 
and the different Woredas in the same Zone are relatively 
similar in many respects. Moreover, the administrative 
Zones are mainly ethnic-based, and the assessment of the 
Zones provides cultural practices regarding staple food 
and the geographic environment of the community in the 
Zones [45–48]. Hence detecting the problems of under-
nutrition and its variations among administrative Zones 
provides deeper insight into the health priorities which 
helps policymakers to design focused intervention strate-
gies. The main objective of this study was, therefore, to 
identify ML algorithms in predicting and identifying the 
important covariates that underline the spatial variations 
in childhood CIAF among 72 Ethiopian administrative 
zones.

Materials and methods
This study was carried out on the disparities of malnutri-
tion in Ethiopia, with a surface area of 1.1 million km2, 
the country shares borders with Eritrea in the north, 
Djibouti and Somali in the east, Sudan and South Sudan 
in the west, and Kenya in the south. It is divided into 11 
administrative units (regions) including Addis Ababa, 
the capital city of the country. The regions were further 
divided into 72 second-level administrative boundaries 
called zones [49] (Fig. 1).

Data sources and analysis tools
We conducted the analysis based on the four EDHS data-
sets (2000, 2005, 2011, and 2016), a nationally representa-
tive household survey developed by the United States 
Agency for International Development (USAID) in the 
1980s [50]. The outcome variable that we aimed to predict 
is the undernutrition status of under-five children meas-
ured in terms of the composite index for anthropometric 
failure (CIAF). CIAF is measured as a binary response as 
being nourished (coded as 0) and undernourished (coded 
as 1). The covariates (features) were collected from dif-
ferent pieces of literature [4, 5, 7–10]. All the categorical 
features are converted to numerical dummy variables, by 
mapping each unique value to a number [4, 5, 7–10]. The 
boundaries (shapes) were used to define the second-level 
administrative zones and merged with the real dataset for 
analysis [51].

Methodology
Model building The ML models have shown superiority 
in taking care of classification problems when compared 
with the traditional models (like generalized linear mixed 
models). The raw data are usually not found in the form 
and shape that is required for optimal performance of 
the machine learning algorithms. The algorithms that 
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would be implemented in ML are only numerical values 
and therefore it is important to transform the categorical 
variables into numerical values. Hence, the preprocess-
ing step is the most important aspect in the ML model 
applications [21, 23, 52–54]. The categorical features of 
the dataset are encoded to transform these features into 
numerical values and the continuous data in this study 
were normalized. For ML approaches, the dataset is ran-
domly split into two: a training dataset which trains the 
model, and a test dataset where we predict the response 
variable and check whether the predicted outcome is 
similar to the actual outcomes, and the validation dataset 
is considered for the parameter estimates to be incorpo-
rated in the training models [24–29]. Influence of differ-
ent training and testing ratios on the performance of the 
given ML models were checked. This study (train/test: 
80/20, and 70/30) was implemented to divide the datasets 
into the training and testing datasets for performance 
assessment of models. Popular statistical indicators have 
been employed to evaluate the predictive capability of 
the models under different training and testing ratios. 
The results revealed that the train-test 70–30% split were 
more advantageous to undernutrition classification than 
their counterparts (80/20). A variety of supervised ML 
algorithms including Logistic Regression (LR) [55], Ridge 
regression [56], Least Absolute Shrinkage and Selection 
Operator (LASSO) regression [57], Elastic Net [27, 58], 
Artificial Neural Network (ANN) [59, 60] and Random 
Forest (RF) [27, 61] were included in the analysis.

The Ridge, Lasso, and Elastic Net are very simi-
lar to LR, except that we have an additional penalty 
term called regularization to estimate the regression 

coefficients [26, 27] to reduce the over-fitting and the 
adverse effects of multicollinearity [26–28, 62]. The 
advantage of ridge, lasso and elastic net modeling over 
the classical statistical methods is that, in addition to 
fitting optimized models, a penalty is applied to predic-
tors in the model, causing covariates with little impact 
on the outcome variable to be minimized or dropped 
from the final model. This reduces the model’s com-
plexity while increasing its generalizability.

Logistic regression (LR) LR is a widely applied statistical 
model for classification problems. This model applies the 
maximum likelihood estimation procedure to estimate 
the parameter of interest. Let yi be the response variable 
for the ith child, and it is Bernoulli distributed and takes 
on the value 1 with a probability of πi = P(yi = 1|xi) , 
where xi =

(

x1, ..., xp
)T is the ith child’s covariate vec-

tor, and value 0 with probability 1 − πi . Then the logistic 
regression model with the logit link function can be given 
as:

where β0 is the intercept term, and β =
(

β1, ...,βp
)T is a 

p × 1 vector of estimated regression parameters on the 
logit scale. If parameter θ = (β0,β)

T , then the corre-
sponding log-likelihood function is given by the follow-
ing equation as it was also shown by [55]:

(1)πi =
exp

(

β0 + x
T
i β

)

1+ exp
(

β0 + x
T
i β

)

(2)lθ =

n
∑

i=1

[

yi log (πi)+
(

1− yi
)

log (1− πi)
]

Fig. 1  Map of Ethiopia with regions and zones: A the 11 regions of the country and B the 72 administrative zones
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By replacing πi from Eq. 1 in Eq. 2, we have:

In the maximum likelihood method, the goal is find-
ing a set of θ that can maximize Eq. (3). When we have a 
large number of features (dimensionality), the traditional 
LR has a few problems: over-fitting, multicollinearity, and 
computational difficulties. To address this problem, we 
used regularization which is a GLM that imposes a pen-
alty on the parameters to shrink towards zero [27, 55–58, 
63].

The ridge regression (L2 regularization, which shrinks 
coefficients of correlated covariates towards each other) 
is obtained by maximizing the function with a penalized 
parameter � applied for all the parameters except the 
constant (intercept) [55, 56]. The penalized likelihood 
formulation for ridge regression is given by (4)

When the λ values are too large (λ → ∞), the coef-
ficients of all the parameters tend to be zero, but when 
λ = 0, the ridge regression is equal to the traditional 
approach.

The LASSO regression uses the L-1 penalty for variable 
selection and shrinkage. As such, if the � is large enough, 
it forces the coefficient to be zero which provides a lesser 
number of predictors [57]. The function for the lasso 
regression is given by (5)

The term � allows the lasso model to carry out much 
iteration for a given function and find the optimum val-
ues for all coefficients. The optimal regularization param-
eter ( � ) was determined using the nfold cross-validation 
techniques. The smaller the � value, the more the effect of 
regularization upon the number of covariates (features) 
in the model and their respective coefficients [26–28]. 
Thus, variables with non-zero estimates are considered 
the important covariates for the outcome variable of 
interest.

The elastic net regularization is a combination of 
both (3) and (4) penalties [27, 58]. This method can 
effectively control the group of correlated features and 
also shrink the coefficients of non-informative features 
to zero [27, 58, 63, 64]. The elastic net regression is 
given by (5)

(3)

lθ =

n
∑

i=1

[

yi

(

β0 + x
T
i β

)

− log
(

1+ exp(β0 + x
T
i β

)

)

]

(4)

lR
�
(β) =

n
∑

i=1

[

yi

(

x
T
i β

)

− log
(

1+ exp(xTi β
)

)

]

− �

p
∑

j=1

β2
j

(5)

lL
�
(β) =

n
∑

i=1

[

yi

(

x
T
i β

)

− log
(

1+ exp(xTi β
)

)

]

− �

p
∑

j=1

∣

∣

∣
β j

∣

∣

∣

All the ML algorithms including the logistic regres-
sion were performed with R statistical software R and 
the packages glmnet, pROC, caret, random forest, 
ggplot, and ROCit were included in the analysis [65–
69]. In this paper, we trained the generalized linear 
model (GLM) estimators with common α values from 
the set {0, 0.5, 1} , where ( α = 0.0, 0.5 and 1.0 respectively 
refers to the ridge, elastic net and lasso penalty) [27, 58, 
63].

The Random forest (RF) is the popular supervised 
ML approach in applied statistics because of its appli-
cability in both classification and regression [70–72]. 
It is also used for variable screening for dimension 
reduction. It is a “tree-based” technique in which sev-
eral decision trees are constructed from a random set 
of covariates and used to predict an outcome label for 
a subset of samples. It builds multiple trees (called the 
forest) and the decision is based on the majority votes 
over all the trees in the forest [70–73].

The Neural Network (NN) is a type of ML algorithm 
that is made up of layers of nodes, the most important 
of which are an input layer [74], hidden layers, and out-
put layers. It is set up with several input neurons (X) 
that represent the information extracted from each fea-
ture in the dataset. Back-propagation is a process used 
in recurrent NN in which prediction errors are fed back 
through the NN before modifying the weights of each 
neural connection until the error level is minimized 
[59, 60].

Model evaluation
Model performance The performances of the given 
ML models are evaluated using different model per-
formance approaches including sensitivity, specificity, 
and accuracy [24–29, 75] which are calculated using 
the observed data as the gold standard. The model sen-
sitivity and specificity relationship are expressed using 
the Receiver operating characteristics (ROC) curves 
(Fig. 2).

All the curves which are plotted to the left of the 
diagonal line are performing better than chance. The 
area under each curve (AUC) gives an aggregated value 
which explains the probability that a random sample 

(5)

lElα (β) =

n
∑

i=1

[

yi

(

x
T
i β

)

− log
(

1+ exp(xTi β
)

)

]

+ α

p
∑

j=1

β2
j + (1− α)

p
∑

j=1

∣

∣

∣
β j

∣

∣

∣

y = activation
(

∑

(weight + input
)

+ bias)
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would be correctly classified by each of the ML algo-
rithms [25, 76]. The AUC of the ROC curve averaged 
over 10 cross-validation folds (ten repeats) [25], which 
partitions the original sample into ten disjoint subsets, 
uses nine of those subsets in the training process, and 
then makes predictions about the remaining subset. 
Then the identified best-fit model is used to predict the 
undernutrition in another dataset, known as the test 
dataset [24–29].

Covariate selection and ranking Covariate selection 
is very important for prediction and interpretations, 
especially for high-dimensional datasets. To assess the 
importance of predictors in the selected model, the study 
employed two important measures; Mean Decreases 
Accuracy (MDA) and Mean Decrease Gini (MDG). The 
highest decrease in the accuracy and Gini values of the 
model implies the best predictive and the most important 
variable respectively [77] for the successful classifications 
(Table 1).

Results
This analysis consisted of data from 29,333 children of 
age 0–59 months. Of these, 15,281 (52.09%) had at least 
one form of the undernutrition indicators (stunting, 
wasting, and underweight) measured in terms of CIAF. 
We examined the prevalence of CIAF of U5C experi-
ence across different child and mother-household level 

covariates. The prevalence of CIAF was more com-
mon among parents with no formal education com-
pared to parents with secondary and post-secondary 
levels of educations. Most of the undernourished chil-
dren were from rural areas. Also, the prevalence of 
undernourished children was reported from the lower 
wealth index of households, from mothers having no 
media exposure, from unimproved toilets and sanita-
tion compared with their counterparts. Covariates that 
were significant in the Chi-square statistics were used 
to develop the ML algorithms on the training dataset 
(Table 2).

Figures in the supplementary documents indicated the 
effects of different levels of the log of the regularization 
parameter ( � ) for the ridge, elastic net, and lasso regres-
sion using the dotted vertical lines (here at x = − 4.51, 
x = − 7.84, and x = − 8.71) respectively, which indicates 
the accuracy of the prediction maximization. The coef-
ficients for the given model features were indicated for 
different values of log ( � ) that minimizes a mean squared 
error (MSE) of coefficients established during the cross-
validation. The graph shows that as the log ( � ) value 
decreases, the number of the variables included in the 
model (those with nonzero coefficients) increases (Addi-
tional file 1).

Performance comparisons The accuracy and AUC were 
implemented to evaluate the efficiency of ML algorithms. 

Fig. 2  Overview flow chart of the methodologies used



Page 6 of 12Fenta et al. BMC Med Inform Decis Mak          (2021) 21:291 

The comparison of the efficiency of ML algorithms with 
the traditional LR was depicted in Fig. 3 and Table 3. All 
the ML algorithms considered in this study perform bet-
ter than those of the classical logistic regression model to 
predict the undernutrition status. More detail is given in 
the Additional file 1.

A comparison of 70% training and 30% validation, 80% 
training and 20% validation was performed respectively 
to examine the six models’ behaviors with some statisti-
cal measures and area under the receiver operating char-
acteristic curve. Although all the models with the two 
train-test splits ratio had almost identical performances 
evaluation metrics, the 70–30% split was chosen as the most 

Table 1  The description of the response variable and the respective covariates included in the model

Descriptions

Childhood undernutrition using CIAF (outcome variable)
yi =

{

1 : if a child i had at least one form of undernutrion (CIAF)
0 : if child i is nourished

Children level covariates

Sex Sex of a child (female vs male)

Age (months) Age of a child in months

Vitamin A (VA) Yes/no

Birth order (BO) 1, 2–3 4 + (birth order number)

Breastfeeding (BF) Yes/no

Child comorbidity status (CO) (Presence of diarrhea, fever, ALRI in last 2 weeks before the survey): (No vs yes)

Types of birth (TB) (Multiple vs singleton)

Size of the child at birth (SC) (Smaller than average, average, larger than average)

Dietary diversity score (DDS) Below minimum requirement/ minimum requirement

Maternal/household-level covariates

Mother’s age 15–24, 25–34 and 35–49 (respondents current age 15–49)

Residence (PR) Rural/urban

Mother’s educational level (ME) No formal education, primary and secondary and above

Father’s educational level (FE) No formal education, primary and secondary and above

Women’s autonomy tertiles (WA) Low, medium, and high

Toilet facility (TF) Improved and unimproved

Source of drinking water (SDW) Improved and unimproved

BMI Body mass index of mothers (< 18.5 kg/m2, 18.5–24.9 kg/m2 and ≥ 25 kg/m2)

Number of children under five (NUFC) Number of children under the age of 5 (0–1, 2, 3 or more)

Survey year (SY) Years of the survey (2000, 2005, 2011, and 2016)

Media exposure Yes/no

Working status of the mother (WS) Not working/working

Household size < 4, 5–9, 10 + (continuous)

Wealth quantile (WQ) Poorest, poor, middle, richer, and richest

Geospatial covariates

Precipitation (precp) The average precipitation measured within the 10 km (rural) or 2 km (urban)

Aridity index The ratio of annual precipitation to annual potential evapotranspiration (10 km × 10 km)

Evaporation Global elevation above earth’s sea level

Maximum temperature (MaxT) The average annual maximum temperature within the 10 km (rural) or the 2 km (urban)

Minimum temperature (MinT) The average annual minimum temperature within the 10 km (rural) or the 2 km (urban)

Potential evaporation (pet) The average annual pet within the 10 km (rural) or the 2 km (urban)

Proximity to water (proxtmty) Straight-line distance to the nearest major water body

Urban–rural settlement (UR) This is the urban–rural population classification of the area within the 10 km (rural) or 
the 2 km (urban)

Population density (popD) Estimates of human population density is the number of persons/km2

Enhanced vegetation index (EVI) The average vegetation index value within the 10 km (rural) or the 2 km (urban)

Cluster altitude (Alt) Cluster altitude

Wet days (WetD) The average number of days receiving rainfall within the 10 km (rural) or 2 km (urban)
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Table 2  Sample characteristics (n = 29,333)

Variables Categories Nourished (%) CIAF (%) X2 test statistic p values

Sex of child Male 44.74 55.26 29.96 < 0.001

Female 47.93 52.07

Age of a child (months) < 23 55.40 44.60 652.83 < 0.001

24–59 40.25 59.78

Vitamin A Yes 43.75 56.25 75.02 < 0.001

No 48.79 51.21

Birth order 1 50.36 49.64 67.89 < 0.001

2–3 47.55 52.45

4 +  44.17 55.83

Breastfeeding Yes 46.21 53.79 0.14 0.707

No 46.59 53.41

Comorbidity Yes 43.17 56.83 58.25 < 0.001

No 47.88 52.12

Size of the child at birth Smaller than average 46.30 53.7 268.357 < 0.001

Average 48.06 51.94

Larger than average 50.9 49.10

Dietary diversity score (DDS) Below minimum 46.56 53.44 2.432 0.349

Minimum 45.51 54.49

Types of birth Singleton 46.62 53.38

Multiple 29.17 70.83

Mother’s age 15–24 48.51 51.49 31.06 < 0.001

25–34 46.46 53.54

35–49 43.91 56.09

Place of residence Rural 44.61 55.39 285.50 < 0.001

Urban 60.58 39.42

Mother’s education No formal education 42.98 57.02 510.57 < 0.001

Primary 51.81 48.19

Secondary and above 69.85 30.15

Father’s education No formal education 41.09 58.91 475.61 < 0.001

Primary 49.68 50.32

Secondary and above 59.81 40.19

Woman’s autonomy tertiles Low autonomy 44.11 55.89 49.84 < 0.001

Middle autonomy 47.60 52.40

High autonomy 48.84 51.16

Source of drinking water Unimproved 44.77 55.23 20.04 0.009

Improved 47.41 52.59

Toilet facilities Unimproved 41.29 58.71 442.18 < 0.001

Improved 53.77 46.23

BMI Underweight 40.46 59.54 278.85 < 0.001

Normal 46.85 53.15

Overweight 66.01 33.99

Household number Less than 4 48.42 51.58 18.74 0.017

5–9 45.48 54.52

≥10 47.22 52.78

Number of under-five children in HH 1 47.19 52.81 62.44 < 0.001

2 44.23 55.77

3 or more 50.43 49.57

Media exposure No 43.03 56.97 205.71 < 0.001

Yes 51.63 48.37
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appropriate model to undernutrition classification. Moreo-
ver, it was noticed that the prediction model based on RF 
demonstrated the best-performed model, with AUC up to 
0.761, followed by LASSO (AUC = 0.717), while the perdi-
tion model using the traditional model (LR) is the least effi-
cient (AUC = 0.653). Hence RF model was chosen as the 
classification engine to construct the perdition model for 
under-five undernutrition in Ethiopian administrative zones 
(Table 3).

In machine learning prediction, identifying important 
attributes is also crucial. The importance of each aspect 
for a tree’s decision is represented by feature importance 
rates. The random forest (best algorithm for childhood 
undernutrition in our study gives the MDA and MDG 
measures of the relative importance of covariates in 
the model which are summarized in Fig.  4. The factors 
include urban–rural settlement (ur), the total number of 
under-five population, the BMI, literacy rates of parents 

Table 2  (continued)

Variables Categories Nourished (%) CIAF (%) X2 test statistic p values

Mother’s working status Unemployed 48.14 51.86 65.67 < 0.001

Employed 43.27 56.73

Wealth quintile Poorest 40.31 59.69 343.16 < 0.001

Poorer 42.56 57.44

Middle 45.92 54.05

Richer 48.56 51.44

Richest 56.67 43.33

EDHS 2000 38.81 61.19 394.42 < 0.001

2005 43.62 56.38

2011 48.54 51.46

2016 53.34 46.66

Fig. 3  ROC curves for LR, L-1 regularization, L-2 regularization, elastic 
net regularization, ANN, and RF in predicting undernutrition among 
under-five children

Table 3  The performance of the prediction models based on different classifications on the independent tests for two ratios

Train/test ratios Algorithms Sensitivity Specificity Precision F1 AUC (95% CI) Accuracy (95% CI)

80/20 GLM 0.585 0.169 0.399 0.475 0.630 (0.619, 0.641) 0.371 (0.359, 0.383)

Ridge 0.503 0.789 0.683 0.580 0.699 (0.686, 0.713) 0.645 (0.633, 0.658)

Lasso 0.484 0.814 0.711 0.576 0.711 (0.698, 0.724) 0.654 (0.641, 0.666)

elastic-net 0.484 0.802 0.697 0.572 0.701 (0.689, 0.714) 0.647 (0.635, 0.660)

NN 0.499 0.785 0.686 578 0.697 (0.684, 0.711) 0.646 (0.634, 0.658)

RF 0.524 0.819 0.732 0.611 0.756 (0.744, 0.769) 0.676 (0.663, 0.688)

70/30 GLM 0.601 0.189 0.361 0.445 0.653 (0.639, 0.667) 0.356 (0.344, 0.369)

Ridge 0.510 0.804 0.743 0.604 0.703 (0.690, 0.717) 0.649 (0.636, 0.661)

Lasso 0.516 0.819 0.698 0.593 0.717 (0.704, 0.730) 0.683 (0.671, 0.695)

Elastic-net 0.527 0.824 0.717 0.608 0.720 (0.707, 0.733) 0.682 (0.670, 0.694)

NN 0.499 0.785 0.751 0.621 0.701 (0.688, 0.715) 0.656 (0.644, 0.668)

RF 0.524 0.819 0.715 0.595 0.761 (0.749, 0.773) 0.688 (0.676, 0.700)
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and zones were the most important predictors of CIAF, 
but household size, age of mother, parity, and autonomy 
were the lowest predictive variables in our model (Fig. 4).

The predicted values with the actual values of undernu-
trition among the 72 administrative areas were mapped in 
Fig. 5. Having the best predictive model (RF) that yielded the 

highest AUC, we further predicted the undernutrition sta-
tus of under-five children by the administrative zones. Both 
the crude and predicted undernutrition values were merged 
with the second-level administrative level (zones) shapefiles. 
A visual comparison confirms that while discrepancies did 
exist between few zones, the overall patterns of the observed 

Fig. 4  Relative Variable importance from the best model (random forest)

Fig. 5  mapping the predicted and actual prevalence of undernutrition outcomes based on the test data
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prevalence were in line with the patterns of the predicted 
prevalence of undernutrition. The degrees of agreement 
between the actual and predicted values indicated that the 
two variables are strongly correlated. Moreover, the third 
map reveals that the difference. Further, it is between the 
crude and predicted CIAF of U5C in some zones that have a 
positive difference indicated that the crude prevalence is less 
than the predicted value and vice versa (Fig. 5).

Discussions
Previous studies carried out on this subject reported that 
Ethiopia is one of the countries with the highest number of 
under-five undernourished children in the world [2, 4, 8, 78, 
79]. Further, the studies indicated that, while the prevalence 
of under-five undernutrition has declined in the nation from 
time to time, more effort is needed to facilitate this decline 
and to contain the negative consequences of the phenom-
ena. In this study, we briefly described spatial disparities in 
under-five undernutrition and predicted under-five under-
nutrition among Ethiopian administrative zones. The spatial 
maps show evidences of considerable zonal disparities in 
under-five undernutrition rates in the administrative zones 
similar to what has been reported in different countries 
[80–82]. The continuous data in this study were normalized 
and the categorical variables were encoded. The machine 
learning models are known as advanced approaches and 
techniques for quick and accurate prediction of real-world 
problems. In this paper, the ML techniques are analyzed by 
investigating the influence of training/testing ratio on the 
performance of the six popular ML models to predict the 
undernutrition of under-five children. The performance of 
the ML models was slightly changed under the two differ-
ent ratios. The result revealed that the ratio 70/30 was the 
most suitable ratio for the training and validating ML mod-
els. This study is in line with previously published studies 
[18, 23, 30–44, 83–86]. The ML tool can offer insight into 
the identification of novel factors associated with under-
five undernutrition that can serve as targets for interven-
tion. Among the six predictive models built using these 
techniques, the Random Forest (RF) model reveals a higher 
predictive power as compared to other ML models includ-
ing the logistic regression. The RF model reveals that 
urban–rural settlement ratio, the literacy level of parents, 
under five populations, BMI of mothers, locations (zones, 
place of residence), and rainfall distributions were the top 
important predictors of under-five undernutrition in Ethio-
pia. This study is consistent with previous studies [4, 42, 79, 
81]. Moreover, the selected ML algorithm reveals consistent 
effects of the covariates with the classical generalized linear 
model which shows that the educational level of parents, the 
age of the child, sex of the child, birth order, dietary diver-
sity, types of the birthplace of residence, women’s autonomy, 

household sanitation, and a clean water supply were the 
most significant variables for undernutrition [4, 6, 7, 10, 21, 
79–82]. The child’s residence (zones) was one of the impor-
tant risk factors for the U5C CIAF rate which varied sig-
nificantly across spatial zones. Moreover, this paper briefly 
explored the spatial variation in under-five child undernutri-
tion and the predicted under-five undernutrition risk factors 
in Ethiopia using the different machine learning approaches. 
Hence, we explored a spatial map for the crude prevalence 
and predicted (from RF) rate of under-five undernutrition 
by zones in Ethiopia to document the zonal disparities in 
under-five undernutrition in the country.

Limitations
Since there are no regression coefficients and no direc-
tional effects in ML algorithms, the parameters are dif-
ficult to be interpreted [21, 23, 87]. In the current study, 
ML models only predict or classify certain variables 
depending on the importance of their contribution in 
determining under-five undernutrition instead of causal 
inferences. More types of classification ML algorithms 
could also have been used [21, 23, 28, 38, 59].

Conclusions
The main objective of this study was to compare and 
evaluate the performance of different machine learning 
(ML) algorithms considering the influence of two train-
test splits ratios in predicting the undernutrition under-
five classification. Popular statistical indicators, such 
as accuracy and area under the curve were employed to 
evaluate the predictive power of the ML models under 
different testing and training ratios. The higher the accu-
racy the model had, the better was the performance of the 
model. Our results confirm that ML models can effec-
tively predict the under-five undernutrition status and 
hence may be useful for concerned body decision tools. 
The best model was the RF, with accuracy and AUC of 
(68.2%, 76.2%) respectively. The findings from this paper 
showed that considerable zonal disparities in the under-
five undernutrition status persist in the northern part of 
Ethiopia. When implementing health policies aimed at 
the redaction of child undernutrition in Ethiopian admin-
istrative zones, the zone characteristics must be taken 
into account.
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