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Abstract 

Background:  Epilepsy is a neurological disorder from which almost 50 million people have been suffering. These sta-
tistics indicate the importance of epilepsy diagnosis. Electroencephalogram (EEG) signals analysis is one of the most 
common methods for epilepsy characterization; hence, various strategies were applied to classify epileptic EEGs.

Methods:  In this paper, four different nonlinear features such as Fractal dimensions including Higuchi method (HFD) 
and Katz method (KFD), Hurst exponent, and L-Z complexity measure were extracted from EEGs and their frequency 
sub-bands. The features were ranked later by implementing Relieff algorithm. The ranked features were applied 
sequentially to three different classifiers (MLPNN, Linear SVM, and RBF SVM).

Results:  According to the dataset used for this study, there are five classification problems named ABCD/E, AB/CD/E, 
A/D/E, A/E, and D/E. In all cases, MLPNN was the most accurate classifier. Its performances for mentioned classification 
problems were 99.91%, 98.19%, 98.5%, 100% and 99.84%, respectively.

Conclusion:  The results demonstrate that KFD is the highest-ranking feature; In addition, beta and theta sub-bands 
are the most important frequency bands because, for all cases, the top features were KFDs extracted from beta and 
theta sub-bands. Moreover, high levels of accuracy have been obtained just by using these two features which reduce 
the complexity of the classification.
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Introduction
The human brain is a complex system and displays tem-
porally intricate dynamics. One way to observe the 
brain’s activity is Electroencephalography. In fact, EEG 
signals are the recording of the brain’s electrical activity 
and are used by clinicians in the diagnosis of neurologi-
cal disorders [1]. Epilepsy is one of the most prevailing 
neural diseases and almost fifty million people worldwide 
suffer from it [2]. Abnormal electrical discharges of a 
group of neurons in the brain are the cause of seizures. 

Therefore, EEG signals have valuable information about 
this disorder. Detecting abnormality in EEGs is a critical 
issue in the diagnosis process. Since visual inspection is 
not a proper and reliable method to detect abnormality in 
EEGs, various methods are presented to extract impor-
tant features. Different kinds of strategies were used to 
analyze EEG data. The prevalent techniques are temporal 
and spectral analysis, and nonlinear methods [3]. Altu-
nay et al. have applied the linear prediction error energy 
method to find seizures in EEGs. They have asserted 
that this approach can be used as an index for epilep-
tic seizures in EEG signals [3, 4]. Ghosh-Dastidar et  al. 
have used Principal Component Analysis (PCA) to clas-
sify epileptic EEGs. They proposed a model that could 
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achieve high accuracy (99.3%) [3, 5]. Acharya et al. have 
used PCA with different classifiers. They obtained 99% 
classification accuracy using the Gaussian Mixture Model 
(GMM) classifier [3, 6]. Subasi and Gursoy have imple-
mented PCA, Independent Component Analysis, and 
Linear Discriminant Analysis for EEGs classification [3, 
7]. Lekshmi et  al. utilized PCA with wavelet transforms 
for EEG signal classification [8]. Sharma et  al. used the 
wavelet-statistical features method to detect non-convul-
sive seizures [9]. Ocak has presented an approach based 
on wavelet transform to classify epileptic seizures in 
EEG [3, 10]. A deep learning-based method was applied 
by Hussein et al. in order to detect seizures [11]. Raghu 
and Sriraam proposed a method based on neighborhood 
component analysis for the classification of focal seizures 
[12]. Mutlu employed Hilbert vibration decomposition 
for epilepsy diagnosis [13]. Yuan et al. used Diffusion Dis-
tance and Bayesian Linear Discriminate Analysis for pre-
dicting the seizures [14].

Amongst a wide spectrum of methods used for signal 
analysis, nonlinear dynamics based techniques are of 
great importance and have prominent information about 
brain signals due to EEGs’ nonlinearity and complexity. 
Kannathal et  al. claim that entropy estimators can dif-
ferentiate between normal and abnormal EEG data with 
the proper level of accuracy [3, 15]. Chua et al. [16] and 
Acharya et al. [17] applied Higher-Order Spectral (HOS) 
parameters for epilepsy detection [3]. The multi-fractal 
analysis was implemented for seizure detection [18]. Li 
et al. employed Fractal spectral analysis for epilepsy diag-
nosis [19]. Geng et al. extracted some nonlinear features 
(Correlation Dimension (CD), Hurst Exponent (HE), and 
Approximate Entropy (ApEn)) from healthy and epileptic 
EEGs. They declared that CD and HE are helpful in expli-
cating epileptic EEG and interictal EEG [20]. Guler et al. 
have presented an algorithm using Lyapunov exponents 
for classifying EEGs [21].

In this study, nonlinear measures such as KFD, HFD, 
Hurst Exponent, and Lempel–Ziv complexity have been 
applied to the EEGs and brain rhythms. Relieff algorithm 
was used to select the best features and the classification 
was performed by three different classifiers (MLPNN, 
linear SVM, and RBF SVM). The main goal of this study 
is to achieve high levels of accuracy in the epileptic EEG 
data classification by using a few features. Besides, the 
most informative EEG rhythms and nonlinear features 
and also the best classifier for detecting epilepsy in EEGs 
have been determined.

Data set
The data set used for this study is publicly available online 
in [22] and comprises five collections signified A–E, every 
category consists of 100 single-channel EEG segments. 

The duration and sampling frequency of each segment 
are 23.6  s and 173.61  Hz respectively. The segments of 
collection A and collection B have been recorded from 
5 normal subjects using 10–20 electrode system, while 
they were awake and relaxed with eyes open (A) and eyes 
closed (B). Group C consists of five patients’ recordings 
in seizure-free intervals from the epileptogenic zone, and 
group D corresponds to the hippocampal formation of 
the opposite hemisphere. Collection E is composed of 
EEG signals with seizure activity. The typical example 
of each EEG set is depicted in Fig. 1. More information 
about the data set is available in [23].

Methods
Classification problems
Considering these five collections, five different sub-
problems including two 3-class and three binary clas-
sification problems were designed. These problems 
are of great practical significance and are frequently 
used in several research papers related to epileptic EEG 
classification.

1.	 ABCD/E
2.	 AB/CD/E
3.	 A/D/E
4.	 A/E
5.	 D/E

Brain rhythms
Since features will be extracted from four sub-bands, 
four different waves named delta rhythm (0.5–4  Hz), 
theta rhythm (4–8  Hz), alpha rhythm (8–14  Hz), and 
beta rhythm (14–30 Hz) were extracted from the original 
signal. Fourth-order Butterworth band-pass filters were 
used to extract desired frequency sub-bands. Figure  2 
illustrates these waves for an EEG data sample from col-
lection A.

Nonlinear features
Fractal dimension
Fractal Dimension (FD) is a nonlinear measure which is 
used to analyze time series or biomedical signals. Generally, 
the fractal is a geometric concept referring to a set of points 
that has self- similarity. Fractal shapes are complex and 
have a non-integer dimension. FD can be calculated based 
on time-domain analysis or phase space domain analysis. 
Since phase space-based methods are very slow and time-
consuming [24], we tend to apply time-domain approaches. 
In this paper, the methods presented by Higuchi and Katz 
have been reviewed and applied to EEG signals.
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Higuchi fractal dimension (HFD)
Consider T as a temporal signal

afterwards, p novel temporal signals are defined as 
follows:

T = T(1), T(2), T(3), . . . , T(Y)
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f shows the value of the beginning moment and p repre-
sents time intervals.

The average length is computed for all temporal signals 
and called Af and the mean value of that (A(p)) is com-
puted for p = 1,2,3,…, ps. ps is the saturation point. For 
the current paper, two different values are considered for 
ps.
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Fig. 1  Typical example of five collections (A, B, C, D, and E). The amplitude unit for all of them is µV

Fig. 2  Brain rhythms for EEG data from collection A (Delta, Theta, Alpha, and Beta waves). The amplitude unit for all of them is µV
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Since

by plotting log (A(p)) vs log (1/p), HFD was derived by 
the gradient of the straight line fitting the points [25].

Katz fractal dimension (KFD)
Katz proposed a method with a normalized formula 
for the calculation of fractal dimension. According to 
the Katz approach, a curve’s fractal dimension will be 
obtained by:

U is the whole length of the curve obtained by the sum-
mation of the distances between consecutive points:

where

and b indicates how far apart the first point and the far-
thest point of the curve are:

Since K calculation is dependent on the units, U and 
b were normalized by “m” which was the mean distance 
betwixt successive spots. Finally, K became: [26]

Hurst exponent
Hurst exponent estimates the self-similarity of a tem-
poral signal and the values of this measure vary in the 
range [0, 1]; indeed, it expresses the trendiness. H > 0.5 
exhibits positive correlation, while H < 0.5 displays 
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negative correlation; H = 0.5 displays un-correlated time 
series [27, 28]. This feature is estimated by rescaled rang 
technique:

A temporal signal of total length M is rescaled to sub-
sequences of length m = M, M/2, M/4, M/8, …. “E” rep-
resents the expected value. R (m) and S (m) are defined 
as the value range and SD respectively. F is the fixed 
parameter. The following lines describe the rescaling:

After calculating R/S for all segments, they have been 
averaged over segments (R/Save). For different values of 
n, different R/Save values will be obtained. The Hurst 
exponent can be estimated by the gradient of linear 
regression line wherein X and Y coordinates represent 
log (m) and log (R/Save (m)) respectively [29–31].

Lempel–Ziv (L–Z) complexity
A coarse-graining approach is the base of the L-Z com-
plexity measure. To estimate the L-Z complexity, the 
temporal signal should be converted into a symbolic 
sequence. The binary sequence is a common choice 
for this purpose. This procedure is done by consider-
ing a margin for sequence values. Two different margin 
values (L), which were median and mean of the signal, 
have been used for the analysis; therefore, two different 
complexity values have been obtained. S is the Binary 
sequence of the series:

S = u(1),u(2), …,u(m).
u(j) is:

(10)E
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The obtained binary series was scanned from left 
to right for both margin values. Complexity counter 
(c(m)) calculates the number of different substrings 
contained in the new sequence. As a novel string is 
detected, c(m) → c(m)+ 1.

The normalized complexity (C(m)) is defined as 
below [32, 33]:

Supervised feature selection
In this part, several nonlinear features including two HFD 
(different kmaxs), KFD, two L-Z complexity measures 
(mean and median as their threshold), and Hurst expo-
nent were extracted from not only the EEGs but also their 
different rhythms. Thus, the feature set has 30 members 
( { 6 nonlinear features} × { 5 EEGs and their rhythms} ). 
Feature selection is one of the classification steps that is of 
significant importance. In order to select the best subset 
of features, Relieff feature selection has been used. This 
technique selects the most significant features based on 
their relevance and assigns weight to features for ranking 
them according to their weights. More information about 
this algorithm is available in [34, 35].

Classification
Three classifiers were used to perform classification on 
each problem: MLPNN, Linear SVM, and RBF SVM. 
Parameter tuning plays a major role in classifier accu-
racy. The classification was performed by Nested ten-fold 
cross-validation; one cross-validation loop for parameter 
setting and another loop for model selection.

Multi‑layer perceptron neural networks (MLPNN)
An MLPNN is composed of multi-layers of computa-
tional nodes in a digraph, each layer fully connected to 

(16)C(m) =
c(m)

m/ log2(m)

the next one. All nodes are considered as a neuron with 
an activation function except for the input nodes [36, 37]. 
Matlab software (R2016a) Neural Network toolbox was 
used for MLPNN classification. The number of neurons 
in the hidden layer was set by ten-fold cross-validation. 
The transfer function used in neural network architec-
ture was hyperbolic tangent sigmoid.

Support vector machine (SVM)
Vapnik invented the SVM based on the principle of struc-
tural risk minimization. It is known as one of the most 
robust methods amongst the famous classification algo-
rithms. SVM has been frequently used in various analyses 
such as regression, classification, and nonlinear function 
approximation. SVM is a binary classifier basically, but it 
was extended for multiclass problems by some methods 
[38]. We have used LIBSVM(version 3.20) tools to per-
form linear SVM and RBF SVM classifications [39, 40]. 
For more details on the SVM algorithms, please refer to 
papers [38, 39].

Results and discussion
The best feature is KFD due to its rank and repetition in 
the selected features. The order of appearance of features 
for the five top features is shown in Table 1.

In Table 2, performances for three different classifiers, 
in both selected features and all features (without feature 
selection), have been compared. MLPNN has the best 
performance in all cases. In addition, the optimal num-
ber of features for the best classification accuracy was 
reported.

The highest performances for three classifiers in each 
case are represented in Fig. 3. In Fig. 4, three classifiers 
are compared for case 1(ABCD / E). Although MLPNN 
had the best performance, when just the first selected 
feature was used, the accuracy of this classifier was sig-
nificantly lower than other classifiers. However, when 
the second top feature was added to the first one, the 

Table1  Five top rank features for each classification problems

Sub-sets Rank

1 2 3 4 5

ABCD/E KFD
(Theta)

KFD
(Beta)

KFD
(Delta)

KFD
(Alpha)

HFD kmax=45
(Beta)

AB/CD/E KFD
(Theta)

KFD
(Beta)

HFD kmax=30
(Original Signal)

HFD kmax=45
(Original Signal)

KFD
(Delta)

A/D/E KFD
(Beta)

KFD
(Theta)

HFD kmax=30
(Original Signal)

HFD kmax=45
(Original Signal)

KFD
(Alpha)

A/E KFD
(Theta)

KFD
(Beta)

KFD
(Alpha)

KFD
(Delta)

KFD (Original Signal)

D/E KFD
(Beta)

KFD
(Theta)

KFD
(Alpha)

Hurst Exponent
(Beta)

KFD
(Delta)
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performance was raised significantly, and finally, MLPNN 
reached 99.91% classification accuracy.

Performances for MLPNN classifier are depicted in 
Fig. 5 for all cases. As Fig. 5 illustrates, case4 (A/E) had 
the best results because it could achieve the best accu-
racy (100%) with the lowest number of features (Optimal 
point (five features, 100%)). In other cases, a decent per-
formance can be obtained by using only a few features.

Our results indicate that nonlinear features can cate-
gorize different classification problems with high accu-
racy and KFD is a paramount measure to classify EEGs. 
This shows the supremacy of the fractal dimension 
(computed by using the Katz algorithm). Furthermore, 
analysis of brain rhythms demonstrates that theta and 

beta frequency bands are the most informative sub-
bands. By combining KFD and these two frequency 
bands, in other words, KFDs extracted from theta 
and beta rhythms, a decent level of accuracy will be 
achieved (just by using two features). In this study, we 
have used different classifiers including MLPNN, Lin-
ear SVM, and RBF SVM in order to compare the per-
formance of them. The results reveal that the MLPNN 
classifier has the best classification accuracy in all of the 
problems. As a comparison, some of the recent studies, 
which were done on the same data set and the same 
problems, and their results are mentioned in Table3.

As Table3 illustrates, the binary classification prob-
lems had better performances than the three-class 

Table 2  Performance for each classifier in all classification problems with and without feature selection

Classifiers Sub-Sets

Linear SVM RBF SVM MLPNN

Performance with 
Feature Selection
(No. of features)

Performance without 
Feature Selection (%)

Performance with 
Feature Selection
(No. of features)

Performance 
without Feature 
Selection (%)

Performance with 
Feature Selection
(No. of features)

Performance without 
Feature Selection (%)

ABCD/E 98.21% (27) 98.09 99.2% (23) 99.05 99.91%
(22)

99.69

AB/CD/E 94.54% (25) 94.41 96.65%
(20)

96.02 98.19%
(26)

96.86

A/D/E 94.98% (19) 94.85 96.67%
(18)

95.96 98.5%
(27)

98.31

A/E 100%
(6)

99.97 100%
(5)

100 100%
(5)

99.5

D/E 97.56%
(26)

97.34 98.41%
(19)

98.25 99.84%
(23)

99.66

Fig. 3  The highest performance of different classifiers (MLPNN, RBF SVM, and Linear SVM) for all classification problems. MLPNN classifier has the 
best classification accuracy in all cases
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problems. The approach presented in this article has 
better performance than the other studies. Further-
more, our approach is almost homogeneous and the 
accuracy didn’t vary significantly by changing from the 
two-class problems to the three-class problems.

Conclusion
There is some substantial information not only in sei-
zure activity intervals of the patients’ EEGs but also in 
the seizure-free periods. This disorder can’t be diagnosed 
properly just by visual detection or simple measures. 

Therefore, various methods were used to classify normal 
and abnormal EEGs. In this study, five different classifica-
tion problems were designed to classify Epileptic EEGs. 
These binary or three-class classification problems were 
used frequently in many relevant papers. We used non-
linear measures, including HFD, KFD, Hurst exponent, 
and L-Z complexity measure, which were applied to the 
original EEGs and their frequency sub-bands; then, the 
extracted features were ranked by Relieff algorithm. KFDs 
extracted from beta and theta sub-bands were the most 
informative features for all cases. The ranked features 

Fig. 4  Performance versus Number of features for case1 (ABCD/E). Ranked features were applied subsequently to 3 different classifiers (MLPNN, 
Linear SVM, and RBF SVM). The best accuracy was obtained by the MLPNN classifier

Fig. 5  Performance versus Number of features for all cases with MLPNN classifier
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were applied to three different classifiers (MLPNN, 
Linear SVM, and RBF SVM) sequentially. Afterward, 
the optimum point, which had the highest accuracy 
with the least number of features, was detected in each 
problem for all classifiers. This study demonstrates that 
MLPNN had a better performance than the SVM clas-
sifiers; besides, the feature selection improved the accu-
racy of classification. The most significant advantage 
of this paper is that the high performances for all prob-
lems (binary and three-class cases) could be obtained 
just by using two features; hence, we think the proposed 
approach can be effectively implemented for epilepsy 
diagnosis thanks to its high level of accuracy with less 
complexity resulting of the low number of features.
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