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Abstract 

Background:  Standardized coding of plays an important role in radiology reports’ secondary use such as data analyt-
ics, data-driven decision support, and personalized medicine. RadLex, a standard radiological lexicon, can reduce 
subjective variability and improve clarity in radiology reports. RadLex coding of radiology reports is widely used in 
many countries, but translation and localization of RadLex in China are far from being established. Although auto-
matic RadLex coding is a common way for non-standard radiology reports, the high-accuracy cross-language RadLex 
coding is hardly achieved due to the limitation of up-to-date auto-translation and text similarity algorithms and still 
requires further research.

Methods:  We present an effective approach that combines a hybrid translation and a Multilayer Perceptron weight-
ing text similarity ensemble algorithm for automatic RadLex coding of Chinese structured radiology reports. Firstly, a 
hybrid way to integrate Google neural machine translation and dictionary translation helps to optimize the translation 
of Chinese radiology phrases to English. The dictionary is made up of 21,863 Chinese–English radiological term pairs 
extracted from several free medical dictionaries. Secondly, four typical text similarity algorithms are introduced, which 
are Levenshtein distance, Jaccard similarity coefficient, Word2vec Continuous bag-of-words model, and WordNet Wup 
similarity algorithms. Lastly, the Multilayer Perceptron model has been used to synthesize the contextual, lexical, char-
acter and syntactical information of four text similarity algorithms to promote precision, in which four similarity scores 
of two terms are taken as input and the output presents whether the two terms are synonyms.

Results:  The results show the effectiveness of the approach with an F1-score of 90.15%, a precision of 91.78% and a 
recall of 88.59%. The hybrid translation algorithm has no negative effect on the final coding, F1-score has increased by 
21.44% and 8.12% compared with the GNMT algorithm and dictionary translation. Compared with the single similar-
ity, the result of the MLP weighting similarity algorithm is satisfactory that has a 4.48% increase compared with the 
best single similarity algorithm, WordNet Wup.
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Background
Radiology examination plays an increasingly important 
role in the diagnosis and treatment of disease. After a 
radiology imaging procedure, radiologists will read the 
images and make a report summarizing the findings and 
impressions, which can be used as references for further 
decision processes of physicians. Due to the differences 
in education and experiences, radiologists make radiol-
ogy reports with different styles of expression and use 
various phrases to describe the same condition. The con-
sistent coding of radiology reports is a common require-
ment for anyone who wants to re-use radiology reports 
for further research [1]. Standardized coding of radiol-
ogy reports provides many benefits: reducing ambigu-
ity, improving the communication between radiologists 
and clinicians, and increasing the ability to mine data for 
research which results in speedier diagnosis and treat-
ment [2]. However, it remains an ongoing challenge due 
to non-standard terms in the radiology reports.

Beginning in 2005, the Radiological Society of North 
America convened radiology experts to create RadLex 
[3], a rich and structured radiology-specific lexicon. With 
proven accuracy and accolades from the radiologist, 
RadLex provides a standard set of radiological terms with 
codes that improve clarity in radiology reports. Most of 
the RadLex coding tasks are done manually at present, 
the coding process involves much clinical knowledge 
and the coding person needs to look up code by knowing 
the exact location or by browsing a large list of standard 
terms [4], the inefficiency of manual coding and the lack 
of coding professionals make it hard to code even one 
radiology report. Speeding up and facilitating the tedi-
ous process of manual coding remain a priority [5]. Com-
pared with traditional manual coding, automatic coding 
can speed up 25% to 43% [6], which is widely recognized 
as essential for standardized coding of medical data [7].

There have been many studies on automated or 
semi-automated coding of English radiology reports to 
improve the productivity of coders. For example, Farkas 
et  al. constructed rule-based coding systems for radiol-
ogy reports [8]. Emily et al. developed a validated natu-
ral language processing algorithm for brain radiology 
reports [9]. Stefano et al. applied hierarchical supervised 
learning technology to the problem of assigning codes to 
radiology reports [10]. However, these methods are all 
based on an alphabetic system of English and not suitable 

for Chinese radiology reports using a logographic system 
without an alphabet. In logographic systems, symbols 
represent the words themselves—words are not made up 
of various letters as in alphabetic systems.

In recent years, there are some studies on Chinese 
automatic medical coding. Ning et al. developed a hierar-
chical approach to automatically encoded Chinese diag-
noses with ICD-10 codes through semantic similarity 
estimation [11]. Chen et al. presented an approach based 
on the Longest Common Subsequence and semantic sim-
ilarity for automatic Chinese diagnoses coding [12]. But 
none of these studies were related to RadLex coding in 
Chinese.

The lack of a specialized radiology standard lexicon 
is a big challenge for Chinese radiology researchers. 
Although RadLex coding of radiology reports is widely 
used in many countries, it is difficult to implement in 
China since translation and localization of RadLex are 
still far from been established. To translate the RadLex 
lexicon, not only a lot of manpower and resources are 
needed, but the various synonyms for one RadLex term 
will be lost after the translation. The central problem of 
automatic coding of Chinese radiology reports is how 
to map Chinese radiological phrases with codes from 
the English radiology standard lexicon. The automatic 
cross-language RadLex coding can quickly alleviate the 
current less standardized radiology reports, which is a 
practical method without the necessity of translating the 
RadLex lexicon. So cross-language automatic coding will 
become the most promising direction of Chinese radiol-
ogy reports standardization research.

The remainder of the paper is organized as follows. 
Section  2 summaries methods. Section  3 describes the 
performance of the hybrid translation algorithm and the 
Multilayer Perceptron weighting text similarity ensem-
ble algorithm compared with other translation and text 
similarity algorithms. Section 4 discusses the results and 
suggests possible directions for future work. Section  5 
concludes the paper.

Methods
There are two steps in developing an effective automatic 
RadLex coding approach: hybrid translation and Multi-
layer Perceptron (MLP) weighting text similarity ensem-
ble algorithm. The framework of this approach is shown 
in Fig. 1. In the part of the hybrid translation, the hybrid 

Conclusions:  The paper proposed an innovative automatic cross-language RadLex coding approach to solve the 
standardization of Chinese structured radiology reports, that can be taken as a reference to automatic cross-language 
coding.
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radiology dictionary is constructed by integrating several 
available medical Chinese–English dictionaries and fuzzy 
matching with RadLex. The union of the dictionary trans-
lation results and Google translation results is used in the 
subsequent similarity calculation. Afterward, in the part 
of MLP weighting text similarity ensemble algorithm, the 
results of four typical text similarity algorithms, which 
are Levenshtein distance similarity, Jaccard similarity 
coefficient, Word2vec Continuous bag-of-words model 
(CBOW), WordNet Wup, are used as the input of MLP 
to determine whether the two terms are synonyms and 
whether Chinese radiological phrases can be encoded 
with RadLex codes.

Structured radiology report Chinese‑to‑English translation
Auto-translation has made leap-forward progress, espe-
cially Google neural machine translation, but available 
translation algorithms can work only with text in general 
domain. Many professional radiological phrases cannot 
be accurately translated by existing available translation 
algorithms.

For better Chinese-to-English translation of radio-
logical phrases, several online medical Chinese–English 
dictionaries were used to construct a radiology diction-
ary shown as Fig. 2, including Xiangya Medical Diction-
ary (dict.biomart.cn), Yimaitong (meddic.medlive.cn/
index.do), Dingxiang E–C Dictionary (mcd8.com), Eng-
lish–Chinese medical dictionary (esaurus.org), English 
Chinese biological dictionary (cmi.hku.hk/Ref/Glos-
sary/Bio/a.htm), anatomy dictionary (dict.bioon.com/
elite.asp) and Wikipedia C–E medical dictionary that 
extracted Chinese and English expressions from the 
medical entries in Wikipedia. A comprehensive English–
Chinese medical dictionary was then constructed after 
combining and deduplicating all the above dictionaries 
[13]. As a result, the comprehensive medical diction-
ary was made up of 731,175 medical terms, as shown in 
Table 1.

The comprehensive medical dictionary has a desir-
able coverage but becomes a disaster to the subsequent 
quick-look-up translation. The extraction of radiology-
specific terms is of great help to promote the efficiency 

Fig. 1  The framework of the automated RadLex coding approach
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of dictionary translation. Most radiology-specific terms 
from the above comprehensive medical dictionary are 
written completely identical or slightly different from 
terms in RadLex. The differences in the expressions of 
English synonyms are mainly intense, preposition, and 
part of speech [14]. If the terms in the dictionary are 
different in meaningless tense, preposition, and suffix/
postfix with ones in RadLex, they will be regarded as 
fuzzy matched. There are many fuzzy matching meth-
ods to locate radiology-specific terms, among which the 
Levenshtein Distance is the most widely used through 

measuring term similarity in terms of the number of 
operations necessary to convert one string into another. If 
the Levenshtein distance is less than 4 between the terms 
in the dictionary and RadLex, except for terms with only 
one word, it will be considered that the terms in the dic-
tionary can be fuzzy matched with the terms in RadLex. 
After fuzzy matching, a hybrid radiology dictionary was 
achieved and made up of 21,863 radiology terms.

Although the English term could be precisely trans-
lated through looking-up the dictionary, it is limited by 
the coverage. If there is no such radiological term in the 
dictionary, the translation will have no result and has a 
negative impact on subsequent coding. Compared to the 
dictionary translation, Google neural machine translation 
can produce fluent translation without the problem of 
limited coverage but with a lack of accuracy. Some rules 
were used to search the exact match of Chinese terms in 
the Chinese–English radiology dictionary. If the match-
ing results cannot be found in the dictionary, the Google 
translation was used to translate. Online Chinese–Eng-
lish dictionaries were integrated as much as possible to 
achieve the highest possible translation quality. A hybrid 
way to integrate Google neural machine translation and 
dictionary translation helped to optimize translation 
results for radiological terms, where the results of the 

Fig. 2  The construction of hybrid radiology dictionary

Table 1  Chinese–English medical dictionaries

Chinese–English medical dictionaries Number of 
term pairs

Xiangya Medical Dictionary 404,334

Yimaitong Dictionary 174,582

Dingxiang E–C Dictionary 627,947

English–Chinese Medical Dictionary 2156

English Chinese Biological Dictionary 5841

Anatomy Dictionary 1189

Wikipedia C–E Medical Dictionary 4446

Deduplicate total 731,175
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two methods were united. To be more specific, Google 
neural machine translation and dictionary translation 
were performed in parallel. If the results of the two are 
the same or only the result of the former method can be 
achieved, that the result will be taken. If the results of the 
two are partly the same or completely different, they will 
be kept in the union set and be both used for subsequent 
similarity calculations.

Text similarity algorithms
Text similarity algorithms can be roughly classified 
into three classes, String-based, Corpus-based, and 
Knowledge-based similarities [15]. String-Based simi-
larity algorithms measure the common information two 
texts shared [16, 17] and can be further classified into 
two main types, character-based and word-based. Cor-
pus-Based similarity algorithms use the distribution of 
words within a corpus to represent the semantic similar-
ity between two texts [18]. Knowledge-Based similarity 
algorithms are semantic similarity measures determined 
by the path of words in knowledge sources such as dic-
tionaries, taxonomies, and semantic networks [19]. The 
typical algorithm in each category and the ensemble 
algorithm will be proposed as follows.

Four typical text similarity algorithms.

•	 Levenshtein distance similarity algorithm

The Levenshtein distance similarity algorithm is the most 
basic Character-based similarity algorithms. The Lev-
enshtein distance between two words is the minimum 
number of single-character edits (insertions, deletions or 
substitutions) required to change one word into the other 
[20].

Levenshtein distance similarity algorithm is simple and 
easy, but the meaning of an individual character is usually 
ambiguous and one-sided, so the Levenshtein distance 
similarity algorithm can only represent the glyphs infor-
mation and is only suitable in cases of short text. The 
glyph of many radiology terms is similar, but they have 
completely different meanings, such as “posterior zone of 
superior part proper of body of right scapula” and “poste-
rior zone of superior part proper of body of left scapula”.

•	 Jaccard similarity coefficient algorithm

Comparing with the Character-Based algorithms, the 
Word-Based algorithms are more suitable for longer text, 
but will usually discard the order and location informa-
tion and has a weakness for short text. Jaccard similarity 
coefficient is a typical algorithm of Word-based similarity 
algorithms. The Jaccard similarity coefficient is defined 

as the size of the intersection divided by the size of the 
union [21].

Jaccard similarity coefficient algorithm is efficient and 
widely used, but the similarity results are greatly affected 
by the number of words in the text. For example, the term 
“nodules” and the term “tuberosity” (RID39357) have 
relatively a low Jaccard similarity coefficient, but they are 
obviously a pair of synonyms. 

•	 Word2vec CBOW algorithm

Character-based and Word-based similarity algorithms 
are short of semantic information, and corpus-based 
similarity algorithms use co-occurrence information to 
measure the semantic similarity of texts. Word2vec is a 
representative corpus-based similarity algorithm that can 
learn the vector representations of words in the high-
dimensional vector space and calculate the similarity 
between texts [22]. Continuous bag-of-words (CBOW) 
and continuous skip-gram model are two architec-
tures that can be leveraged by Word2Vec to create word 
embedding. In the CBOW model, the distributed repre-
sentations of context are combined to predict the target 
word in the middle. The Skip-gram model reverses the 
use of target and context [23]. Compared to skip-gram, 
CBOW is more suitable for radiology reports coding 
since it is several times faster in the process of training 
and slightly better accuracy for the frequent words [22].

In the process of CBOW, three layers were used and 
shown in Fig. 3. The input layer corresponded to the con-
text. The hidden layer corresponded to the projection of 

Fig. 3  The structure of the CBOW model
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each word from the input layer into the weight matrix 
which was projected into the output layer. The final step 
of the model was the comparison between its output and 
the word itself to correct its representation based on the 
backpropagation of the error gradient. Thus, the purpose 
of the CBOW neural network is to maximize the follow-
ing [24]:

where V corresponds to vocabulary size, c corresponds to 
the window size of each word.

Word2Vec CBOW similarity algorithm needed a cor-
pus to train the model, that collected from Wikipedia, 
210 radiology report templates from RNSA, and the texts 
from imaging and nuclear medicine of MedAca. The 
corpus-based similarity algorithms inevitably encounter 
the problem of out-of-vocabulary terms with the limita-
tion of the corpus. The out-of-vocabulary terms are taken 
as unknown words(UNK) that have a negative impact on 
coding results. 

•	 WordNet Wup similarity algorithm

The knowledge-based similarity algorithms quantify the 
degree to which two words are semantically related using 
information from semantic networks. WordNet is one of 
the most popular and abundant semantic networks that 
contains semantic relations among words [25], Version 
2.1 of WordNet is used in this study. There are several 
WordNet-based similarity algorithms, Wu and Palmer 
(Wup) similarity algorithm is an appropriate choice 
based on observed performance in other language pro-
cessing applications and relatively low computational 
efficiency.

The Wup similarity algorithm takes into account the 
position of concepts in the taxonomy relative to the posi-
tion of the Least Common Subsume (LCS) [26]. The LCS 
of two nodes a and b is the deepest node that has both 
a and b as descendants. To calculate the WordNet Wup 
similarity between two words a and b, Na,LCS is the num-
ber of nodes from a to LCS , and Nb,LCS is the number of 
nodes from b to LCS . NLCS is the number of nodes from 
LCS to the root node. Simwup(a,b) clearly indicates the 
WordNet Wup similarity of a and b as follows.

The Wup similarity may give inaccurate coding results 
because two concepts in the same hierarchy may show a 
lower similarity than two concepts belonging to different 
hierarchies [27].

1

V

V∑

t=1

logp(wt|mt−c . . .mt+c)

Simwup(a,b) =
2× NLCS

Na,LCS + Nb,LCS

Text similarity ensemble algorithm
Each of the above algorithms is based on a single feature 
and has some limitations. The text similarity ensemble 
algorithm combines multiple contextual, lexical, and syn-
tactical features to achieve better results [28–30].

Linear weighting is a generalized method of ensem-
ble text similarity, but there is no consensus on how to 
define proper weights. Besides, radiological terms vary 
in length and style, linear weighting lacks the flexibility 
to adequately address many radiological terms syno-
nyms recognition problems. Using the neural networks 
in machine learning can dynamically and automatically 
assign the weight to overcome the limitations of linear 
weighting.

Neural networks, with the remarkable ability to derive 
information from complicated data, work well in predic-
tion with clear inputs. There are many complex and effec-
tive neural network models for the classification problem, 
but the score of text similarity has no clear criterion and 
meaning. Multilayer Perceptron (MLP) is one of the most 
popular neural network models due to its clear archi-
tecture and comparably simple algorithm of extracting 
information. MLP is used for basic operations like algo-
rithm weighting and data analytics [31], consisting of at 
least three layers: an input layer, at least one hidden layer, 
and an output layer. Except for the nodes of the input 
layer, each node is a neuron that uses a nonlinear activa-
tion function where every layer is a fully connected layer.

Traditionally there are various heuristics for choos-
ing the number of hidden layers and nodes. The theory 
focused on semiparametric inference and gave a theoreti-
cally grounded starting point for choosing the architec-
ture. Increasing the number of hidden layers generates a 
more robust multilayer perceptron but costs more time 
in processing. Two hidden layers with five neurons are a 
good choice [32]. An MLP model with two hidden lay-
ers was designed based on the above theories to integrate 
four text similarity algorithms (illustrated in Fig. 4).

Once the architecture of MLP has been determined, the 
connection weights must be computed through a training 
procedure based on the training patterns and the desired 
output. The backpropagation algorithm (BP) is one of the 
simplest and most general methods for the supervised 

Fig. 4  The structure of the MLP model



Page 7 of 10Chen et al. BMC Med Inform Decis Mak          (2021) 21:247 	

training of MLP [33]. The text similarity scores from the 
above four similarity algorithms were used as the inputs 
of the MLP model. They were pushed forward through 
the dot product with the corresponding weights that 
existed between the input layer and the hidden layer, then 
yielded a value at the hidden layer. MLP utilized activa-
tion functions, rectified linear units (ReLU), to calcu-
late output at the hidden layer and pushed it to the next 
layer by taking the dot product with the corresponding 
weights. The above steps were repeated until the output 
layer reached. If the desired output cannot be achieved 
in the output layer, then the error will be backpropa-
gated. The connection weights were adjusted dynamically 
accordingly and the backpropagation stopped when the 
error of the output met the requirement. After training, 
the MLP model can be used to integrate the four similar-
ity algorithms.

Dataset preparing
6000 structured chest CT reports from a hospital in 
China between July 2016 and February 2017 were used as 
the dataset for the experiment. A total of 4046 radiology-
specific phrases were extracted through an entity recog-
nition method based on character embedding, Iterated 
Dilated Convolutional Neural Networks (IDCNN) and 
Conditional Random Fields (CRF) after de-duplication 
[34]. The manually annotated codes were assigned by two 
professional clinical coders from the RadLex after read-
ing the phrases. The 3778 times consensus of two coders 
was reached to arrive at the gold standard for each cod-
ing. 70% of these coded phrases were employed for train-
ing and tuning the MLP model, while 30% rest were used 
to evaluate the performance of the trained model.

Performance evaluation criteria
The precision, recall and F1-score are defined by the fol-
lowing formulas to evaluate the performance of the auto-
matic RadLex coding algorithm.

True Positive (TP): Chinese radiological phrase with 
correct RadLex code.

False Negative (FN): Chinese radiological phrase with 
wrong RadLex code.

False Positive (FP): No-match Chinese radiological 
phrase that is recorded as matched.

Results
Evaluation of Chinese‑to‑English translation
It is very difficult to measure the translation of radiol-
ogy reports directly since the golden standard of transla-
tion can hardly be achieved. Therefore, the final coding 
results were taken as the evaluation metric of translation 
quality when using the same MLP weighting text similar-
ity ensemble algorithm. The translation evaluation car-
ried out a four-way side-by-side (SxS) evaluation. The 
results were from (1) Google translation, (2) Dictionary 
translation, (3) Hybrid translation integrated Google 
neural machine translation and dictionary mapping, and 
(4) Translations by humans with expertise in Chinese 
to English. As shown in Table  2, hybrid translation is 
the next best to human translation and outperforms the 
Google translation and Dictionary translation respec-
tively. Dictionary translation has high precision and low 
recall, whereas Google translation is the opposite. Hybrid 
translation united the results of them, slightly reduced 
the efficiency but greatly improved precision and recall. 
Automatic translation still has many limitations and 
deficiencies and cannot replace human translation, but 
reduce the cost and delivery time.

Evaluation of automatic RadLex coding based on text 
similarity
The precision, recall, and F1-score evaluation of the 
four similarity algorithms and multiple combinations 
of four similarity algorithms were clearly compared 
under the same hybrid translation shown in Table  3. 
The MLP weighing algorithm outperforms the other 
four similarity algorithms in terms of precision, recall, 
and F1-score. The MLP weighing algorithm has the 
best performance with precision, recall, and F1-score 
of 91.78%, 88.59%, and 90.15%. The WordNet Wup 

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score =
2 ∗ precision ∗ recall

precision + recall

Table 2  Translation evaluation based on final coding results

Method Precision (%) Recall (%) F1-score (%)

Google translation + MLP weighting text similarity ensemble algorithm 59.33 81.61 68.71

Dictionary translation + MLP weighting text similarity ensemble algorithm 87.42 77.27 82.03

Hybrid translation + MLP weighting text similarity ensemble algorithm 91.78 88.59 90.15

Human translation + MLP weighting text similarity ensemble algorithm 97.26 90.37 93.69
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similarity algorithm is next to the MLP weighing algo-
rithm with precision, recall, and F1-score of 86.78%, 
84.59%, and 85.67%. The Word2vec CBOW similar-
ity algorithm is a little weaker than the WordNet Wup 
similarity algorithm with precision, recall, and F1-score 
of 81.75%, 81.16%, and 84.18%. The Jaccard and Lev-
enshtein distance similarity algorithms have relatively 
poor performances. The MLP weighing algorithm has 
a 4.48% F1-score increase compared with the Word-
Net Wup method, has a 5.97% F1-score increase com-
pared with the Word2vec CBOW method, has a 30.87% 
F1-score increase compared with the Levenshtein dis-
tance method, and has a 32.1% F1-score increase com-
pared with the Jaccard method.

Among these similarity algorithms, the String-Based 
similarity algorithms have relatively lower perfor-
mance because the synonyms may have quite different 
glyphs, such as “cranium” and “skull”. The recognition 
of this type of synonyms can only be achieved through 
the semantic-based similarity algorithm. But semantic-
based similarity relies on manpower and still needs fur-
ther research, regardless of the quality of the corpus or 
the construction of the semantic web. The MLP weight-
ing algorithm can efficiently utilize the advantages of 
four various algorithms and further enhance the simi-
larity calculation performance. Intuitively, by integrat-
ing multiple similarity algorithms, the MLP weighting 
algorithm can capture the correlated contextual, lexi-
cal, character, and syntactical information of various 
similarity algorithms, which can be further utilized to 
improve the precision of automatic RadLex coding.

Discussion
The existing automatic coding algorithms of English radi-
ology reports cannot be used directly for Chinese ones 
and the existing automatic coding algorithms of Chinese 
medical terms cannot be referred to due to the lack of 
Chinese radiology standard lexicon. Although automatic 
coding can be expected to improve gradually and handle 
the problem of radiology reports in the future, it is still 
facing challenges and worthwhile devoting much effort 
to automatic cross-language RadLex coding research. 
This study established a cross-language automatic 
RadLex coding system for Chinese radiology reports 
which proved to be successful in coding 3778 radiology-
specific phrases from the structured radiology reports. 
This finding alleviated the burden of constructing the 
Chinese radiology standard lexicon to coding the radiol-
ogy reports. The hybrid translation and MLP weighting 
similarity algorithm can be used not only for radiology 
reports but for other documents in the medical domain. 
Such topics are therefore worthy of research, application, 
and promotion.

Standardized coding of medical data is critical to the 
success of searching, sharing, and analyzing medical 
data. However, the standard English terminologies are 
unable to be translated into Chinese in a short time. The 
cross-language automatic coding method is of great use 
to convert the medical data to the standard terminology 
without much manpower for large-scale, multi-center 
medical data research [35]. The hybrid translation and 
MLP weighting similarity algorithm can not only be used 
in radiology but the general medical domain. It provides 

Table 3  Six-way side-by-side automatic coding evaluation

Method Precision (%) Recall (%) F1-score (%)

Levenshtein distance 70.91 50.93 59.28

Jaccard 56.64 53.28 58.05

Word2vec CBOW 81.75 81.16 84.18

WordNet Wup 86.78 84.59 85.67

Levenshtein distance + Jaccard 66.90 50.85 57.78

Levenshtein distance + Word2vec CBOW 72.61 64.18 68.14

Levenshtein distance + WordNet Wup 78.52 67.38 72.52

Jaccard + Word2vec CBOW 68.29 66.47 67.37

Jaccard + WordNet Wup 70.22 67.72 68.95

Word2vec CBOW + WordNet Wup 83.95 82.41 83.17

Levenshtein distance + Jaccard + Word2vec CBOW 71.81 62.93 67.08

Levenshtein distance + Jaccard + WordNet Wup 73.17 71.43 72.29

Levenshtein distance + Word2vec CBOW + WordNet Wup 84.21 77.49 80.71

Jaccard + Word2vec CBOW + WordNet Wup 72.83 73.92 73.37

MLP weighing 91.78 88.59 90.15



Page 9 of 10Chen et al. BMC Med Inform Decis Mak          (2021) 21:247 	

a reference for other similar cross-language automatic 
medical coding research.

Some limitations still exist in this work. High-quality 
translation of radiology phrases mainly relies on the cov-
erage of the dictionaries. The Chinese–English radiology 
dictionary was developed as comprehensively as possible 
in this study, but there is still an extraordinary quantity of 
rare words beyond current dictionary coverage. It is also 
a possible direction for expanding the dictionary through 
crawler or other methods in the future. If the diction-
ary translation is comprehensive enough, the transla-
tion results will be more reliable without using Google 
translation.

Although the MLP weighting algorithm has achieved 
impressive performance in automatic RadLex coding, 
many efforts are still needed to improve the synonyms 
mapping performance. For example, there have been 
many studies of text similarity algorithms, the proposed 
MLP weighting algorithm just integrates four typical text 
similarity algorithms. As for future work, we intend to 
address this problem by integrating more text similarity 
algorithms and analyzing their influence on the auto-
matic RadLex coding.

Conclusion
Non-standardized Chinese radiology reports limit inter-
operability and usability. As the various usages of radiol-
ogy reports become more and more common, the need 
for standardized radiology reports has increased. The 
benefits and challenges of adopting RadLex standardized 
codes have lately received great attention. An innovative 
and effective automatic cross-language RadLex coding 
approach combining hybrid translation and a dynamic 
Multilayer Perceptron weighting text similarity ensemble 
algorithm is proposed in the paper to solve the standardi-
zation of Chinese radiology reports and can be taken as 
a reference to automatically cross-language coding on 
other related domains.
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