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Abstract 

Background: Data sharing is considered a crucial part of modern medical research. Unfortunately, despite its 
advantages, it often faces obstacles, especially data privacy challenges. As a result, various approaches and infra-
structures have been developed that aim to ensure that patients and research participants remain anonymous when 
data is shared. However, privacy protection typically comes at a cost, e.g. restrictions regarding the types of analyses 
that can be performed on shared data. What is lacking is a systematization making the trade-offs taken by different 
approaches transparent. The aim of the work described in this paper was to develop a systematization for the degree 
of privacy protection provided and the trade-offs taken by different data sharing methods. Based on this contribution, 
we categorized popular data sharing approaches and identified research gaps by analyzing combinations of promis-
ing properties and features that are not yet supported by existing approaches.

Methods: The systematization consists of different axes. Three axes relate to privacy protection aspects and were 
adopted from the popular Five Safes Framework: (1) safe data, addressing privacy at the input level, (2) safe settings, 
addressing privacy during shared processing, and (3) safe outputs, addressing privacy protection of analysis results. 
Three additional axes address the usefulness of approaches: (4) support for de-duplication, to enable the reconcili-
ation of data belonging to the same individuals, (5) flexibility, to be able to adapt to different data analysis require-
ments, and (6) scalability, to maintain performance with increasing complexity of shared data or common analysis 
processes.

Results: Using the systematization, we identified three different categories of approaches: distributed data analyses, 
which exchange anonymous aggregated data, secure multi-party computation protocols, which exchange encrypted 
data, and data enclaves, which store pooled individual-level data in secure environments for access for analysis pur-
poses. We identified important research gaps, including a lack of approaches enabling the de-duplication of horizon-
tally distributed data or providing a high degree of flexibility.

Conclusions: There are fundamental differences between different data sharing approaches and several gaps in their 
functionality that may be interesting to investigate in future work. Our systematization can make the properties of 
privacy-preserving data sharing infrastructures more transparent and support decision makers and regulatory authori-
ties with a better understanding of the trade-offs taken.
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Background
Introduction
Data sharing is the practice of making data from 
research and healthcare available for secondary pur-
poses and to third parties. This enables data-driven 
medical research, which promises to significantly 
improve public health as well as prevention, diagno-
sis, treatment and follow-up care [1, 2]. It is advocated 
at both national and international levels [3–5] and is 
steadily becoming a standard practice in biomedical 
research [6]. The benefits of data sharing include larger 
sample sizes and the ability to generate new insights 
and to replicate results in times of increasing personali-
zation of medicine. Data sharing is also associated with 
higher citation rates [7, 8] and promoted by several 
funding agencies [9, 10].

Despite its promises, several obstacles make data shar-
ing difficult and often even impossible. An important 
obstacle are legal issues [11], caused by severe restric-
tions on the processing of personal medical data imposed 
by national and international data protection laws. 
Important examples include the US Health Insurance 
Portability and Accountability Act (HIPAA) [12] and the 
EU General Data Protection Regulation (GDPR) [13]. To 
process data in compliance with these regulations, organ-
izational and legal procedures need to be implemented to 
protect the privacy of patients and research participants. 
An important prerequisite for data processing in medical 
research is usually informed consent. However, collect-
ing consent can be difficult and is not always feasible [14], 
in particular when data is to be shared retrospectively at 
large scale. An alternative that is often suggested (and 
permitted in many jurisdictions) is anonymization, i.e. 
the altering of data in such a way that individual patients 
and research participants cannot be identified, rendering 
the data non-personal [15]. However, a trade-off between 
privacy protection and the quality and hence utility of 
output data needs to be considered in this process [16]. 
In this context, the complexity and heterogeneity of clini-
cal and research data makes effective anonymization 
without disproportionately negative effects on data qual-
ity sometimes difficult and in some cases even impossible 
[17]. How strict the requirements for anonymization are 
depends on the applicable legislation. For example, while 
the HIPPA Privacy Rule [12] provides an interpretable 
and implementable framework, anonymization under the 
GDPR is more difficult due to a lack of concrete require-
ments and resulting heterogeneous policies and legal 
interpretations [18]. In addition, researchers often do 
not want to lose control of their data and institutions are 
often reluctant to disclose data that is considered confi-
dential from a business perspective, e.g. for competitive-
ness reasons [19].

These challenges can be tackled by implementing 
infrastructures that enable analyzing data stored in dis-
tributed databases and computing a common result with-
out exchanging individual-level data [10]. In the context 
of this work, we refer to such methods as “data sharing 
infrastructures”, which involve different parties or sites 
(e.g. hospitals) in a joint analysis.

On the methodological side, there are different options 
for implementing this process. One well-known exam-
ple is the exchange of aggregated statistics (see e.g. [20]), 
which are then combined to a common result, compara-
ble to a meta-analysis. Another example is cryptographic 
protocols (e.g. [21]), enabling different parties to jointly 
process a function on their private data without revealing 
each other’s input. Such modern secure multiparty com-
puting schemes often employ homomorphic encryption, 
which supports operations such as addition and multipli-
cation on encrypted data [22].

Technology infrastructures built on these approaches 
have already been successfully used to investigate a range 
of medical questions. Examples include studies of asso-
ciations of maternal movement and newborn birth size 
[23], outcomes of partial or full knee replacement [24], 
treatment patterns for comorbidities of patients suffering 
from cancer [25], survival of patients with intrahepatic 
cholangiocarcinoma [26] and of interactions between 
food intake as well as gut bacteria and metabolite pat-
terns [27]. Other projects have implemented manual 
processes for distributed data analysis, such as the 4CE 
consortium [28], which focuses on the clinical trajectory 
of COVID-19 patients or a study carried out in the Ger-
man Medical Informatics Initiative, focusing on multi-
morbidity and rare diseases [29].

Objectives and contributions
Despite the fact that privacy-preserving infrastructures 
are often considered to be the most important enabler for 
comprehensive data sharing in the medical domain and 
despite the multitude of technological approaches avail-
able and studies that have successfully utilized such tech-
nologies (see above), these infrastructures are only rarely 
used for sharing healthcare and medical research data 
today. We believe that one of the main reasons for this is 
uncertainties for decision makers and regulatory authori-
ties regarding the exact characteristics of such infra-
structures, particularly regarding the degree of privacy 
protection and anonymity for data subjects they provide. 
Indeed, as we will show in this article, there are funda-
mental differences between current solutions.

As a first step towards making the properties of data 
sharing infrastructures more transparent, the aim of this 
work is to introduce a systematization of general tech-
niques and their properties along two dimensions. Firstly, 
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the systematization is intended to structure the design 
space, as a development step towards tools for compre-
hensively assessing the privacy protection properties of 
data sharing infrastructures. Secondly, we also believe 
that the systematization can contribute to developing 
instruments for assessing the usefulness of data shar-
ing infrastructures, i.e. the impact that their protection 
mechanisms have on options to analyze data compared 
to the simple (but often not feasible) approach of pooling 
all data in a common database.

The need for a framework for comparing differ-
ent approaches to data sharing is also illustrated by the 
fact that several previous papers have been published 
on related topics (see section “Comparison with prior 
work”). However, our work is fundamentally different in 
that we do not only consider specific types of solutions 
(e.g., based on cryptographic methods) and aim at sys-
tematically mapping the usefulness dimension in addi-
tion to the privacy protection dimension. This comes at 
the expense of a higher degree of abstraction.

To show that our approach is practicable, we used it to 
perform a high-level analysis and comparison of several 
existing solutions. In summary, our work provides the 
following contributions:

(1) We present a high-level and technology-agnostic 
framework consisting of three axes describing the 
degree of protection and three axes describing the 
degree of usefulness provided by data sharing infra-
structures.

(2) We use this framework to analyze and compare ten 
different real-world data sharing platforms. Our 
results show that they can be grouped into three 
general types of solutions with common properties.

(3) Based on our results we derive insights into 
research gaps that may be worthwhile to investi-
gate when developing next-generation data sharing 
infrastructures.

Methods
Trade‑off between privacy protection and usefulness
Data sharing would be easy to implement if all relevant 
data could simply flow freely and be stored in a com-
mon database. As mentioned above, this is not possible 
in practice, however. Any attempt to take measures to 
meet privacy protection requirements inevitably leads to 
limitations in comparison to this basic approach. These 
limitations may relate, for example, to the time that the 
data sharing process takes or to the number of analysis 
methods supported. This fundamental conflict between 
unrestricted processing of data and the protection of 
the privacy of data subjects is well known in the field of 

privacy-enhancing technologies. An important example 
is data anonymization, where, as also mentioned above, 
the quality of output data often must be traded off against 
the degree of privacy protection achieved (see e.g. [30]).

Similar trade-offs must be made when designing and 
implementing privacy-preserving data sharing infra-
structures. Figure  1 provides an abstract, schematic 
illustration of this trade-off. It is derived from the con-
cept of risk-utility curves, as used in data anonymization 
research (see e.g. [31]). The y-axis describes the level of 
privacy protection, while the x-axis describes the level of 
usefulness of an infrastructure. Examples of aspects that 
could be captured by the x-axis include the spectrum of 
functionalities offered, how scalable their implemen-
tations are and how much work is required to add new 
functionalities.

There are two extreme types of approaches. 
Approaches located in the top-left corner significantly 
limit the amount of data shared, e.g. only patient or 
research participant counts, which typically implies a 
very high degree of protection. Approaches located in the 
bottom-left corner exchange fine-grained data in nearly 
unmodified form, e.g. by pooling all data in a central 
database which is open for access by researchers. Obvi-
ously, this would be extremely useful, but offers little pri-
vacy protection.

In between these two extremes, there is a broad spec-
trum of potential solutions based on different trade-offs 
between privacy protection and usefulness. To be rel-
evant, those data sharing approaches need to provide 
added value in comparison to the basic approaches, i.e. 
they need to significantly reduce privacy risks, while 

Fig. 1 Abstract graph illustrating the trade-off between the 
degree of privacy protection and the usefulness of a data sharing 
infrastructure
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maintaining a high degree of usefulness. In the graph, 
this is indicated by the non-linear relationship between 
the extreme points.

One example is the aforementioned meta-analysis 
approach in which more than counts can be exchanged 
when appropriate safeguards are implemented (e.g. for 
regression coefficients [32]). Still, functionality is lim-
ited, as only aggregated data from individual sites can be 
included in the analysis, hence reducing the number of 
(scientific) questions that can be answered. At the same 
time, privacy is relatively easy to protect by making sure 
that the aggregate data released does not leak sensitive 
personal information.

A framework for systematizing properties of data sharing 
techniques
For assessing the degree of privacy protection and the 
usefulness provided by data sharing approaches, we pro-
pose a first systematization containing three axes for 
each of these aspects. These axes are illustrated in Fig. 2 
and will be explained in more detail in this section.

Aspect 1: Assessing the degree of privacy protection 
provided
As a baseline for assessing the degree of protection pro-
vided we suggest to apply the Five Safes Framework, 
which was developed by Desai, Ritchie and Welpton as 
a general framework for reasoning about privacy protec-
tion when sharing data [33] (important examples are dis-
cussed in Section “Comparison with prior work”).

The Five Safes Framework specifies five different axes, 
which are illustrated in Fig. 3: (1) Only Safe People, e.g. 
trustworthy researchers, should be provided with access 

to data (cf. the British Office for National Statistics 
research and data access policy [34]), (2) only Safe Pro-
jects should be carried out, e.g., analyses that respect 
patient privacy and which are appropriate from an ethi-
cal perspective, (3) only Safe Data should be processed 
meaning that identifiability should be reduced to an 
acceptable minimum already on the level of input data 
(cf. the principle of data minimization under the GDPR 
and the Minimum Necessary Standard of HIPAA [10]), 
(4) Safe Settings should be used for providing access or 
performing analyses, which reduces the likelihood that 
sensitive data is leaked during processing and (5) Safe 
Outputs should be guaranteed (e.g., by ensuring that the 
output of analyses does not disclose sensitive personal 
information).

For our framework we will only consider the technical 
aspects of the Five Safes Framework and thus exclude the 
first two axes, Safe People and Safe Projects. The reason 
is that these aspects need to be either addressed on an 
organizational level (e.g. ethics committee / Institutional 
Review Board (IRB) approval) or with technical solutions 
that are not directly related to data sharing (e.g. Authen-
tication and Authorization Infrastructures). In the con-
text of data sharing, there are specific measures that can 
be taken along the remaining technical axes:

Axis 1.1: Safe data
Data provided as input to analyses supported by data 
sharing is considered safe if the identifiability of patients 
or research participants has been reduced. Safe Data can 
for example be obtained by anonymization, aggregation 
or encryption. Protection achieved with the first two 
techniques may be irreversible, while it may be possible 
to decrypt encrypted data at the end of the process. Even 
if anonymization or aggregation has limitations, resid-
ual risks of identifiability can potentially be managed by 
implementing safeguards along the other axes.

Axis 1.2: Safe settings
The setting in which distributed data is processed is con-
sidered safe if no or at least only some data is leaked dur-
ing processing. A well-known example of a Safe Setting 
are virtual data access environments, in which data can 
be analyzed without handing out individual-level data, 
e.g. through a remote desktop connection. Infrastruc-
tures using cryptographic secure multi-party computing 
protocols also provide a secure setting in which data can 

Fig. 2 Illustration of privacy protection and usefulness axes 
considered

Fig. 3 Elements of the five safes framework. Axes with relevance to 
this work are highlighted in blue
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be analyzed in an encrypted form only and only mutu-
ally calculated results can be decrypted [35] (more details 
will be provided in the “Results” section). However, even 
with such safe settings being used to perform analyses, 
additional efforts may need to be made to ensure that the 
results are also safe.

Axis 1.3: Safe outputs
The result calculated using a data sharing infrastructure 
is considered safe, if the resulting data disclosed to the 
users of the infrastructure is non-identifiable/non-per-
sonal. One way of achieving this is to only allow com-
putations producing aggregate data. However, this must 
be carefully designed, as e.g. disclosing statistical tables 
with small cell counts can reveal details about individu-
als [36]. To mitigate this risk, anonymization methods 
can be used to transform data before it is being disclosed. 
For example, data points can be rounded up, they can be 
omitted or random noise can be added [37]. A state-of-
the-art technique to provide Safe Outputs is Differential 
Privacy which formulates a general mathematical prop-
erty for data processing algorithms that, if parameter-
ized correctly, renders output data non-identifiable [38]. 
We note that a data sharing infrastructure will automati-
cally provide Safe Outputs when Safe Data is provided as 
input (cf. the meta-analysis approach).

Aspect 2: Assessing the usefulness of data sharing 
technologies
As a first step, we suggest to assess the usefulness of 
infrastructures for sharing medical data in terms of 
three different axes that reflect important require-
ments in multi-institutional medical research: (1) De-
duplication/record-linkage, which refers to the ability to 

combine data from different sources while taking into 
account that some records might relate to one another 
(e.g. to the same patient), (2) Flexibility, which reflects 
the degree to which a solution is able to support different 
types of statistical analyses and use cases as well as adapt 
to different analytical requirements as they can change 
over time and (3) Scalability, that refers to how an infra-
structure performs when the amount of data or the com-
plexity of an analysis increases.

Axis 2.1: De‑duplication/record‑linkage
This axis is related to the ability to resolve different types 
of data distribution, which are sketched in Fig.  4. Most 
data sharing infrastructures are able to resolve horizontal 
distribution of data but ignore potential relationships on 
the level of individuals. This is for example the case with 
meta-analyses in which patient data from different hospi-
tals is simply added to a larger sample without checking 
for population overlap. In order to determine or resolve 
such overlap, privacy-preserving methods for reconcil-
ing records belonging to the same individuals must be 
implemented, which is non-trivial. This becomes even 
more challenging, when also vertical distribution is to be 
resolved. A typical example is the need to integrate differ-
ent types of data for the same patients stored at different 
locations (e.g. at hospitals and health insurances). Pro-
cedures allowing for such a cross-site duplicate resolu-
tion range from probabilistic linkage algorithms [39] and 
cross-site pseudonymization methods to secure linkage 
based on encrypted identifying information using secure 
multi-party computing protocols [40, 41]. This results 
in different characteristics with regard to risks and use-
fulness, which manifests itself, for example, in the pos-
sibility of verifying the correctness of linkage results. A 

Fig. 4 Horizontal and vertical data distribution
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cross-site pseudonymization procedure poses the great-
est risks but provides the highest linkage quality, whereas 
probabilistic linkage and cryptographic methods offer a 
very high level of protection, but make it difficult to ver-
ify the results. The associated risks are reflected by axes 
1.1, 1.2 and 1.3, while the usefulness of de-duplication 
and record-linkage is reflected by this axis. For the sake 
of clarity, we will simply refer to this axis as “De-duplica-
tion” in the remainder of this article.

Axis 2.2: Flexibility
This axis refers to the ability of infrastructures to sup-
port a range of different analyses and to its extensibility 
to future use cases. For example, some of the solutions 
analyzed in this article have been tailored towards a lim-
ited set of very specific functionalities (e.g. cohort selec-
tion). On the other hand, some solutions are based on 
generic frameworks that provide a high degree of exten-
sibility and options to integrate new analysis methods. 
In between these two extremes, there are solutions, e.g. 
based on meta-analyses, which offer a certain degree of 
flexibility, but only support some types of analyses. For 
example, the quality of survival analyses might be incon-
sistent, analyses of subgroups might require additional 
efforts for each subgroup and longitudinal studies as 
well as explorative investigations and assessments of data 
quality may be difficult to perform [42, 43]. There are also 
differences regarding the effort required to integrate new 
methods into different types of solutions. For example, 
integrating new types of analyses into solutions based on 
secure multi-party computing requires developing imple-
mentations using special cryptographic primitives, which 
is time-consuming and requires expert-level knowledge 
of cryptography.

Axis 2.3: Scalability
This axis refers to the ability of an infrastructure to func-
tion well, i.e. to return a result to the analysis performed 
within a reasonable timeframe and with a reasonable 
demand for compute and storage resources, when load is 
increased (this is also called load scalability [44]). Within 
the context of data sharing infrastructures, an increase 
in load can be caused by an increase in the volume (e.g. 
number of patients) or dimensionality (e.g. number of 
attributes per patient) of the data analyzed, or the num-
ber of sites participating in the sharing process. Scal-
ability is a particular challenge for approaches based on 
secure multiparty computing, as current state-of-the-art 
approaches are known to not scale well with respect to 
both of these aspects. It general, it can be said that the 
performance of all secure multiparty computing meth-
ods is determined by the number of messages exchanged 
between the parties involved, the required number of 

rounds of communication between the parties and the 
computational overhead per round. It should be noted, 
however, that the exact increase in computational com-
plexity depends on the particular type of method used 
[45]and the operation performed [46].

Results
In this section, we present the results of an application 
of the framework proposed for an analysis of a range of 
well-known data sharing infrastructures for medical data 
that exhibit different characteristics along the axes sug-
gested. We note that some infrastructures are relatively 
generic and can be used to implement different methods 
with different characteristics. In these cases, we analyzed 
typical applications of the infrastructures and present 
alternative use cases in the “Discussion” section. In par-
ticular, we analyzed the following solutions: SHRINE/
i2b2 [47], dataSHIELD [20], OMOP/OHDSI [48], Per-
sonal Health Train [49], Clinerion Patient Network 
Explorer [50], TriNetX [51], MedCo [52], Sharemind 
MPC [53] and examples implementing the popular Data 
Enclave concept [54, 55]. Based on common privacy pro-
tection properties of the approaches studied, we assigned 
them to three different categories: (1) distributed data 
analysis, (2) cryptographic secure multi-party computing 
approaches and (3) data enclaves.

Distributed data analysis
One category, termed distributed data analysis, con-
tains approaches that exchange aggregated and poten-
tially anonymized data only. This non-personal data 
is generated locally at the participating sites and then 
merged across locations using meta-analysis methods. 
Hence, regarding our framework, only aggregated or 
anonymized data (and thus Safe Data) is exchanged (axis 
1.1), no Safe Setting is hence needed (axis 1.2) and Safe 
Outputs are provided by design (axis 1.3). However, there 
are significant limitations regarding the analytical util-
ity of these types of data sharing approaches. None of 
the solutions analyzed from this category supports De-
duplication (axis 2.1), since vertical integration can only 
be conducted with additional measures (see “Discus-
sion” section). Moreover, some of the approaches in this 
category are very specific and others are quite generic 
(Flexibility, axis 2.2), while all share the disadvantages of 
meta-analyses described in section “Aspect 2: Assessing 
the usefulness of data sharing technologies”, such as lim-
ited possibilities to perform subgroup analyses. However, 
all approaches provide a high degree of computational 
Scalability, as computations can be offloaded to the par-
ticipating sites effectively (axis 2.3). Important examples 
of approaches in this category are:



Page 7 of 13Wirth et al. BMC Med Inform Decis Mak          (2021) 21:242  

• SHRINE/i2b2 Informatics for Integrating Biology 
& the Bedside (i2b2) is an open-source clinical data 
warehouse used in various projects worldwide [47]. 
The Shared Health Research Information Network 
(SHRINE) is an extension of i2b2 for distributed 
analysis [56]. It allows the creation of a network 
of peer sites, in which aggregated results of que-
ries are collected. SHRINE is for example used in 
a registry of pediatric patients with rheumatic dis-
ease [57] or in a network supporting clinical trial 
recruitment [58]. The solution is specific, since it 
has been designed specifically to support cohort 
selection functions (Flexibility, axis 2.2).

• DataSHIELD This software supports distributed 
analyses based on the R statistical computing envi-
ronment [20]. It creates a network of server nodes 
that connect to local instances of R. Through a cli-
ent node, researchers can then send commands 
which are distributed to the local sites to calculate 
aggregated results without individual-level data 
leaving the sites. DataSHIELD has been deployed, 
for instance, in a network that investigates interac-
tions of ageing, mental well-being and environment 
[59] and it is a generic solution, since it supports a 
range of analysis methods based on R (Flexibility, 
axis 2.2).

• OMOP/OHDSI The Observational Health Data Sci-
ences and Informatics (OHDSI) project [48] has 
developed the Observational Medical Outcomes 
Partnership (OMOP) Common Data Model (CDM), 
which can be used to create highly structured and 
standardized local databases for real-world evidence 
studies. For distributed analyses, scripts can be exe-
cuted at the sites to derive aggregate data that can 
then be combined in meta-analyses. This process is 
also supported by a range of tools provided by the 
OHDSI community. In practice, this approach has for 
example been utilized in a study of models for pre-
dicting stroke in women [60]. The European Health 
Data Evidence Network (EHDEN) [61] aims to fos-
ter the adoption of OMOP/OHDSI in Europe. The 
approach is generic, since a wide range of analyses is 
supported (Flexibility, axis 2.2).

• Personal Health Train The Personal Health Train 
(PHT) is data sharing concept developed by differ-
ent private and public contributors [49]. It is based 
on a train analogy: (1) the data sources are called 
train stations, (2) the data analysis methods (e.g. 
query and merge procedures) are called trains. In all 
current implementations only aggregated data leave 
the stations towards the trains, hence implementing 
a meta-analysis approach. The PHT has for instance 
been used to realize a study on distributed learning 

for predicting the post-treatment two-year survival 
of lung cancer patients [62]. It is a generic solution 
conceptualizing a container-based data sharing infra-
structure that can be used to implement wide a range 
of meta-analysis approaches (Flexibility, axis 2.2).

• Clinerion Patient Network Explorer and TriNetX 
Both the Patient Network Explorer by Clinerion [50] 
and the software by TriNetX [51] are parts of propri-
ety data sharing networks for hospitals established by 
these companies. After installing the software, local 
nodes in the hospitals provide interfaces for central 
services to collect aggregated data, for instance the 
number of patients meeting certain inclusion criteria. 
As an example, TriNetX has been used to collect data 
for investigating the risk of COVID-19 for people 
suffering from intellectual and developmental disabil-
ities [63]. Both solutions can be described as specific, 
as privacy protection is implemented by restricting 
the analysis methods supported (Flexibility, axis 2.2).

Secure multi‑party computation
Approaches using cryptography-based secure multi-
party computation protocols to ensure that only 
encrypted individual-level data leaves the participat-
ing sites form an important additional category of data 
sharing infrastructures. Typically, it is also ensured that 
only analytical results aggregating the data from multiple 
sites can be decrypted at the end of a computation (thus 
also providing protection on the institutional level). As a 
result, only Safe Data (i.e. encrypted data) is exchanged 
(axis 1.1) in a Safe Setting, as data is not disclosed dur-
ing processing (axis 1.2). All solutions identified that fall 
into this category further implement specific analysis 
methods that ensure that only Safe Outputs are disclosed 
(axis 1.3). We note, however, that this is not an inher-
ent property of cryptographic approaches but a result of 
performing secure analyses or perturbing output data by 
the approaches investigated. It is well-known that Scal-
ability can be a problem for secure multi-party computa-
tion protocols (axis 2.3). Performance is often non-linear 
in the number of participating sites, implementations 
require a lot of computational resources and low-latency 
network connections with a high transmission rate, 
which can typically not be provided when data is shared 
over the internet. Whether or not duplicates can be 
detected and resolved (De-duplication, axis 2.1) and dif-
ferent types of analyses can be performed (Flexibility, 
axis 2.2) depends on the exact implementation. Impor-
tant examples of approaches from this category are:

• MedCo The open source software MedCo uses addi-
tively homomorphic encryption to enable research-
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ers to perform analyses on encrypted data across sites 
[52]. The analysis results are encrypted and can only 
be decrypted by authorized investigators. MedCo is 
implemented as an extension to i2b2 (analogously 
to SHRINE). The software, for example, forms the 
backbone of the SCOR network for sharing data on 
patients with COVID-19 [64]. The software focuses 
on cohort exploration and survival analysis. MedCo 
does not support resolving duplicates (De-dupli-
cation, axis 2.1) and is specific, as it only supports a 
limited set of functionalities and extensions require 
implementations to be developed based on the cryp-
tographic methods used by the software (Flexibility, 
axis 2.2).

• Sharemind MPC This proprietary software has been 
developed by the company Sharemind. Similar to 
MedCo it enables computations on encrypted data 
hosted at multiple sites without decrypting it first 
[53]. The software is oriented towards data scien-
tists. Analyses can either be designed in a proprietary 
programming language or in an environment which 
resembles the R statistics programming environ-
ment. The solution has, for example, been used to 
analyze 10 million synthetic health records distrib-
uted to 1,000 health centers that also involved detect-
ing and removing duplicates (De-duplication, axis 
2.1) [65]. Sharemind MPC provides a generic frame-
work for privacy-preserving data sharing (Flexibility, 
axis 2.2).

Data enclaves
The third category of approaches consists of implemen-
tations of the data enclave concept, in which individual-
level data of one or multiple sites is submitted to a data 
custodian maintaining a secure environment for data 
access [66]. Eligible researchers can run queries against 
the data stored by the custodian, the results of which are 
checked for anonymity before they are returned. Hence, 
individual-level, non-safe data is exchanged (Safe Data, 
axis 1.1) but access is restricted through a Safe Setting 
(axis 1.2) which ensures that no data is leaked and that 
output data is safe (Safe Outputs, axis 1.3). On the use-
fulness dimension, duplicate resolution is supported 
(De-duplication, axis 2.1) and large datasets as well as 
data from many participant sites can be shared in scal-
able manner (Scalability, axis 2.3). However, real-world 
implementations differ regarding their extensibility and 
Flexibility (axis 2.2). Important examples of data enclaves 
are:

• Scottish National Safe Haven This enclave is operated 
by the Scottish National Health Services (NHS) and 

provides access to various health datasets [54]. Data 
is stored in pseudonymized form to enable record 
linkage. Data access is provided through a virtual net-
work with no internet access and no ability to install 
custom software. The infrastructure has, for example, 
been used to study temporal trends in breast cancer 
incidence [67]. The solution is somewhat generic, 
as typical data analysis methods are supported, but 
extensibility is limited as additional software, pack-
ages and functionalities can only be implemented by 
the enclave (Flexibility, axis 2.2).

• US Center for Medicare and Medicaid Services Vir-
tual Research Data Center This enclave is operated 
by the US Center for Medicare and Medicaid Ser-
vices and provides access to claims data combined 
with other types of medical data [55]. To ensure that 
output data is safe, researchers are only allowed to 
export aggregated information which is reviewed and 
screened for identifiability before it can be down-
loaded [68]. The system has, for example, been used 
for a study on the relative risk of Alzheimer’s disease 
among patients with prostate cancer who received 
androgen deprivation therapy [69]. The solution is 
specific, since its software and functionalities focus 
on integration and analysis of claims data (Flexibility, 
axis 2.2).

Discussion
Principal results
In the previous sections, we have proposed a schema for 
systematizing privacy-preserving data sharing infrastruc-
tures for medical research. We applied this framework to 
study a wide range of solutions proposed and found that 
they can be assigned to three distinct categories, based 
on common properties. Table 1 summarizes the results of 
our analysis.

As can be seen from this summary, most solutions 
identified fall into the category of distributed data analy-
ses. One reason for this could be the fact that the tech-
nical complexity of this approach is relatively low, while 
it supports a fairly wide range of use cases. In compari-
son, secure multi-party computation is quite complex 
from a technical perspective and data enclaves are dif-
ficult to set up in some legislations, as individual-level 
data may not be allowed to leave the institutions in 
which it was initially collected. Distributed data analy-
sis, however, reaches its limits when analyses on indi-
vidual-level are needed or complex record-linkage and 
duplicate detection functionalities are required. Secure 
multi-party computation and data enclaves are relatively 
new approaches to medical data sharing, which can 
provide more functionalities. For them to be used even 
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more widely, technical challenges (e.g. regarding suitable 
cryptographic protocols) as well as legal challenges (e.g. 
regarding the question whether encrypted data be con-
sidered non-personal or what an appropriate legal status 
for data custodians could look like) will need to be over-
come. To accelerate work on these issues, policymakers 
should consider incentives for making innovative choices 
regarding data sharing architectures.

Comparison with prior work
Our work builds on the Five Safes framework to systema-
tize privacy protection. In prior work, the framework 
has already been used to study data sharing in official 
statistics [70], social and political sciences [71] and psy-
chology [72]. In the biomedical domain, the framework 
has been adopted to model risk-based anonymization 
approaches [73]. To the best of our knowledge, our work 
is the first to apply the framework to common biomedical 
data sharing infrastructures, however. Moreover, we have 
complemented the Five Safes framework for modeling 
privacy protection with additional axes for systematizing 
the usefulness of data sharing technologies, considering 
common requirements from biomedical research. Other 
articles analyzing data sharing infrastructures, such as 

the work by Foster [71], are not systematic and do not 
focus on biomedical research.

Other frameworks for data sharing in biomedical 
research have been proposed, which can also be used 
to analyze different technical approaches. These focus 
on other aspects, however. For example, Knoppers [74] 
proposed a framework for the sharing of genomic data 
with a particular emphasis on trust, responsible research 
and oversight using organizational and legal safeguards. 
This is comparable to the non-technical axes Safe Peo-
ple and Safe Projects of the Five Safes Framework [33]. 
Moreover, Aziz et al. [75] presented an overview of pri-
vacy-preserving techniques for sharing genomic data, 
which is particularly sensitive and difficult to protect 
from privacy breaches. Hence, the paper puts a spe-
cific focus on cryptographic methods tailored towards 
genomic data sharing, which provide strong and prov-
able degrees of protection. Compared to our approach 
their framework used for comparisons is rather specific, 
focusing on cryptographic algorithms and their technical 
properties and less on off-the-shelf, more generic infra-
structures. Still, many of the aspects used by Aziz et al. 
in their comparisons are partially congruent to aspects of 
our framework (e.g. execution time, memory usage and 
network communication as aspects of Scalability, secure 

Table 1 Results of our analysis of solutions for privacy-preserving data sharing

a The processed data is encrypted individual-level data and thus safe
b Safe Outputs is an implicit result of providing Safe Data as input

Approach Year of 
publication

Category 1. Privacy protection 2. Usefulness

1. Safe data 2. Safe settings 3. Safe outputs 1. 
De‑duplication

2. Flexibility 3. Scalability

SHRINE/i2b2 2008 Distributed data 
analysis

Yes No Yesb No Specific Yes

dataSHIELD 2010 Distributed data 
analysis

Yes No Yesb No Generic Yes

OHDSI 2014 Distributed data 
analysis

Yes No Yesb No Generic Yes

Personal Health 
Train

2017 Distributed data 
analysis

Yes No Yesb No Generic Yes

Clinerion 2015 Distributed data 
analysis

Yes No Yesb No Specific Yes

TriNetX 2015 Distributed data 
analysis

Yes No Yesb No Specific Yes

MedCo 2018 Secure multi-
party compu-
tation

Yesa Yes Yes No Specific No

ShareMIND 2008 Secure multi-
party compu-
tation

Yesa Yes Yes Yes Generic No

Scottish National 
Safe Haven

2015 Data enclave No Yes Yes Yes Generic Yes

Virtual Research 
Data Center

2014 Data enclave No Yes Yes Yes Specific Yes
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computations and output privacy as synonyms for Safe 
Settings and Safe Outputs, and accuracy as an aspect of 
Usefulness), which can be seen as an additional indicator 
for the broad applicability of our framework. Also Mittos 
et al. [76] presented a systematization of privacy-enhanc-
ing technologies for processing genomic data. However, 
their work focuses on many different types of processing, 
from which data sharing is just one example. Still, many 
of the open issues identified, such as the computational 
costs of some approaches and the need to improve the 
usefulness of results are in-line with our findings. Naveen 
et  al. [77] presented an overview of applications, chal-
lenges and solutions for genomic data processing, which 
also includes aspects of data sharing. Their work contains 
lists of known privacy threats and specific approaches for 
implementing different use cases while mitigating those 
threats. Along these lines they systematically analyze 
open challenges within different application areas, but do 
not propose a common systematization spanning all of 
them. Notably, they also highlight some of the challenges 
mentioned in our work, such as the inherent trade-off 
between degrees of protection and usefulness. Thapa 
et  al. [78] presented an overview of data sharing tech-
nologies for the more general area of “precision health”, 
also focusing primarily on cryptographic methods 
and methods requiring specific hardware support (e.g. 
Trusted Computing Environments). Consequently, the 
aspects used in their comparison of different approaches 
are quite similar to the aspects used by Aziz et al., which 
are well aligned with our more high-level framework as 
discussed above. In addition to that, they analyzed spe-
cific applications of data sharing frameworks, e.g. for dis-
tributed machine learning. The axes used for comparing 
such solutions could serve as a basis for future extensions 
of our framework (see section “Limitations, future work 
and open research questions”).

A framework for real-world multi-database studies 
has been presented by Toh [79]. On a conceptual level, 
this framework is most closely related to our work. How-
ever, it puts a strong focus on study design and feasibility 
and thus only considers weighing analytic flexibility with 
privacy protection on the utility and risk axes as well as 
trading off data pooling and distributed analyses on the 
technology axes. Finally, a comprehensive, yet unsys-
tematic, overview of infrastructures for sharing data on 
COVID-19 has been presented by Raisaro et al. [64].

Limitations, future work and open research questions
We note that the systematization proposed is abstract 
and of a qualitative nature. It is hence only suited for 
performing initial high-level comparisons of differ-
ent solutions in the field as exemplified by the results 
of our analysis of selected implementations. Although 

a rigorous and formal framework would be desirable to 
enable more detailed comparisons, constructing such a 
framework is highly challenging. Important reasons can 
be found in a recent comment by Richie and Green [80] 
in which the authors advocate for the qualitative nature 
of the Five Safes framework. Aziz et  al. [75] also report 
challenges in identifying technical and quantitative cri-
teria that are general enough to apply to different types 
of approaches and that at the same time can be used for 
specific comparisons.

At a more fundamental level, even the quantitative 
modeling of privacy risks and usefulness is still an open 
research problem. Both aspects can only be captured by 
models that make very specific assumptions, which in 
turn may not apply to all projects and usage scenarios. 
For example, a recent overview by Wagner and Eckhoff 
lists 80 different formal privacy models [81]. However, 
some data sharing infrastructures and approaches sup-
port different privacy models to provide Safe Data and 
Safe Outputs, e.g. Differential Privacy [38] or solutions 
limiting the uniqueness of disclosed data, such as cell 
suppression [82] or k-anonymity [83]. In future work, 
we plan to extend our framework by incorporating the 
most common models. Regarding the usefulness of solu-
tions, some of the more fine-grained axes used in [75, 78] 
might serve as a starting point. One example is Accuracy, 
which reflects the impact of privacy models on output 
data quality and hence captures the risk-utility trade-off 
inherent to such technologies.

The results of our analysis of the current landscape of 
solutions can also provide insights into potential direc-
tions for future work on data sharing methods. One 
important example is the low number of solutions sup-
porting de-duplication or record linkage. When analyz-
ing horizontally distributed data, the inability to identify 
and resolve population overlap can significantly reduce 
the quality of results [84]. If a study intends to analyze 
vertically distributed data, record linkage is crucial, as 
different data sets need to be combined on a patient-
level. One important example is research on rare dis-
eases, as patients with such conditions typically visit a 
wide range of healthcare providers and relevant data for 
each patient is therefore inherently distributed. Future 
work could be carried out to extend distributed data 
analysis infrastructures with record-linkage function-
alities, e.g. by enriching data with secure record linkage 
tokens [85]. Also, secure multi-party computation envi-
ronments could be extended with libraries including dif-
ferent record-linkage algorithms (see [86] for a recent 
example). Moreover, future work could explore ways to 
provide strong protection guarantees for inherently flex-
ible approaches, such as the Personal Health Train. This 
could, for example, be achieved by integrating libraries 
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providing support for a wide range of privacy-preserving 
analysis functions within such infrastructures. Finally, a 
challenge with privacy-preserving data sharing infra-
structures is that access to individual-level data in some 
cases cannot be provided at all, although access to data 
from at least one site is often needed to develop analysis 
algorithms that can then be executed in the distributed 
network. One approach to overcome this limitation is to 
provide synthetic data derived from the original data for 
this preparatory process (see [87] for a recent example in 
the context of distributed data analysis).

Conclusion
In this article, we proposed a high-level framework for 
analyzing and comparing privacy-preserving data shar-
ing infrastructures for medical research. We believe that 
our framework makes the properties of data sharing 
approaches more transparent and can serve as a starting 
point for developing more comprehensive systematiza-
tions, ultimately supporting decision makers and regula-
tory authorities in gaining a better understanding of the 
trade-offs taken. We have shown that our systematization 
is of value, by using it to analyze existing solutions, show-
ing that there are fundamental differences between them. 
Finally, our results also provide insights into gaps, regard-
ing the systematization itself as well as the current land-
scape of data sharing infrastructures, that may be worth 
exploring in the future.
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