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TECHNICAL ADVANCE

Improvement of APACHE II score system 
for disease severity based on XGBoost algorithm
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Abstract 

Background:  Prognostication is an essential tool for risk adjustment and decision making in the intensive care units 
(ICUs). In order to improve patient outcomes, we have been trying to develop a more effective model than Acute 
Physiology and Chronic Health Evaluation (APACHE) II to measure the severity of the patients in ICUs. The aim of the 
present study was to provide a mortality prediction model for ICUs patients, and to assess its performance relative to 
prediction based on the APACHE II scoring system.

Methods:  We used the Medical Information Mart for Intensive Care version III (MIMIC-III) database to build our 
model. After comparing the APACHE II with 6 typical machine learning (ML) methods, the best performing model was 
screened for external validation on anther independent dataset. Performance measures were calculated using cross-
validation to avoid making biased assessments. The primary outcome was hospital mortality. Finally, we used TreeS-
HAP algorithm to explain the variable relationships in the extreme gradient boosting algorithm (XGBoost) model.

Results:  We picked out 14 variables with 24,777 cases to form our basic data set. When the variables were the same 
as those contained in the APACHE II, the accuracy of XGBoost (accuracy: 0.858) was higher than that of APACHE II 
(accuracy: 0.742) and other algorithms. In addition, it exhibited better calibration properties than other methods, the 
result in the area under the ROC curve (AUC: 0.76). we then expand the variable set by adding five new variables to 
improve the performance of our model. The accuracy, precision, recall, F1, and AUC of the XGBoost model increased, 
and were still higher than other models (0.866, 0.853, 0.870, 0.845, and 0.81, respectively). On the external validation 
dataset, the AUC was 0.79 and calibration properties were good.

Conclusions:  As compared to conventional severity scores APACHE II, our XGBoost proposal offers improved perfor-
mance for predicting hospital mortality in ICUs patients. Furthermore, the TreeSHAP can help to enhance the under-
standing of our model by providing detailed insights into the impact of different features on the disease risk. In sum, 
our model could help clinicians determine prognosis and improve patient outcomes.
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Background
According to data from World Population Prospects: the 
2019 Revision, there will be more than twice as many per-
sons above 65 as children under five by 2050 [1]. Those 
increasing numbers of elderly patients and the empha-
sis on the long-term quality of life in patients with criti-
cally ill have led to a growing demand for intensive care 
units (ICUs). The  prognosis of patients admitted to the 
ICUs is quite different and the mortality rate can range 
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from 7% [2] to 52.3% [3]. It is because critical care is fast-
paced, complex, and commonly requires urgent high-risk 
decision-making, and the outcome of ICUs treatment 
is highly related to numerous factors, such as the site, 
cause of admission, age, prior comorbidities, acute physi-
ological changes at admission and during the first several 
hours of treatment, etc. [4]. Therefore, one of the many 
significant challenges faced by physicians is the need to 
deal with a tremendous amount of real-time information 
and make the best decision to deal with these patients. 
It relies heavily on physicians’ workability. Moreover, the 
severity and instability of critically ill patients’ illness and 
their frequent need for high-risk interventions and medi-
cations lead to the higher rates of adverse events and 
medical error rates than elsewhere [5]. Rothschild et  al. 
[6] studied 391 patients with 420 unit admissions dur-
ing 1490 patient-days and found that the rates per 1000 
patient-days for adverse events and serious errors which 
had life-threatening were 13% and 11%, respectively.

To solve these problems, many researchers have 
been committed to developing predictive scoring sys-
tems of measures disease severity that is used to pre-
dict outcomes, typically mortality, of patients in the 
ICUs [7]. There are many predictive scoring systems 
that can achieve an objective and quantitative descrip-
tion of the degree of organ dysfunction and evaluation 
of morbidity in ICUs patients such as Simplified Acute 
Physiology Score (SAPS), Sepsis-related Organ Failure 
Assessment Score (SOFA), Multiple Organ Dysfunc-
tion Score (MODS), Logistic Organ Dysfunction Score 
(LODS) and Acute Physiology and Chronic Health Evalu-
ation (APACHE) II, III and IV. But until Knaus et al. [8] 
published the second version of the APACHE II in 1985, 
the prognostic scores for critically ill patients were estab-
lished, and quickly became the most widely used prog-
nostic index in ICUs and clinical trials worldwide.

Although APACHE III and IV have been developed, 
they are too complex and time-consuming for routine 
use in the ICUs. Therefore, APACHE II is still the most 
widely used severity-of-disease scoring system in ICUs 
around the world [9–13] and become the most cited 
study in the intensive medicine literature to date [14, 15]. 
So the purpose of this article is to make improvements 
based on Apache II. APACHE II is a composite score 
consists of Age, the Chronic Health Index (CHI) and 
the Acute Physiology Score (APS), and the latter derived 
from 12 physiologic parameters that include vital signs, 
arterial blood gas measurements, laboratory results from 
blood specimens, the Glasgow Coma Scale (GCS), and so 
forth. APACHE II was used to measure the severe disease 
by calculating the most deranged reading during each 
patient’s initial 24 h in ICUs. The increasing score (range 
0–71) was closely correlated with the subsequent risk of 

hospital death for intensive care admissions [8]. Inexperi-
ence to date, few patients have exceeded 55 [16].

However, APACHE II has its own issues, such as too 
sophisticated scoring statistical approaches for routine 
use in the ICUs. It’s hard for physicians to use it with 
great ease to ensure that decision making is accurate 
and compatible with current therapeutic capabilities, 
and perform badly in repeated application [9]. Further-
more, the accuracy of a prognostic model generally dete-
riorates over time due to changes in ICU admission and 
discharge criteria, the increasing medical resource, and 
variations in the availability and effectiveness of different 
treatments for particular conditions [17]. As described 
by Soares et al. [18], because almost any ICUs today hos-
pital mortality much lower than that expected in 1985, 
APACHE II should not be used as an evaluation tool in 
the ICUs.

Thus, researchers have been trying to develop a more 
accurate and timely method than APACHE II to measure 
the severity of the patients in intensive medicine [19–24]. 
They found machine learning (ML) techniques have a 
wide range of applications in disease prediction, and 
play a very important role in obtaining rapid and precise 
information about the nature of a patient’s health prob-
lem and alleviate the complications related to scoring 
systems such as APACHE (Table 1).

According to Table 1, many ML algorithms have been 
used to evaluate the performance of APACHE II, but 
most of the research data is small. In addition, most 
researches have only studied a single disease, and there 
was no evidence that one of studies could individually 
outperform all others regardless of the data set. In this 
paper, we focused on ML algorithm selection and tun-
ing to improve the performance of the APACHE II scor-
ing system, by using two large data sets for modeling and 
validation, respectively. Those contributions were high-
lighted as follows:

Firstly, we compared the APACHE II scoring system 
with several ML models on large ICUs databases. Then, 
optimized these algorithms and selected the best one-
eXtreme Gradient Boosting (XGBoost) to validate on 
another large non-overlapping ICUs database. Both 
databases containing ICUs data routinely collected from 
adult patients in the United States. The performance of 
XGBoost algorithm was more effective and stable than 
other approaches. Furthermore, we filtered and added 5 
features from ICUs disease scoring scales such as Apache 
IV, SOFA, and SAPS to develop our model, which might 
provide a way to improve the APACHE II scoring system 
with a more efficient performance.

In recent years, prediction models such as support vec-
tor machines (SVM), logistic regression models (LR), 
Naïve Bayes (NB), artificial neural networks (ANN), 
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random forest models (RF) and other machine learning 
models have been developed in many areas of health care 
research [25–29]. In this study, we aim to construct sev-
eral machine learning models to predict the mortality of 
ICUs patients and compare their predicting performance, 
and finally get a prediction model that is better than the 
Apache II traditional scoring scale.

Methods
Database description and Source code
Our models were built and validated on two large non-
overlapping ICUs databases, the Medical Information 
Mart for Intensive Care version III (MIMIC-III) version 
1.4 [30] which released in September 2016 was used for 
model development, and the eICU Research Institute 
Database (eRI) [31] was used for model validation. The 
MIMIC-III dataset comprises of almost 60 000 inpatients 
treated in the ICUs of the Beth Israel Deaconess Medical 
Center (BIDMC) in Boston from June 2001 to October 
2012. And the eICU database was a multi-center ICUs 
database included over 200 000 admissions monitored by 
eICU Programs across the United States[31]. Both data 
sets are publicly available after registration and contain 
high granularity data associated with distinct hospital 
admissions for ICUs adult patients in the United States, 
such as the real electronic medical record data of various 
types of ICUs (surgical intensive care unit, coronary care 
unit, medical intensive care unit, etc.).

With the help of the Shared resources on 
GitHub(https://​github.​com/​MIT-​LCP/​mimic-​code/​
tree/​master/​conce​pts/​sever​itysc​ores), we extracted each 
patient’s recorded value of the first 24  h after admis-
sion to ICUs. All source code is available in our reposi-
tory under a permitted open source license to reproduce 
the analyses in this work(https://​github.​com/​yanni​e228/​
MIMIC-​III).

The aim of the present study is to provide ICUs patients 
with a machine learning algorithm model that performs 
better than APACHE II scoring system in evaluating and 
predicting disease severity. Considering that the median 
hospital length of stay for ICUs patients in our basic 
data set was 43 (0–87) days, we selected the 90-day in-
hospital mortality as an outcome variable to maximize 
sample inclusion. Finally, after exclusion of ineligible 
cases (values less than 0 or outside the measuring range 
of the inspection device), we included 24,777 admissions 
(including 15.97% deaths) from MIMIC-III database and 
7328 admissions (including 22.30% deaths) from eRI 
database, respectively. Patient demographics and clinical 
characteristics are shown in Table 2. In both datasets, we 
extracted a set of 14 variables, including demographics, 
vital signs, laboratory values, etc.

Feature variable screening
The first issue in the model building via ML is feature selec-
tion. We extracted the features from MIMIC III database 
according to the APACHE II scoring system, and picked 

Table 1  Significant scholarly works that ML techniques to compare with the performance of APACHE II

Study Data source Condition Number 
of 
patients

Machine learning 
algorithms

Accuracy AUC​

Samaneh Layeghian Javan 
et al.[19]

MIMIC III Cardiac arrest 4611 Stacking algorithm 0.76 0.82

Min Woo Kang et al.[20] Seoul National University 
Hospital

Continuous renal replace-
ment therapy

1571 Random forest / 0.78

Meng Hsuen Hsieh et al. [21] Chi-Mei Medical Center Patients with unplanned 
extubation in intensive 
care units

341 Random forest 0.88 0.91

Zhongheng Zhang et al.[22] SAILS study and OMEGA 
study

Acute respiratory distress 
syndrome

1071 Neural network / 0.821

Dan Assaf et al.[21] Sheba Medical Center Coronavirus disease (COVID-
19)

162 Random forest 0.92 0.93

Grupo de Trabajo Gripe A 
Grave et al.[23]

GETGAG/SEMICYUC 
database

Severe influenza 3959 Random forest 0.83 0.82

Kuo-Ching Yuan et al.[24] Taipei Medical University 
Hospital

Sepsis 434 XGBoost 0. 82 0.89

Scherpf M et al.[39] MIMIC III Sepsis 1050 Recurrent neural network / 0.81

Zhang Z et al.[40] MIMIC III Acute kidney injury 6682 XGBoost / 0.86

Kong G et al.[41] MIMIC III Sepsis 16,688 Gradient boosting machine 0.85

Our work MIMIC III ICU patients 24,777 XGBoost 0.87 0.81

https://github.com/MIT-LCP/mimic-code/tree/master/concepts/severityscores
https://github.com/MIT-LCP/mimic-code/tree/master/concepts/severityscores
https://github.com/yannie228/MIMIC-III
https://github.com/yannie228/MIMIC-III
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out the worst values within the initial 24  h after each 
patient been hospitalized to the ICUs, then graded them. 
All patients were adults (above 16 years old) and diagnosed 
with chronic diseases, including chronic obstructive pul-
monary disease (COPD), Acquired Immune Deficiency 
Syndrome(AIDS), lymphoma, leukemia, etc. Finally, we 
have picked out 14 variables to form our basic data set, 
which is composed of 12 Acute Physiology variables 
(Table 2), age, and chronic health status.

Data preprocessing
Data preprocessing were driven by certain qualities of our 
data set, so we normalized and standardized the data based 
on APACHE II scores. As more than half of the variable 
A-aDO2 were missing, after removing the case with miss-
ing values in the variables except for A-aDO2, we used the 
RF classifier to fill in the missing values of A-aDO2. At last, 
we included 21 940 admissions and 6 893 admissions from 
MIMIC-III and eRI, respectively. Normalization is a "scal-
ing down" transformation of the features [32]. Because the 
value range of the original data in the data set that used in 
this article has been determined, in order to preserve the 
relationship among the original data values, we chose the 
following Min–max normalization method to normalize 
our data.

(1)zij =
xij −min(x·j)

max(x·j)−min(x·j)

so that the normalized data in terms of zij has the element 
value between 0 and 1. However, it is noticeable that data 
distribution is unbalanced in the overall data set: the 
ratio between patient death and survival is 1:5.263. To 
ensure that the output of the prediction model does not 
over-fit the data, we weighted the data according to their 
outcome ratios when training the models.

Modeling approach selection
The primary outcome measure in our paper was hos-
pital mortality. Group mortality prediction of acutely 
ill patients for the APACHE II score was calculated as 
defined by Knaus et  al. [8], for each individual to com-
pute the risk(R) of hospital death with the following 
equation; then sum the individual risks and divide by the 
total number of patients.

However, using the estimated death rate of the indi-
vidual obtained by formula 2, a classification matrix 
containing True Positive (TP), False Positive (FP), True 
Negative (TN) and False Negative (FN) was obtained 
with a decision criterion of 0.5, and then the accuracy, 
precision, recall rate, F1 and ROC values of Apache II 
were calculated according to the matrix. The decision 

(2)

In(R/1− R) = −3.517+ (APACHE II score× 0.146)

+
(

0.603, only if postemergency surgery
)

+
(

diagnostic category weight
)

Table 2  Description of the Acute Physiology variables

Figures represent median (standard deviation) for numerical variables, all values are calculated from all non-missing data, after removal of ineligible cases, and before 
imputation of missing data

Abbreviations: APS Acute Physiology Score, T Temperature, MAP mean arterial pressure, HR Heart Rate, RR Respiratory Rate, A-aDO2 alveolar-arterial differences for O2, 
PH Potential of Hydrogen, Na Sodium, K Potassium, BUN Blood Urea Nitrogen, Ht Hematocrit, WBC White Blood Cell, GCS the Glasgow Coma Scale

variables MIMIC III eRI

Survivor n = 20,821 Non-survivor n = 3956 Survivor
n = 5694

Non-survivor n = 1634

Age 66.00(53.51) 62.00(18.83)

APS

T(℃) 36.94(1.31) 36.40(5.03)

MAP(mmHg) 60.00(39.70) 61.00(47.14)

HR(bpm) 99.00(31.52) 114(31.65)

RR(/min) 26.00(10.79) 31.00(15.83)

A-aDO2(mmHg) 101.00(43.77) 100.00(86.76)

PH 7.35(0.13) 7.36(0.11)

Na(mmol/L) 140.00(5.85) 138.00(6.49)

K(mmol/L) 4.40(1.16) 4.30(1.20)

BUN(mg/dl) 26.00(26.08) 24.00(23.88)

Ht(%) 29.20(7.43) 31.90(7.43)

WBC(*109/L) 11.50(14.59) 12.4(10.34)

GCS(15-GCS) 1.00(2.51) 5.00(4.73)
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criterion of 0.5 means that every patient with a risk 
greater than 0.5 is predicted to die [8].

Meanwhile, we run a preliminary test for several 
typical ML methods which widely used in the binary 
calculation, such as SVM, LR, NB, ANN, RF and the 
XGBoost on our ICUs data set and evaluated their 
performances. Then selected the best one to build the 
model. The proposed modeling process was shown 
in Fig.  1. All ML algorithms of this research were 
done with the help of the scikit-learn. Scikit-learn is 
probably the most useful library for machine learn-
ing in Python that contains a lot of efficient tools for 
machine learning and statistical modeling, and data 
preprocessing package. The analysis was carried out 
on the Jupyter Notebooks platform, using the Python 
programming language.

In this study, since we had labeled records, the super-
vised learning approach was used. And Grid Search is 
an effective method for adjusting the parameters in 
supervised learning and improve the generalization 
performance of a model [33]. To achieve optimal per-
formance, we chose the GridSearchCV to adjust the 
parameters of the above six machine learning models 
(Table 3). With Grid Search, we tried all possible com-
binations of the parameters of interest and found the 
best ones. GridSearchCV is a useful tool that traverse 
all the different parameters that is fed into the param-
eter grid and produces the best combination of param-
eters, based on a scoring metric (accuracy, f1, etc.). 
According to Table 4 and Fig. 2, with Grid Search, we 
tried all possible combinations of parameters of inter-
est and found XGBoost was appealing because its aver-
age performance was better than the other classifiers 
in our test. In this article, we chose XGBoost as an 
example to demonstrate the tuning process.

XGBoost model optimization
XGBoost is a sequential technique which works on the 

Fig. 1  Data flow of the modeling process. The MIMIC-III data set was used for model training and testing. These 6 ML methods were compared with 
the traditional Apache II method to select the best model for model improvement, then external validation was performed on an independent data 
set from the eRI database

Table 3  Optimal parameter values for 6 ML models

Abbreviation Hyperparameter Value

SVM C 2

Gamma 1

LR C 0.1

NB Alpha 1

ANN Hidden_layer_sizes 30

RF n_estimators 400

XGBoost Lerning_rate 0.1

n_estimator 90

Gamma 0.05

reg_lambda 0.1

Subsample 0.6

Min_child_weight 1

max_depth 5

Table 4  Performance of ML methods

Abbreviation Accuracy
[95% Cl]

Precision
[95% Cl]

Recall
[95% Cl]

F1
[95% Cl]

SVM 0.736 ± 0.003
[0.732, 0.740]

0.819 ± 0.005
[0.813, 0.825]

0.736 ± 0.003
[0.732, 0.740]

0.765 ± 0.002
[0.763, 0.767]

LR 0.704 ± 0.004
[0.698, 0.710]

0.822 ± 0.003
[0.817, 0.826]

0.704 ± 0.004
[0.698, 0.710]

0.742 ± 0.003
[0.737, 0.746]

NB 0.841 ± 0.005
[0.834, 0.847]

0.802 ± 0.007
[0.792, 0.812]

0.841 ± 0.005
[0.834, 0.847]

0.809 ± 0.004
[0.803, 0.814]

ANN 0.854 ± 0.002
[0.851, 0.858]

0.827 ± 0.007
[0.817, 0.837]

0.854 ± 0.002
[0.851, 0.858]

0.810 ± 0.004
[0.805, 0.815]

RF 0.841 ± 0.003
[0.837, 0.845]

0.840 ± 0.002
[0.837, 0.843]

0.840 ± 0.001
[0.839, 0.841]

0.841 ± 0.002
[0.838, 0.843]

XGBoost 0.858 ± 0.002
[0.855, 0.862]

0.834 ± 0.005
[0.827, 0.841]

0.858 ± 0.002
[0.855, 0.862]

0.824 ± 0.003
[0.820, 0.829]

Apache II 0.742 ± 0.000 0.796 ± 0.000 0.742 ± 0.000 0.764 ± 0.000
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principle of ensemble [34]. It combines a set of weak 
learners to improve prediction accuracy and always 
shows better performance on various ML benchmark 
data sets [35]. As mentioned above, we used the Grid 
Search in this article, with XGBoost as the example 
shown below.

Step 1: Since our study was a binary categorization 
model, the objective chosen “binary: logistic”. The “n_
estimators” which determine the epoch of the model was 
set to 100 and early stopping rounds to 10 to check for 
overfitting.

Step 2: Search for the optimal learning_rate and 
gamma simultaneously because they directly affect the 
performance of the model. The grid values searched for 
the learning_rate were 0.01, 0.02, 0.1, 0.2, and 0.3, while 
those for the gamma were 0.0, 0.1, 0.2, 0.3 and 0.4.

Step 3: With the optimal values of the learning_rate 
and gamma, make a Grid Search over the max_depth 
and min_child_weight in selected ranges of 1 to 10. All 
the possible combinations of these two parameter values 
were run for the model tuning and the one with the best 
performance was retained as the optimal values.

Step 4: Make a Grid Search over the regularization 
parameter reg_alpha, colsample_bytree, and subsample 
simultaneously in their respective optimal ranges.

Feature extraction
After getting the best parameters of the six ML mod-
els, through Fig.  3 we found that when only using the 
same feature vectors as Apache II, the area under the 
curve (AUC) values of these models are all lower than 
0.80. Therefore, we tried to reconstruct a new data-
set by picking out some new ICUs characteristic vari-
ables from the disease severity prediction scoring 
systems such as Apache IV, SOFA, and SAPS to improve 
model performance. In the end, we selected five new 
variables(albumin, bilirubin, serum creatinine, urine and 
blood glucose) and obtained a new basic data set contain-
ing 19 variables.

Furthermore, the XGBoost library provides a built-
in function(plot_importance()) to plot features ordered 
by their importance. Feature importance can intuitively 
reflect the importance of features, and select features that 
have a greater impact on the final model. However, it is 
impossible to judge the relationship between the char-
acteristics and the final prediction result. So we used 

Fig. 2  Mean ± Standard Error(SE) of Cross Validation for SVM, LR, NB, ANN, RF, XGBoost and Apache II models. The data set used for model building 
contains 14 feature variables
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Shapley Additive Explanations (SHAP) to gain some 
insight into which features contribute enough infor-
mation to the model’s calculations (Fig.  4). SHAP is a 
method to explain model predictions based on Shapley 
Values, with it we can explain how much each feature 
contributes to the value of a single prediction[36]. For 

testing the influence of new variables on the XGBoost 
model, we then sorted the five newly added variables 
according to Fig. 4, and included them into the dataset in 
order of their contribution degree for independent test-
ing (Table 5).

External validation
In our paper, we used the same indicator but a completely 
independent data set to externally verify the prediction 
performance of XGBoost. The data included 7 328 ICUs 
patients between 2014 and 2015, selected from the eRI 
database. The specific data distribution of the validation 
database was shown in Table 2.

Evaluation
As the K-fold cross validation was used to avoid overfit-
ting, we took the most popular one of K = 5. The data was 
divided equally to 5 folds, 4 folds were used for training 
and the remaining one fold was for evaluation. As the 
data distribution is unbalanced, accuracy is not a reli-
able measurement of prediction model performance [37]. 
In this paper, we used weighted averaged F1, recall, and 
precision to measuring model performance, which are 
defined as follows:

Note also that the prediction accuracy cannot be the 
only yardstick to select a classifier. Other criteria such as 
the Receiving Operating Characteristic (ROC) curve and 
the AUC are also used as metrics to measure the perfor-
mance of prediction models.

Results
Optimization of prediction models
Table 3 shown the adjusted parameters and final values. 
For the hyperparameters of each classification algorithm, 
we first perform Grid Search with fivefold cross valida-
tion within the training set to determine the optimal 
hyperparameters. We then used the entire training set 
to train the model with the optimal hyperparameters 
and evaluated the trained model in the test set. For SVM 
classification, we tuned the parameters based on gamma 

(3)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(4)Recall =
TP

TP+ FN

(5)Precision =
TP

TP+ FP

(6)F1 =
2*Precison*Recall

Precision+ Recall

Fig. 3  Receiver-Operating Characteristics curves of SVM, LR, NB, ANN, 
RF, XGB, and Apache II models. These results were obtained using 
fivefold cross-validation

Fig. 4  Rank of importance of each variable in the XGBoost model for 
intensive care unit mortality prediction
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and “C”; for LR classification, we tuned the parameters 
based on “C”; for NB, we tuned the parameters based 
on alpha; for ANN, we tuned the parameters based on 
hidden_layer_sizes; for RF classification, we tuned the 
parameters based on n_estimators; for XGBoost, we 
tuned the parameters based on learning_rate, n_estima-
tors, gamma, reg_lambda, subsample, min_child_weight 
and max_depth.

As can be seen from Table  4, when the features were 
completely consistent with the Apache II scale (using 14 
attribute features as input variables), none of the classifi-
cation models had an AUC greater than 0.80. According 
to Fig.  4, we added five features successively to expand 
the features of the data set. The results presented in 
Table  6 and Fig.  5 shown that the performance of the 
XGBoost classifier has been gradually improved.

Performance of 6 prediction models
The goal of the present study was to assess whether an 
ensemble ML technique, which would offer any gain in 
predicting hospital mortality in critically ill patients. In 

this paper, the mean and standard deviation of Accu-
racy, Precision, Recall, F1 and AUC values were used to 
evaluate the test results of each model. As you can see 
from Table 4, the accuracy of the APACHE II system in 
predicting actual mortality was limited. Combined with 
Table 4 and Fig. 3, the XGBoost model performed the 
best among all the models, with all evaluation indexes 
higher than the other models (0.858, 0.833, 0.859, 0.826 
and 0.76, respectively).

For the sake of providing a fair comparison of our 
models with the Apache II, we included the same 
explanatory variables as used in Apache II. Expanding 
the set of explanatory variables used could potentially 
result in a score with even better predictive perfor-
mance. For this reason, we added five new variables to 

Table 5  Performance of the XGBoost model with different variables

Variables Number of 
variables

Accuracy
[95% Cl]

Precision
[95% Cl]

Recall
[95% Cl]

F1
[95% Cl]

AUC​
[95% Cl]

Urine 15 0.862 ± 0.005
[0.855, 0.869]

0.839 ± 0.010
[0.825, 0.853]

0.862 ± 0.005
[0.855, 0.869]

0.832 ± 0.008
[0.822, 0.841]

0.788 ± 0.006
[0.780, 0.796]

Bilirubin 16 0.865 ± 0.004
[0.860, 0.871]

0.845 ± 0.007
[0.836, 0.855]

0.865 ± 0.004
[0.860, 0.871]

0.839 ± 0.005
[0.832, 0.846]

0.802 ± 0.006
[0.793, 0.810]

Albumin 17 0.864 ± 0.006
[0.856, 0.872]

0.843 ± 0.010
[0.829, 0.857]

0.864 ± 0.006
[0.856, 0.872]

0.838 ± 0.008
[0.827, 0.850]

0.805 ± 0.006
[0.797, 0.814]

BUN 18 0.866 ± 0.004
[0.861, 0.872]

0.847 ± 0.007
[0.837, 0.856]

0.866 ± 0.004
[0.861, 0.872]

0.842 ± 0.006
[0.834, 0.850]

0.811 ± 0.005
[0.804, 0.818]

Glu 19 0.867 ± 0.004
[0.860, 0.872]

0.846 ± 0.007
[0.836, 0.856]

0.867 ± 0.004
[0.860, 0.872]

0.841 ± 0.006
[0.832, 0.850]

0.811 ± 0.004
[0.805, 0.816]

TABLE 6  Performance of optimized ML methods

*  The data set used for model building contains 19 feature variables

Abbreviation Accuracy
[95% Cl]

Precision
[95% Cl]

Recall
[95% Cl]

F1
[95% Cl]

SVM* 0.774 ± 0.003
[0.770, 0.779]

0.826 ± 0.004
[0.820, 0.832]

0.774 ± 0.003
[0.770, 0.779]

0.794 ± 0.003
[0.790, 0.798]

LR* 0.739 ± 0.004
[0.734, 0.744]

0.840 ± 0.004
[0.834, 0.846]

0.739 ± 0.004
[0.734, 0.744]

0.770 ± 0.003
[0.766, 0.775]

NB* 0.840 ± 0.005
[0.833, 0.847]

0.814 ± 0.007
[0.805, 0.824]

0.840 ± 0.005
[0.833, 0.847]

0.822 ± 0.006
[0.815, 0.830]

ANN* 0.863 ± 0.004
[0.856, 0.869]

0.841 ± 0.009
[0.829, 0.853]

0.863 ± 0.005
[0.856, 0.869]

0.832 ± 0.007
[0.823, 0.841]

RF* 0.857 ± 0.003
[0.853, 0.862]

0.859 ± 0.003
[0.854, 0.863]

0.859 ± 0.003
[0.855, 0.864]

0.860 ± 0.004
[0.855, 0.865]

XGBoost* 0.867 ± 0.004
[0.860, 0.872]

0.846 ± 0.007
[0.836, 0.856]

0.867 ± 0.004
[0.860, 0.872]

0.841 ± 0.006
[0.832, 0.850]

Fig. 5  Receiver-Operating Characteristics curves of 6 models. * The 
data set used for model building contains 19 feature variables
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build a new dataset as the new model dataset. The accu-
racy, precision, recall, F1 and AUC values of all models 
results of the new data set were shown in Table 6 and 
Fig.  5, the XGBoost model still has the greatest AUC 
value among all models, followed by the SVM, ANN 
and LR models. XGBoost and ANN models also have 
the greatest recall and precision values among all mod-
els in the MIMIC III data set. This was especially true 
for XGBoost.

Feature importance analysis
The Fig.  4 sorted by mean (|Tree SHAP|) below shown 
the  urine  feature as the strongest predictor of our 
XGBoost prediction model. And the top five feature vec-
tors were urine, WBC, BUN, age and bilirubin, among 
which two variables were not included in the Apache II 
system. In addition, by plotting the impact of feature on 
each sample in Fig. 6, we can also get important outlier 
effects. For example, while bilirubin was not the most 
important feature globally, it was by far the most impor-
tant feature for a subset of patients. The coloring by fea-
ture value shown us patterns such as patients with fewer 
chronic diseases have a lower risk of death, while higher 
WBC levels increase the risk.

Results of external validation
Our study also selected a set of patients hospitalized 
from the eICU database used for validation of our mod-
els. The ROC curve for XGBoost model-based prediction 
was provided in Fig. 7. The corresponding AUC was 0.79. 
The values of accuracy, precision, recall, and F1 were 
0.812, 0.789, 0.809, and 0.791 respectively, indicating our 
prediction model can perform well in different data sets.

Discussion
The significance of Apache II is the ability to quickly 
and accurately assess the current status of ICUs 
patients [38]. This has important implications for doc-
tors’ decision making after the patients are admit-
ted. However, from Table  4 and Fig.  3, we found that 
Apache II did not perform well, worse than most 
machine learning models. The out-performance by ML 
methods shown promise in improving the quality of 
predictions. Similar to parts of the aims of this study, 
many researches used MIMIC III database to establish 
machine learning models for early disease prediction, 
but most of them were based on the prediction of sin-
gle diseases with relatively small data volume [39–41]. 
For example, Layeghian et  al. [19] used 4,611 samples 
in the MIMIC III database to establish a machine learn-
ing model for predicting cardiac arrest in patients with 
sepsis, the final accuracy and AUC were 0.76 and 0.82, 
respectively. Zhang et  al. [40], through two machine 
learning algorithms, focused on 21 elements, including 
age, creatinine, BUN, and albumin, and was able to get 

Fig. 6  Feature importance of best factors combined from patients. 
Every patient has one dot on each row. The x position of the dot is 
the impact of that feature on the model’s prediction for the patient, 
and the color of the dot represents the value of that feature for the 
sample. Dots that don’t fit on the row pile up to show density. Since 
the XGBoost model has a logistic loss the x-axis has units of log-odds 
(Tree SHAP explains the change in the margin output of the model)

Fig. 7  Receiver-Operating Characteristics curves of XGBoost, the data 
set comes from eICU
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an AUC of 0.86 when predicting volume responsive-
ness in patients with oliguric acute kidney injury. In our 
research, we used 24 777 cases for modeling and 7 328 
samples for external verification, and the results shown 
that the accuracy, precision, recall, F1 and AUC of the 
model were all higher than 0.80.

We also seek to optimize Apache II scoring system by 
tuning parameters and expanding the dataset with avail-
able variables in our work. As shown in Table 5, the AUC 
of the XGBoost model increase from 0.76 to 0.81 may 
seem marginal, however, the AUC was approached only 
asymptotically, such an apparently small increase, in fact, 
represents a very large increase in model performance 
at these levels [42]. We have deliberately constrained 
our available variables to Apache II at first. It was inter-
esting that we achieved a very impressive classification 
accuracy. After tuning and optimizing of the models, we 
added five new variables and found that the predictive 
ability of these models, especially XGBoost, was remark-
able, the accuracy and AUC were substantially higher 
than other models. Moreover, the external verification 
results shown that the XGBoost model has good stability, 
it suggested that it could be used to develop a new prog-
nostic clinical tool, and it was likely to succeed beyond 
the current Apache II scoring system.

In the end, considering that the included variables 
contribute differently to the model, we used the SHAP 
method called TreeSHAP, which is specifically for tree 
models. TreeSHAP can calculate the SHAP values of the 
corresponding features for all samples, and take their 
average value as the importance value of the feature to 
obtain the global interpretation [43]. The summary plot 
of 19 features in the XGBoost model according to their 
mean SHAP values was provided in Fig. 4. The global fea-
ture importance gives an abstract view about the role of 
each feature, but we cannot know the direction of these 
effects. So we then used the SHAP values to visualize the 
nonlinear relationship between risk factors and mortality 
risk in ICUs patients, see Fig. 6. However, the calculated 
data used in this paper were stratified by the Apache II 
scoring system, that is, the greater the difference between 
the value of characteristic variables and the normal value, 
the higher the score would be. The plot provided an esti-
mate of both individualized and global feature impor-
tance by plotting the SHAP values for a random sample of 
instances. We found that higher bilirubin and GCS had a 
more significant impact on our model compared to urine. 
And most of the indicators have a positive effect on the 
risk of death, this result was broadly consistent with the 
medical literature [44–47]. Also, we notice that within 
a certain range, patients with higher levels of potassium 
(K) and hematocrit (Ht) had a lower risk than those with 
lower levels. We did not have enough continuous data to 

prove this, but it would be an interesting area to examine 
in the future.

From what has been discussed above, the predictive 
models based on machine learning have advantages in 
handling high-dimensional data, which suggests that 
more clinical variables can be considered as model inputs 
than those used in Apache II severity scoring systems, 
with the benefit of discovering meaningful clinical vari-
ables that have prediction effects on ICU mortality. In 
addition, our model’s strengths include its ability to pre-
dict the risk of death for all patients admitted to the ICU, 
rather than for a single disease.

There were some limitations to this study which have 
been mitigated, but not entirely avoided. First, while the 
data is of good quality for a clinical data set, it has draw-
backs. The proportion of missing data was high for some 
variables, such as A-aDO2, bilirubin, and albumin. It was 
mitigated by using RF method to impute these missing 
data to preserve the sample size for the analysis. Second, 
clinical lab data, such as liver function, were omitted 
because in this study we chose features that were widely 
used in disease assessment scales and were known to 
predict patient mortality, which could yield good results 
according to this study. Future studies can be performed 
to determine whether data sets with more other features 
will produce comparable results. Third, some variables 
needed to compute the Apache II (e.g., elective surgery, 
underlying disease variables) were not directly available 
in the dataset and had to be extrapolated from other data. 
Fourth, our model was based on a retrospective study of 
two databases, which reduces its external validity. Hence, 
prospective validation is required for enabling the clinical 
implementation of our results.

Conclusion
ICUs prognostication is important for clinical decision 
making, and the Apache II scoring system remains the 
most commonly used international severity scoring sys-
tem worldwide [48]. We have demonstrated that Apache 
II is not the most suitable approach and it can be aug-
mented by changing the calculation method and adding 
the physiological parameters. We also presented a pre-
diction model based on XGBoost algorithm, along with 
proofs and experiments showing that model was desir-
able. Promising next steps is to further improve the pre-
diction performance of model by expanding the number 
of variables, and carry out prospective validation work.
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