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Abstract

Background: Testing a hypothesis for factors-outcome effect'is a common quest, but standard statistical regression
analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can
provide an alternative methodology in analysing data to identify variables with the highest correlation to the out-
come. By applying their effective machine learning (ML) abilities, significant research time and costs can be saved. The
study aims to systematically review the applications of ES in urological research and their methodological models for
effective multi-variate analysis. Their domains, development and validity will be identified.

Methods: The PRISMA methodology was applied to formulate an effective method for data gathering and analysis.
This study search included seven most relevant information sources: WEB OF SCIENCE, EMBASE, BIOSIS CITATION
INDEX, SCOPUS, PUBMED, Google Scholar and MEDLINE. Eligible articles were included if they applied one of the
known ML models for a clear urological research question involving multivariate analysis. Only articles with pertinent
research methods in ES models were included. The analysed data included the system model, applications, input/
output variables, target user, validation, and outcomes. Both ML models and the variable analysis were comparatively
reported for each system.

Results: The search identified n= 1087 articles from all databases and n=712 were eligible for examination against
inclusion criteria. A total of 168 systems were finally included and systematically analysed demonstrating a recent
increase in uptake of ES in academic urology in particular artificial neural networks with 31 systems. Most of the
systems were applied in urological oncology (prostate cancer= 15, bladder cancer = 13) where diagnostic, prognos-
tic and survival predictor markers were investigated. Due to the heterogeneity of models and their statistical tests, a
meta-analysis was not feasible.

Conclusion: ES utility offers an effective ML potential and their applications in research have demonstrated a valid
model for multi-variate analysis. The complexity of their development can challenge their uptake in urological clinics
whilst the limitation of the statistical tools in this domain has created a gap for further research studies. Integration of
computer scientists in academic units has promoted the use of ES in clinical urological research.

Introduction
In the 1950’ ] McCarthy in Stanford University and A
Turing in Cambridge University proposed the concept of
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E Shortliffe advanced those systems to develop MYCIN,
which successfully simulated the reasoning of a human
microbiologist in diagnosing and treating patients with
microbial infection [3]. Their model introduced Expert
Systems (ES) to the scientific literature and a ten year
review by Liao et al. demonstrated their wide preva-
lence in the industrial fields with immense applications
including health care [4]. In contrast to Liao’s review,
other studies questioned their real time implementation
in health care and suggested a lack of their uptake and
integration in the health care systems [5]. This is despite
evidence from systematic reviews demonstrating the
positive impact of computer aid systems on patients’ out-
come and health care [6, 7].

This study aimed to systematically review published
ES in urological health care with a primary aim to dem-
onstrate their availability, progression, testing and
applications. The secondary aim was to evaluate their
development life cycle against standards suggested by
O’Keefe and Benbasat in their review articles on ES
development [8, 9]. The later would evaluate the gap
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between their development and implementation in
health care.

Methods

The study methodology followed the recommendations
outlined in the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement
(Fig. 1). No ethical approval was required because the
type of the study waives this requirement.

Search

Information sources including WEB OF SCIENCE,
EMBASE, BIOSIS CITATION INDEX, SCOPUS, PUB-
MED, Google Scholar and MEDLINE were searched
using key words in (Table 1). Articles published between
1960 and 2016 were considered and examined against the
inclusion criteria. While tailoring the conducted search
for each literature database, the key words were com-
bined by “OR” in each domain, then domains were com-
bined by “AND”.

WEB OF EMBASE MEDLINE
SCIENCE N =62 N =308
N=69

PUBMED BlOSIS SCOPUS
_ CITATION _
N =379 INDEX N=41
N=228

l

l

l

l

l

Total publications = 1087

A

Non-Urological studies =

A

Eligible art

icles =712

191 articles

A

Duplication = 267

Articles excluded = 521*

A

138 articles included

Articles excluded after
Quality Assessment = 53**

Fig. 1 PRISMA flow chart for the systematic review of articles included in the review of expert systems in urology
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Table 1 Keywords used for literature search
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#1

#2

#3

TOPIC: ("expert system*") OR TOPIC: ("decision support") OR TOPIC: ("artifi-
cial intelligence") OR TOPIC: ("rule based") OR TOPIC: ("knowledge base*
system*") OR TOPIC: ("neural network") OR TOPIC: ("fuzzy")

DocType = All document types; Language = All languages;

TOPIC: (urology)
DocType = All document types; Language = All languages;

#1 AND #2
DocType = All document types; Language = All languages;

Eligibility criteria

For the primary aim, data search was conducted to yield
the collected results then analyse them according to pre-
planned eligibility criteria based on the system model,
year of production, type and outcome of its validation,
functional domain application, variables for input and
output, target user and domain. This selection criteria
were designed with an objective to identify expert system
studies and demonstrate their prevalence, testing, and
applications in clinical urology. Only articles and studies
written in English were included.

Further qualitative analysis was required to meet the
study secondary aim. For this, further data was gathered
on credibility (user perception on the system), evaluation
(system usability), validation (building the right system)
and verification (building the system right) then compare
against the standards reported in [8, 9].

Data filtering
The resultant reference list of each included article was
checked to identify a potentially eligible item that had

not been retrieved by the initial search. All retrieved arti-
cles were collated in a final reference list on a manage-
ment software (Endnote, X8), then duplicate studies were
removed from the list.

Upon including more than one hundred articles, the
rest of the eligible articles were meticulously compared to
the ones included, then excluded based on demonstrat-
ing clear similarity. This was applied to avoid expanding
the size of the data without adding to the study analysis.

Results

ANN was the commonest model to be applied in Uro-
logical ES (Fig. 2). The rest of the models demonstrated
diversity which is consistent with other published indus-
trial systems [4].

Prostate cancer was the commonest domain for urolog-
ical ES with most of the system focusing on cancer diag-
nosis. These systems were applied to various domains
(Fig. 3), and they were further stratified and analysed
according to their core functional application as outlines
in the methodology.

No. of Models

Analysis of Expert Systems (ES) by Models

\

")

T —
n “\-\-—_:-——_;_
ANN FNM RBS FRB SVM HYBRID K NEARST BN DT
FUZZY
Model Type

= Expert system model

Fig. 2 Analysis of Expert Systems (ES) by models (n = 169). ANN was the most common but other systems were applied on different domain as
fuzzy neural model (FNM), rule-based system (RBS), fuzzy rule based (FRB), support vector machine (SVT), Bayesian network (BN) and decision trees
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(RCQ), vesico ureteric reflux (VU reflux)

= Urological domains

Fig. 3 Urological domains (n = 168) applied by Expert Systems (ES). Prostate cancer (CaP) was the commonest domain followed by bladder cancer
(Bca) then other diseases as benign prostatic disease (BPD), pelvi ureteric junction obstruction (PUJ), urinary tract infection (UTI), renal cell cancer

Quantitative analysis

Decision support systems

The main objective of ES in this domain was to facilitate
the clinical decision making by identifying key elements
from patients clinical and laboratory examinations then
refine a theoretical diagnostic or treatment strategy [10].
They can guide the expert to find the right answer [11] or
take over the decision making to support the none expert
as [12] or even replace both to interact with the patient
directly [13].

They have supported various aspects of urological deci-
sion making such as diagnosis, investigations analysis,
radiotherapy dose calculation, the delivery of behavioural
treatment and therapeutic dialogues.

Domains Urinary dysfunction (U Dys) was the com-
monest domain to be covered in the decision support
system application (n=9), which could be further cate-
gorised into U Dys diagnostic, investigation analysis and
therapeutic systems. They have demonstrated a range of
methodologies, validation, and target users (Table 2)
applicable to Decision support systems in Urological
domain. For instance, Keles et al. [14] designed an ES to
support junior nurses in diagnosing urinary elimination
dysfunction in a selected group of patients while [15, 16]
systems were able to support any medical user to diag-
nose urinary incontinence with an accuracy reaching
higher than 90%. The target user of most of these sys-

tems were predominantly medical health care workers
including both experts and none experts, with excep-
tion of [13, 17] which can be directly used by patients to
receive an assessment of their urinary elimination dys-
function followed by a tailored treatment plan.

Prostate diseases were represented in 6 systems while
3 of them modelled by [10, 12, 20] for diagnosing both
benign and malignant prostatic disease, namely cancer
prostate (CaP).

All systems in this domain were diagnosis support
system with exception of [19] which also provided
treatment for benign prostatic hyperplasia (BPH) and
[11] calculated the required radiotherapy dose for
treating CaP.

Sexual dysfunctions were modelled in 3 systems where
[21] diagnosed male sexual dysfunction with an accuracy
of 89%, while [22] added a therapeutic model for the same
disease with an overall accuracy of 79%. Sexpert by [23]
was the third system in this category developed in 1988
and in fact the oldest ES to be identified from our search
in all urological domains. Interestingly this RB system
was designed to interact directly with couples suffering
from sexual dysfunction where the system responds to
their query with a tailored therapeutic dialogue for treat-
ing their problem.

Urinary tract infection (UTI) was diagnosed and
treated by one of the hybrid fuzzy systems FNM devel-
oped by [24] with an accuracy of 86.8%.
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Diagnosis prediction

In this domain, ES quantifying the probability of a clinical
diagnosis with a defined margin of error. They simulate
a second expert opinion and it has been suggested that
their use could eliminate unnecessary invasive investiga-
tion as the application of ANN by [26] could reduce up to
68% of repeated TRUS biopsies to diagnose CaP.

Domains Prostate cancer was the main domain for this
application with 19 systems out of 20. Most of them were
designed to predict organ confinement before radical
surgical excision of the prostate (Tables 3, 4). The target
population were patients with clinically localised CaP and
their accuracy reached high estimates as in [28], where
the system was able to predict 98% of the low risk group
for lymph node involvement using preoperative available
date (PSA, clinical stage and Gleason score).

Chiu et al. [29] modelled a system with clinical vari-
ables for patients undergoing nuclear bone scintigraphy
for predicting skeletal metastasis. The system was able
to predict metastatic disease in the test group with Se
87.5%, Sp 83.3%.

None seminoma testicular cancer was the other domain
in this application with the system [27] able to predict
the cancer disease stage (Table 4) with accuracy reaching
87%.

Treatment outcome prediction

In this application, ES combined disease and patient
related factors to estimate the success of a specific treat-
ment or intervention. As in [30, 38, 64, 69] where the sys-
tem predicted the outcome of extra corporeal shock wave
(ESWL) for treating kidney stones and [74, 75] providing
an estimation of cancer recurrence after radical surgical
treatment of prostate cancer.

Domains Prostate cancer was also common domain
in this application (n=23). Potter [74, 75] described 4
models developed by data acquired from patients with
clinically localised CaP and had radical prostatectomy
with curative intent. The variables included clinical and
histological findings of the surgical specimen and they
were able to predict up to 81% who did not have evidence
biochemical failure (rising PSA) in their follow up. Hamid
et al. [76] and Gombha [77] models were not restricted to
the clinically localised CaP cohort and their study popula-
tion included patients at different disease stages and on
any treatment pathway. Their models included 2 experi-
mental histological markers (tumour suppressor gene p53
and the proto-oncogene bcl-2) in their input variables and
the estimated predictive accuracy of the patient response
to treatment were reaching 68% and 80% (p<0.00001)
respectively.
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Nephrolithiasis treatment was expressed by 6 other
systems applying the treatment outcome prediction con-
cept. Cummings et al. targeted this group in his ANN
[78] where he trained his network with patients’ data
treated at the emergency service of 3 centres with ure-
teric stones, to identify patients failing conservative man-
agement and requiring further intervention. When tested
on a different set of 55 cases, the system correctly pre-
dicted 100% of the patients who passed the stone sponta-
neously with an overall accuracy of 76%.

Extra corporeal shockwave lithotripsy (ESWL) is one
of the favourable interventions in the nephrolithiasis
treatment domain. The stone here receives strong exter-
nal shock waves, which can subsequently reduce it into
small fragment and eliminate the need for direct instru-
mentation of the renal tract. Their reported success rate
can only provide a generalised prediction of outcome to
the individual case and ANN was capable of providing
an alternative multivariate analytical tool in the 4 mod-
els developed by [30, 38, 64, 69]. They estimated high
accuracy of their models (Table 5), as in [64], the system
predicted 97% of the patients who were confirmed to be
stone free following ESWL for treating ureteric stone.

Paediatric pelvi-ureteric junction obstruction is primar-
ily treated conservatively unless there is any evidence of
renal function compromise, recurring infection or wors-
ening radiological findings. For the failing group, pyelo-
plasty is the second line of treatment and [81] developed
an ANN to estimate the success rate of this procedure
for each individual case by predicting the post-operative
degree of hydronephrosis with a reported 100% accuracy
in the small tested sample.

Vesico ureteric reflux or reflux uropathy is another pae-
diatric disease, characterised by back flow of urine from
the bladder into the ureter through incompetent Vesico
ureteric functional valve. Treatment is primarily con-
servative as it can be a self-limiting disease or surgery
to reimplantation the ureters or endoscopic injection
of bulking agent at the ureteric orifices [80]. The study
authors trained a neural network using 261 cases whom
have received endoscopic injection and the system pre-
dicted 94% of the patients who did not benefit from the
treatment [80].

Laparoscopic partial and radical nephrectomy were
the domain of the [82], which was developed by multi
institutional case data (age, co-morbidities, tumour size,
and extension) of patients having laparoscopic partial or
radical nephrectomy. The system was able to predict the
length of their postoperative hospital stay with an accu-
racy of 72%.

Bladder cancer can be treated with complete bladder
excision and [79] developed systems to predict the cure
rate with an accuracy of 83%.
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Recurrence and survival prediction

The ES in this domain aimed to provide individualised
risk analysis tools estimating the disease specific mortal-
ity and recognising the group whom may benefit from
more aggressive or adjuvant treatment.

Domains Bladder cancer survival and recurrence pre-
diction following radical cystectomy (RC) with curative
intention was the commonest domain in this application
(24 out of 26 total systems). The lymph nodal involve-
ment is highly predictive of the recurrence and these
patients are considered for adjuvant or neoadjuvant sys-
temic chemotherapy. The node free cohort will include
high-risk patients who were not identified by the conven-
tional linear stratification system. Catto et al. developed a
FNM system to identify this high risk group in the nodal
free cohort by predicting the disease recurrence rate (Se
81%, Sp 85%) and their survival with a median error of
8.15 months [92]. The high-risk group identified by this
model can benefit from systemic treatment post cystec-
tomy to improve their disease related morbidity and mor-
tality [95, 96]. The 5 years survival post cystectomy was
the output of 2 other ANN with a high prediction efficacy
of 77% and 90% respectively (Table 6) [97, 99].

Renal cell cancer is primarily treated with partial or
radical nephrectomy for clinically localised disease with
systemic therapy for the metastatic disease. There is still
a degree of uncertainty in stratifying individual disease
risk in order to predict the indication and outcome of
systemic therapy in the group with distant metastasis.
Vukicevic et al. [98] attempted to clarify this uncertainty
by training a neural network with patients’ data who had
nephrectomy (partial or radical) and received systemic
therapy. The mature model predicted the patients who
survived the disease at 3 years with an overall accuracy of
95% (CI 0.878—0.987).

None seminoma testicular cancer 5 years recurrence
was the domain of [118] ANN. The system was trained
with multicentre data and in its testing phase and pre-
dicted 100% of the patients who did not suffer from
disease recurrence at 5 years with an overall predictive
accuracy of 94% (AUC=87%).

Predicting research variables

In academia, testing a hypothesis for ‘factors-outcome
effect’ is a popular quest and the standard statistical
regression analysis tools may not be effective for data
contaminated by irrelevant variables [119]. Al can pro-
vide an alternative methodology in the analysis to iden-
tify variables with high correlation to the outcome by
applying machine learning as in ANN. The area under the
curve (AUC) is estimated for the system predictive accu-
racy applying all researched variables. Those research
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variables can be given random values or randomised then
the AUC is re estimated for comparison with the origi-
nal [120]. Only variables that decreases the AUC are con-
sidered significant and the wider the discrepancy of the
AUC the more significant they are (Table 7).

Domains Prostate cancer was a common domain in this
application with a total of 15 systems analysing predictive
factors for diagnosis of cancer, response to treatment and
quality of life with prostatic disease. One of the hot topics
in Urological cancer is discovering alternative CaP diag-
nostic markers since serum PSA is not sensitive for dis-
tinguishing benign from malignant disease. Stephan et al.
investigated the diagnostic value of three markers in this
domain: Macrophage inhibitory cytokine-1, macrophage
inhibitory factor and human kallikrein 11 [108]. These
were used as variables (nodes) in ANN models and com-
pared their accuracy to the linear regression of %fPSA.
They have reported that only the ANN model including
all three variables was more accurate (AUC 91%, Se 90%,
Sp 80%) than all other models proving his hypothesis that
they are only relevant as when combined.

Similarly, another study estimated the predictive val-
ues of serum PSA precursors (-5, -7 proPSA) in diagnos-
ing prostate cancer using and comparing the accuracy
to %fPSA [107]. The -5, -7 pro PSA were only signifi-
cant in the cohort with PSA between 4 and10 pg/l and
did not improve the predictive accuracy when added to
the %fPSA. The same author tested this hypothesis on
another free PSA precursor (-2 proPSA) by developing
ANN with the %p2PSA (-2 ProPSA: fPSA) among other
disease variables, which have improved the system accu-
racy (AUC 85% from 75%) [120].

Three systems evaluated the presence of bcl-2 and
p53 (tumor suppressor genes) as a predictive variable
for response to prostate cancer treatment [76, 77]. Their
combination was reported to be significant (Ac 85%,
p<0.00001) in [77] but [76] found that only bcl-2 is rel-
evant in the other two models (accuracy 63—68%).

Bladder cancer diagnosis and disease progression
was the second most common domain with 13 systems.
Kolasa et al. [110] have modeled an ANN with three
novel urine markers: urine levels of nuclear matrix pro-
tein-22, monocyte chemoattractant protein-1 and uri-
nary intercellular adhesion molecule-1, to predict the
diagnosis of bladder cancer and it succeeded in predict-
ing all cancer free patients when the three variables were
used as a group. Catto.et al. [119] developed two Al mod-
els (ANN & FNM) performing microarray analysis on
genes associated with bladder cancer progression. Their
models narrowed down these genes from 200 to 11 pro-
gression-associated genes out of 200 ([OR] 0.70; 95% [CI]
0.56—0.87), which were found to be more accurate than
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the regression analysis when compared to the specimen
immunohistology results.

Kolasa et al. [110] model predicting the pre-histology
diagnosis of malignancy based on urine level of novel
tumour markers. Their ANN was found to be more accu-
rate (Se 100%, Sp 75.7%) than haematuria diagnosed on
urine dipstick (Se 92.6%, Sp 51.8%) and atypical urine
cytology (Se 66.7%, Sp 81%).

ESWL of renal stones was the research domain of [30,
69], where they aimed at identifying significant vari-
ables correlated to the treatment outcome (stone free)
and developing a predictive model. Chiu et al. [69] model
did not recognise residual fragments following ESWL as
a significant risk for triggering further stone growth and
[30] identified these factor: positive BMI, infundibular
width (IW) 5 mm, infundibular ureteropelvic angle 45%
or more (IUPA), to be all predictive of lower pole stone
breaking and clearance.

Benign prostatic hyperplasia was modelled in a system
[114] to link the disease specific clinical and radiologi-
cal factors with the disease progression in patients with
mild disease (IPSS<7) and not receiving any treatment.
His ANN identified: obstructive symptoms (Oss), PSA
of more than 1.5 ng/ml and transitional zone volume of
more than 25 cm?’y to be correlated to disease progression
and can accurately predict 78% of the cohort who will
need further treatment.

Urinary dysfunction diagnosis accuracy by clini-
cal symptoms was compared to urodynamic findings in
female patients with pelvic organ prolapse by [115] and
both the linear regression and ANN models could not
establish relation between the symptoms and urody-
namic based diagnosis hence dismissing the hypothesis
of only relying on clinical symptoms to reach an accurate
diagnosis and replace the need for urodynamics study.

Hypogonadism (Hgon) was represented in [133] sys-
tem where the diagnosis was made based on patient’s age,
erectile dysfunction and depression with AUC of 70%
(p<0.01).

Image analysis

This one of the advancing applications of Al in medi-
cine where the system either analyse the variables in the
reported medical images as data input or identifies these
variables through a separate image analyser without the
need for expert to report the scan or images. The first
category was included among other systems mentioned
above as in the diagnosis prediction domain where
[47] included different variables from TRUS in the sys-
tem input to predict CaP diagnosis. In this domain, we
focused on the other group where the images are pre-
sented to the machine in the form raw data translated by
the image analyser and the system will then apply their
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machine learning to identify the cause effect pattern
(Table 8).

Domains Prostate cancer image analysis was modelled
in 10 systems to enhance diagnostic accuracy as in [126]
and disease progression prediction as in [128]. The first
system represented each TRUS image pixel as one vari-
able or neuron in a pulse coupled neural network and
trained their system with 212 prostate cancer images to
segment prostate gland boundary with an average overlap
accuracy (overlap measure=difference between PCNN
boundary and the expert) of 81% for ten images [126].

The other 4 systems analysed histological images of a
cohort of patients post RP with clinically localised CaP to
predict the disease progression. The histological images
were given coloured coding and analysed by the system
that used variables as % of epithelial cell and glandular
Lumina to identify the high risk group for disease recur-
rence with an accuracy reaching 90% [128].

LUT disease urine cytology images were analysed by 2
models in [123], which identified all patients with benign
disease with an overall accuracy of 97%.

Nephrolithiasis stone biochemistry analysis can be
achieved through an expert analysis of infrared spectros-
copy which was simulated by [124] where the infrared
spectra wavelength numbers were modelled as input var-
iables and the system prediction accuracy of the expert
analysed stone specimen had a root square mean error of
3.471.

Qualitative analysis
The same articles were considered for the qualitative
analysis against the four stages (validation, verification,
evaluations and credibility) reported in Okeefe industrial
survey [8] and Benbasat article [9]. The completion of
the four stages examined in this qualitative analysis was
demonstrated by none of the included systems. There is
a possibility that some of these missing stages has been
performed but not published in the scientific literature.
Validation was performed by almost all the systems
(166 out 169) with varying degree of study strength, bias,
and limitations (Table 9). Most of the data driven systems
(ANN, SVM, BN, kNN and FNM) were validated by the
ROC and AUC by having a training and validation set or
cross validation or applying the leave one out technique.
Samli et al. enhanced the validity of their system by esti-
mating the kappa statistics with the ROC [134].
Evaluation was only performed by a small fraction of
these systems (n=26). Their evaluation was aiming at the
user or the expert but rarely both. There is no evidence
to support that these were performed at early stages to
determine the substantiality of the system to the user.
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System credibility and verification were never per-
formed. It would be implied that the verification was per-
formed to an extent but not reported as it is a technical
part of the development.

‘System development limitation and bias evaluation’
demonstrated an overall acceptable validation meth-
odology with valid statistical analysis. However, a few
observed limitations (Table 9) were reported with the
common encounter being the consideration human
opinion as a gold standard (n=9). For instance, the gold
standard in diagnosing prostate cancer is tissue biopsy
confirmation. The interpretation of the expert clinical
diagnosis as the gold standard reference can lead to sta-
tistical errors and invalidate the study.

Discussion

Expert Systems are widely available in Urological
domains, with a large range of models, applications,
domains, and target users including patients, students,
non-experts, experts, and researchers. The number of
published systems has risen over the years but with a
consistent lack of publications reporting their real time
testing or healthcare implementation (Fig. 4).

There is an increasing interest in analysing this gap
which is reflected from the scope of Al historic review
articles which aimed to only familiarise the readers
with ES existence and application [33, 125]. In fact, the
majority had a relatively narrow scope on the evolution
and application of one ES models (artificial neural net-
work) in prostate cancer diagnosis. Recently, similar to
our research, there has been more interest in Al valida-
tion, and lack of uptake despite the faith in their ability.
Therefore, in this study we quantified ES progression
and applications in Urology while examining their
developmental life cycle.

It was evident that CaP was the commonest domain
in almost all applications contributing with more than
two thirds of the systems (91 systems in total). Dif-
ferent aspects of this domain have been simulated by
these systems to include diagnosis, therapeutics, pre-
dictions of disease progression or treatment outcome,
researching variables and medical images analysis.
Most of these systems were simulating urologist cogni-
tive function with little guidance on their benefits and
how they can be implemented to improve cancer deci-
sion making.

In industry, this is usually performed before the sys-
tem development by evaluating the system usability from
the user perspective. This part has lacked or not been
acknowledged in the published studies and is possibly a
core reason for the lack of their integration in urological
health care. Furthermore, none of these systems has been
a subject to live testing in a well-designed study to prove

Page 26 of 36

its efficacy over standard tools or in the clinical context
to prove its validity to justify their complex structure to
Al novice health care professionals. The qualitative anal-
ysis demonstrated that validation is the only stage of the
development cycle to be applied by most of the systems
and there is a lack of system evaluation, credibility, and
verification. The evaluation can be subdivided into usa-
bility (usually by average user), utility and system quality
(by experts) [9]. Despite the crucial stage of ES develop-
ment, there has been a lack of attention in the published
articles to integrate it into the development life cycle.
This can mean the whole system can fail and also chal-
lenge its uptake [8].

An example can be drawn from this review where the
majority of the systems focused on CaP diagnosis and
treatment. Their implementation would be challenged by
the standard decision-making tools of the cancer multi-
disciplinary team and the ethical concerns of relying on
ANN in making such life changing and expensive deci-
sion. The utility analysis of those ES would have been
essential for tailoring their development for real time
applications where they can be more substantial to the
user. One example is lack of community-based systems
for the initial referral of suspected cancer patients and
follow up of stable disease, where NICE have identified a
need for such decision support models [152, 153].

There was a wide diversity of modelling in Urologi-
cal ES with ANN being the most common model in this
review. These would bypass the need for direct learning
from experts and the exhaustive process of knowledge
acquisition, which is a core requirement for knowledge-
based systems to attest the whole system progress [55].
However, their analytical hidden layer of nodes “black
box phenomenon” has been a subject for wide criticism
and rejection from clinicians due to lack of transparency
and understanding of its function.

Stephan et al. suggested a statistical solution to iden-
tify the variables significance by performing sensitivity
analysis [154]. This estimates the variation of the AUC
with introduction or elimination of each variable. This
can only reflect the significance of each variable but does
not explain how the cases are being solved nor quantify
this to the user in a standard statistical value. This can
be useful in research as they can identify significant vari-
ables in a large set data and has been successfully applied
in the field of academic urology as in [119] where the sys-
tem successfully identified the relevant gene signature for
bladder cancer progression which saved time and cost of
microarray analysis of all suspected genes.

Holzinger et al. emphasised on the importance of the
explicability of the AI model specially in medicine which
is a clear challenge for machine learning due to their com-
plex reasoning [155]. Their study attempted to simplify
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Table 9 Qualitative assessment of urological Expert Systems
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Art  Mdl Validation methods Credibility Evaluation Validation Verification Strength and bias
[271  RBR Patients’evaluation No Yes Yes No Only qualitative evaluation
[18] RBR Blinded comparison against 4 experts ~ Yes Yes Yes No Consideration of system evaluation with
with independent experts rating real time testing but small number
and 3 centres RCT pilot trial
[21] FRB Improve practitioner accuracy No No No No Insufficient info on development and
validation
[15]  RBR RCT reliability and validity by experts’  Yes Yes Yes No Small number in the study and short
reviews duration of follow up
[95] ANN ROC, Sp, Se No No Yes No Small number for validation
[63] FSS ROC, Sp, Se No No Yes No 2 methods for validation, compared to
experts and data
[143] ANN Compare to histology results No No Yes No No comparison to human to demon-
strate usability, no p value or Cl
[103] FNM ROC, LR, RMS No No Yes No p value calculated to compare all
models
[103] ANN ROC, LR, RMS No No Yes No p value calculated to compare all mod-
els, the effect of combining HK p53
with other variables
[102] ANN ROC, Sp, Se No No Yes No No p value
[76] ANN Correlation co-efficient No No Yes No Correlation co-efficient between expert
and system? Kappa more accurate
[40] FRB Not published No No No No Not validated
[68]  ANN AUC ROC No No Yes No p value calculated vs LR
[19] RBR Feedback from patients with no No Yes No No No validation but user (patient evalu-
control group ation)
[29] FRB Comparison to experts and non- No No Yes No Expert as gold standard
experts
[25]  RBR PPV 62%, NPV 100% No No Yes No Small number, low specificity
Se 100% Sp 33%
[55]  ANN ROC AUC then compare with LR, No No Yes No Multimodal of validation
kappa stats
[99]  ANN ROC, Sp, Se No No Yes No Not long term follows up
[43]  ANN ROC (0.74 and 0.86) No No Yes No TRUS finding from expert panel, human
as gold standard
[105] FNM ROC, LR No No Yes No p value calculated to compare all
models
[105] ANN Kaplan Maier for survival No No Yes No p for comparison ANN and FNM
calculated
[145] kNN Comparison to other classifiers and No Yes Yes No Evaluated the usability of the product
ROC and was found to have less than
significant effect
[129] ANN ROC Se, Sp No No Yes No Sensitivity analysis of input variables
[22] ANN ROC 0.7, accuracy 79% No No Yes No Compare to experts without accounting
for human error
[85] FRB ROC Se, Sp No No Yes No No user evaluation
[24] FRB Ac 0.76,Se 0.79, Sp 0.75 No No Yes No Expert as gold standard
[109] ANN ROC Compare to LR No No Yes No Cl calculated
[12] FRB Ac 0.93, Se 0.97, Sp 0.99 No No Yes No Expert as gold standard
[110] ANN Prediction error percent No No Yes No Experimental results
[48] SVM ROC AUC No No Yes No P value calculated to compare all
models
[146] ANN Overlap measure (segmented by No No Yes No Expert as gold standard
experts)
[23] ANN  Ac0.84,5Se0.93,5p0.33 No No Yes No Experts verified data no account for

human error
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Table 9 (continued)
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Art  Mdl Validation methods Credibility Evaluation Validation Verification Strength and bias
[30] FNM Accuracy 86.8% No No Yes No Guidelines as gold standard
[20]  RBR Evaluation by experts, 95 retrospective  No No Yes No Expert as gold standard, qualitative
evaluation
[26] HYB Kappa vs experts, k=0.89 No No Yes No Kappa limitation prospective, randomi-
FUZZY sation,
ONT
[16] RBR Se 0.95, Sp 0.72, Bayesian analysis S&S,  VYes Yes Yes No Full system evaluation but nurse as gold
usability of system by Likert scale standard, no attempts to eliminate
(Cronbach’s alpha 0.9) error
[91]  ANN ROC AUC compare with Partin nomo-  No No Yes No No correlation with user
gram and LR
[17]  FNM Kappa vs experts, Se 0.95, Sp 0.92 No No Yes No Human expert as gold standard and no
qualitative evaluation (weight of error)
[60]  ANN Ac 60% (testing) 75% (training) No No Yes No Compare to gold standard, Urodynamic
[1171 ANN PPV 100% No No Yes No No calculation of NPP and overall
accuracy
[32] FNM Correlation coefficient=0.99 No No Yes No Small number of cases for validation
[150] FCM OR 86.3% No No Yes No Comparison with experts as gold stand-
ard than mapping to histology
[1417 ANN ROC, Se 64.2%, Sp 59.6%, PPV 61.6%, No No Yes No Similar to urodynamic as research tool
NPV 62.29%, AUC 0.6852
[54] FRB None No No Yes No No validation

All systems’ development was qualitatively assessed against the common industrial steps in the development pathway described by Okeefe and Benbasat. With
exception of the system validation, the rest of the cycle was defective with no explanation. The validation had variable degree of strength with common application of
the receiver operator characteristic for estimating the area under the curve for data driven systems

the explanation by classifying the systems into post-hoc
or ante-hoc. In post-hoc, explanations were provided for
a specific decision as in model agnostic framework where
the black box reasoning can be explained through trans-
parent approximations of the mathematical models and
variable [156, 157]. Those are reproduced on demand for
a specific problem rather than the whole system which
can shed more light on the system function. It is not cer-
tain if those can be easily interpreted by the Al novice
clinician, but it has provided more explicit models for
tackling the black box phenomenon.

Knowledge based systems can be explained by ante
hoc models where the whole system reasoning can be
represented. Those systems rely on expert knowledge
in their development and face the bottle neck phenom-
enon in their applications. Furthermore, they are not
always successful in identifying and mapping multilin-
ear mathematical rules and machine learning is man-
datory or at least more efficient [155]. Bologna and
Hayashi et al. suggested that machine learning is more
successful in complex problem solving with inverse
relation between the machine performance, and it is
built-in transparency [158].

Another common aspect lacking in these articles was
the coupling of their system development methodology
with the medical device registration requirements. This

is essential as ES often function as standalone software
with no human supervision to their calculation. This
categorises the system as a medical device with man-
datory perquisite to register with the relevant authori-
ties as Medicines & Healthcare products Regulatory
Agency in the UK [5].

Cabitza et al. compared Al validation to other medical
interventions as drugs and emphasised on considering
the “software as a medical device” [159]. Unlike other
devices or drugs, Al models in healthcare are unique
in being more dynamic which should be reflected in
their validation cycle. They also quoted the known term
“techno-vigilance” to learn from other medical device
validation pathways. They recommended different out-
look to validation where it is broken down to statistical
(efficacy), relational (usability), pragmatic (effective-
ness) and ecological (cost-effectiveness) with available
standards for those steps (ISO 5725, ISO 9241 and ISO
14155). The latter is viewed as a novel standard for eval-
uating the cost benefits of applying specific AI model
in healthcare which would require longitudinal mod-
elling of health economics [159]. This was evidently
lacking in articles that were included in our review and
in fact most of the studies were non-randomised and
retrospective.
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= Expert systems

Fig.4 Expert System (ES) analysis by year of publication showing an upward trend and increase in number of publications. Systems were included
according to the keywords for expert system models and applied in urological domains

2012 2013 2014 2015

Similarly, Nagendran et al. systematically analysed
studies that compare Al performance to experts in clas-
sifying medical imaging into diseased and non-diseased,
they concluded that Al performance was non-inferior
to human experts with potential for out-performing
[160]. Their 10 years review identified from literature 2
randomised clinical trials and 9 prospective non-ran-
domised trials extracted from a total of 10 and 81 studies,
respectively. Their review assessed the risk of bias using
PROBAST (prediction model risk of bias assessment
tool) criteria for non-randomised studies. The tool is
designed for identifying the risk of bias by analysing four
domains (participant, predictors, outcome, and analysis)
[161], which is applicable to systematic review analysing
prediction model with a target outcome.

In our study, as there was no unified outcome for the
included prediction tools, the scope was on the role of
validation rather than the outcome. Therefore, those
tools assessing the risk of bias were not utilised due to
the wide gaps in the tool checklist between the included
articles. Such study design and data heterogeneities were
also evident in Nagendran et al. and similar to our study,
data synthesis was not possible. This will pose a chal-
lenge reinforcing the application of Al models in health-
care due to lack of level 1 evidence which is mandatory in
healthcare for accepting a novel intervention.

Finally, the quality of the data analysis was beyond the
scope of our systematic review despite being essential
for developing quality Al systems. Cabitza et al. exam-
ined this gap and focused on the data governance [161].
There has been very limited evidence on data quality
appraisal and standards with call for further research

and allocation of more resources specially in healthcare
where the data are notoriously limited with errors or
discordance.

The potential application of Al in urology with focus on
its future application has been recently discussed by Emi-
naga et al. [162]. They have shown an increasing interest
in urology research, but with a challenged mechanistic
update due to the model complexity and lack of end user
understanding of its design and function. Furthermore,
they identified discrepancy between Al engineering and
clinical application which reflects some lack of communi-
cation between both disciplines.

This can be either a consequence or a cause for lack
of clinical utility testing, which increases the need for
research in this domain to be incorporated in the soft-
ware development [163]. In fact, it has been recom-
mended to perform the utility test before developing the
system to tailor its application [164, 165]. Despite hav-
ing different methodology to our systematic review, the
recommendations were similar with strong emphasis on
the lack of utility testing and its impact on Al uptake in
healthcare [166—-168].

Conclusion

ES have been advancing in Urology with demonstrated
versatility and efficacy. They have suffered from lack of
formality in their development, testing and methodology
for registration, which has limited their uptake. Future
research is recommended in identifying criteria for suc-
cessful functional domain applications, knowledge engi-
neering and integrating the system development with the
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registration requirement for their future implementation
in the health care systems.
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Ac: Accuracy; Al: Artificial intelligence; ANN: Artificial neural networks; AP:
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dysfunction; ES: Expert Systems; FC: Forward chaining; Fert: Fertility; FH: Family
history; FLS: Fuzzy logic systems; F-ONT: Fuzzy ontology; FNM: Fuzzy neural
modelling; FRB: Fuzzy rule-based systems; FSH: Follicular stimulating hormone
level; GA: Genetic algorithm; GI: Gleason score; Hgon: Hypogonadism; Hk11:
Human kallikrein 11; Incont: Incontinence; IS: Information systems; ISS: Irrita-
tive symptoms; IT: Information technology; IUPA: Infundibular ureteropelvic
angle; IW: Infundibular width; KA: Knowledge acquisition; KMSP: Kaplan Meir
Survival Plot; KE: Knowledge engineer; Lap: Laparoscopy; LH: Luteinising
hormone level; LOO: Leave one out; LUT: Lower urinary tract; LVQ: Learning
vector quanitizer; MIC-1: Macrophage inhibitory cytokine-1; MIF: Macrophage
inhibitory factor; MH: Medical history; ML: Machine learning; MHRA: Medicines
and Healthcare products Regulatory Agency; Mdl: Model; Nep: Nephrectomy;
NlIt: Nephrolithiasis; NICE: National Institute for Health and Care Excellence;
Nomo: Nomogram; NPV: Negative predictive value; Nsc: None seminoma
testicular cancer; Oss: Obstructive symptoms; Pop: Pelvic organ prolapse; Pca:
Prostate cancer; PPV: Positive predictive value; PRL: Prolactin level; PSAd: PSA
density; PSAv: PSA velocity; PVR: Post void residual; Qmax: Maximum flow rate;
RA: Requirement analysis; RBR: Rule based reasoning; RC: Radical cystectomy;
RCC: Renal cell carcinoma; Recur: Recurrence; Res: Response; ROC: Receiver
operating characteristic; RP: Radical prostatectomy; Sc: Single centre; Se:
Sensitivity; SPC: Stable prostate cancer; Sp: Specificity; tPSA: Total PSA; TPV:
Total prostatic volume; TRUS: Trans rectal ultrasound scan; TT: Total Testoster-
one; TZD: Transitional zone PSA density; TZV: Transitional zone volume; U Dyn:
Urodynamic study; U Dys: Urinary dysfunction; UTI: Urinary tract infection; V&V
Verification and validation; VU rflx: Vesico-ureteric reflux; %fPSA: Percentage
free/total PSA; %p2PSA: Percentage p2PSA/fPSA; p2PSA: -2 ProPSA; U incont:
Urinary incontinence.
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