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Abstract 

Background:  The increasing prevalence of childhood obesity makes it essential to study the risk factors with a sam‑
ple representative of the population covering more health topics for better preventive policies and interventions. It 
is aimed to develop an ensemble feature selection framework for large-scale data to identify risk factors of childhood 
obesity with good interpretability and clinical relevance.

Methods:  We analyzed the data collected from 426,813 children under 18 during 2000–2019. A BMI above the 90th 
percentile for the children of the same age and gender was defined as overweight. An ensemble feature selection 
framework, Bagging-based Feature Selection framework integrating MapReduce (BFSMR), was proposed to identify 
risk factors. The framework comprises 5 models (filter with mutual information/SVM-RFE/Lasso/Ridge/Random Forest) 
from filter, wrapper, and embedded feature selection methods. Each feature selection model identified 10 variables 
based on variable importance. Considering accuracy, F-score, and model characteristics, the models were classi‑
fied into 3 levels with different weights: Lasso/Ridge, Filter/SVM-RFE, and Random Forest. The voting strategy was 
applied to aggregate the selected features, with both feature weights and model weights taken into consideration. 
We compared our voting strategy with another two for selecting top-ranked features in terms of 6 dimensions of 
interpretability.

Results:  Our method performed the best to select the features with good interpretability and clinical relevance. The 
top 10 features selected by BFSMR are age, sex, birth year, breastfeeding type, smoking habit and diet-related knowl‑
edge of both children and mothers, exercise, and Mother’s systolic blood pressure.

Conclusion:  Our framework provides a solution for identifying a diverse and interpretable feature set without model 
bias from large-scale data, which can help identify risk factors of childhood obesity and potentially some other dis‑
eases for future interventions or policies.
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Background
Childhood obesity has emerged as an important public 
health problem all around the world. According to the 
WHO [1], the worldwide prevalence of obesity nearly 
doubled during 1980–2008 and one in three 11-year-old 
children is overweight or obese in Europe. A childhood 
obesity review has shown that the increasing prevalence 

Open Access

*Correspondence:  xi.shi@esat.kuleuven.be
1 Department of Electrical Engineering (ESAT), Stadius Centre 
for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, 
Kasteelpark Arenberg 10 ‑ box 2446, 3001 Leuven, Belgium
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01580-0&domain=pdf


Page 2 of 13Shi et al. BMC Med Inform Decis Mak          (2021) 21:222 

of childhood obesity is associated with the emergence of 
comorbidities previously considered as “adult” diseases 
such as diabetes and hypertension which can track into 
adulthood [2]. Basque Government proposes the crea-
tion of specific childhood obesity prevention plan as one 
of the new two main action areas and targets to create 
regional policy for the Basque Region [3]. Therefore, it is 
essential to study the risk factors of childhood obesity to 
design preventive policies or interventions.

The increasing prevalence of childhood obesity is the 
consequence of an interaction among a complex set of 
factors that are related to the genetics (e.g. monogenic 
disorders, endocrine issues, etc.) and environmental 
effects (e.g. parental feeding styles, microbiota, school, 
society trend, etc.) [2]. There are some surveys captur-
ing the reality of overweight and obese children, however, 
most of the surveys and studies only included hundreds 
or thousands of participants. Based on the summary sta-
tistics from the systematic reviews [4–6], very limited 
studies had more than 100,000 or even over one million 
participants. The rapid development of electronic health 
records (EHR) systems and abundant data from various 
sources make it possible to have access to real-world data 
on a larger scale. A review in 2018 explored the obesity 
studies using big data collected from different sources 
[7], such as social media, smartphones and healthcare 
wearable devices, transportation and so on. But these 
data samples had their own limitations, for example sam-
ple bias, ethical issues, or lack of linkage with nutrition 
information. A recent study used EHR data to predict the 
risk of childhood obesity, including almost one million 
participants [8], however, because of the characteristics 
of data sources, the features were all clinical variables, 
the environmental factors related with family and school 
were not included. Therefore, the Osakidetza database 
in Basque region can be of great value as it is large scale 
data covering millions of participants and includes spe-
cific information on different aspects of environmental 
factors of childhood obesity at the same time.

Studies on the risk factors of childhood obesity and 
interventions have been conducted and reported in 
the literature [2, 4, 5]. But difficulties still exist when 
designing preventive policies or interventions for a spe-
cific region. Despite that the risk factors given by differ-
ent studies were similar, the variables used for each risk 
factor could be very different. For example, it is known 
that parental feeding styles have a remarkable influence 
on childhood obesity. Some studies drew the conclusion 
based on a questionnaire on feeding style, some used 
one categorical variable to summarize the general type, 
while some used calorie-intake or sugar-intake. Thus, if 
a region would like to design the customized policy or 
intervention that fits the local environment the best, it is 

difficult to make the decision which indicator can repre-
sent a general aspect most accurately, then it is unclear 
how to design corresponding interventions. In this case, 
applying machine learning models with local compre-
hensive data can help identify the most influencing vari-
ables grounded in real-world data, which can reduce the 
cost of testing factors and accelerate the establishment 
of policies or interventions that are more “evidence-
based”. In addition to assisting on the localization of sci-
entific research derived knowledge-based policy making, 
machine learning techniques can help confirming, with 
a wider real-world data, the results of scientific rationale 
and research for a specific region or timeframe, and occa-
sionally derive insights or new hypothesis to be tested 
by scientific research and be candidate for adoption by 
policy decision making (if it’s validated and relevant). 
Therefore, it is expected that machine learning models 
can contribute to further scientific research as wells as to 
provide supports for policy decision making, providing 
domain experts with an additional tool to support their 
decisions making processes.

To reduce the features of the data, two main classes of 
machine learning models can be applied, namely feature 
extraction methods and feature selection methods. The 
difference between the two types of models is that feature 
selection methods keep a subset of the original variables 
while feature extraction methods combine the original 
variables into a smaller set of new features. In our study, 
we focus on feature selection methods to preserve the 
semantics of the features, as the results need to be inter-
pretable without a subjective definition of new features. 
Moreover, it is easier for clinicians and policy-makers to 
establish follow-up interventions for a single feature than 
a compound factor of multiple features.

There are three main types of feature selection meth-
ods: filter methods, wrapper methods, and embedded 
methods [9]. Filter methods select features based on a sta-
tistical measure to assign a score to each variable to rank 
the variable importance regardless of the model. These 
methods are time-efficient and robust to overfitting, but 
tend to ignore the possible interactions between vari-
ables. Wrapper methods have the opposite advantages 
and disadvantages by converting the feature selection 
task into a search problem. Subsets of variables are com-
pared with other subsets to select the group of features 
that can give the best predictive performance. Embedded 
methods are learning models that can perform feature 
selection and classification simultaneously by integrating 
feature selection algorithm as part of the learning pro-
cess. The embedded methods take variable interactions 
into consideration and are less computationally demand-
ing than wrapper methods. However, in some cases, the 
optimal feature set selected by one embedded method is 
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classifier-dependent, meaning that the optimal set only 
works for this specific classifier and cannot contribute to 
good prediction when used for other embedded classifi-
ers [10], as the optimal set is based on the hypotheses of 
the classifier.

Different feature selection methods have their specific 
advantages and disadvantages, resulting in the discrep-
ancy in the selected variables. Hence, the results may be 
biased because of the model limitations if we only rely on 
one method. This problem is even more critical in explor-
atory research when the problem is not clear and the 
validity and credibility of the results are crucial. In addi-
tion, most feature selection methods, such as wrapper 
methods and embedded methods, select features based 
on predictive performance, which may lead to a selec-
tion of variables with no clinical relevance and interpret-
ability. Finally, scalability of the model, i.e. the capability 
of handling a growing amount of data, is very essential 
when using a large-scale sample representative of the 
population. This means special attention is required in 
terms of time efficiency, data storage, data loading, and so 
on. Especially in our use case, it was not possible to load 
the whole dataset in memory at once, so it was an essen-
tial demand to develop a model with good scalability.

To overcome these limitations and solve the prob-
lems in a real-world setting, we propose BFSMR (the 
Bagging-based Feature Selection framework integrating 
MapReduce), a machine learning method that can per-
form efficiently with large-scale data and combine the 
results from different feature selection methods to give a 
more convincing and interpretable selection of features. 
A higher clinical relevance and a better interpretability 
of the algorithm-identified risk factors can give sugges-
tions that are easy to implement in practice, which helps 
to better shape policies and corresponding interventions 
to overcome a specific public health challenge. Moreover, 
when using multiple feature selection methods as com-
ponents of BFSMR, we can get a comprehensive under-
standing of the potential important risk factors preferred 
by different models, meaning that we are providing com-
prehensive information that is helpful for the decision-
making process.

Methods
Participants and data source
This study uses data from the Osakidetza databases 
of the Public Health Provider in the Basque Coun-
try (Spain) [11], which provides services to more than 
2,200,000 patients, through 16 hospitals and more than 
300 primary health centers. This is a database recording 
information about patients for a global view of health 
status, not specifically for childhood obesity. The Osaki-
detza database was properly anonymized and extracted 

with the approval of an ethic committee in the Basque 
Country.

The database contains the information from around 
400,000 children who were under 18  years old during 
2000–2019 throughout the Basque Country and includes 
information of these children until they turned 18 years 
old. Three datasets from the database have been used for 
this study: children’s information table, children’s forms 
and the children’s mothers’ forms. Within Osakidetza, 
forms are health and lifestyle questionnaires that the GP 
or the nurse may or may not fill out in a consultation, 
recording the status of patients at that time point. Ques-
tions in these forms cover different aspects of lifestyles 
and health status, including physical exercise, smoking 
habits, drinking habits, diet styles, vegetable consump-
tion, breastfeeding, gestational information, perinatal 
information, disease history and family disease history, 
etc.

The original information was stored in 5 separate data-
sets, the cleansing and merging process is explained in 
detail in Additional file  1: Appendix A.1 and the final 
merged data has 1,478,857 records from 426,813 children 
(Selection and exclusion criteria are shown in Fig. 1). The 
multiple records from the same child disperse in an age 
span of 1–18  years old, representing different stages of 
childhood. Frequent repeated measures during a short 
period were rarely observed, therefore the personal-level 
longitudinality was not taken into consideration in the 
algorithm, instead, all the records were regarded as sep-
arate records. Besides, there were in total 119 variables 
used for feature selection, including numeric variables 
and dummy variables generated from categorical vari-
ables. Data pre-processing is detailed in Additional file 1: 
Appendix A.2. Due to the fact that in children’s forms 
different input variables are requested depending on the 
primary care visit motivation, missing rates varied based 
on the types of variables. The numeric variables about 
basic health status, such as blood pressure, age, mother’s 
BMI, child’s birth height and weight, etc., had very few 
missing values. While other numeric variables focusing 
on disease risks or life styles had much more missing val-
ues, as these questions were asked only when they were 
applicable. The missing rates for these variables varied 
between 30 and 70%. Most of the categorical variables 
also had a missing rate within this range, with very lim-
ited categorical variables having extremely high missing 
rate (over 80%), such as Diet Intent Change and Breast-
feeding Abandonment.

Outcome indicator
The indicator of childhood obesity was created based on 
the age- and gender-specific BMI. The European Child-
hood Obesity Group defines it as obesity if the BMI is 
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higher than the 97th percentile of the age- and gender-
specific subgroup in the reference population. A BMI 
higher than the 90th percentile is defined as overweight 
[12]. This study is aimed to observe both overweight and 
obese state and the 90th percentile is included in our 
statistics [13], so our outcome is to indicate whether the 
child has a BMI higher than the 90th percentile of the ref-
erence group.

Embedded feature selection methods
The BFSMR is a bagging-based feature selection frame-
work integrating MapReduce, which is a method with a 
balance between valid results and good interpretation. In 
this section, we first introduce the MapReduce technique, 
the bagging method, and the feature selection models 
used in the bagging framework. Then we construct a new 
framework incorporating the advantages of MapReduce 
and bagging at the same time.

MapReduce
MapReduce is a method to process and generate large-
scale data in a parallel and distributed way, which can 
be very useful in the context of feature selection when 

the dataset is large-scale and high-dimensional. After 
splitting the input data into smaller subsets, the model 
extracts the information of interest in each subset and 
then merges them to output the aggregated results, 
ensuring to process large-scale data rapidly. To make it 
easier to understand, this can be summarized as “split-
apply-combine” strategy.

The whole procedure can be broken down into two 
main tasks, Map and Reduce [14]. The original data is 
split into an appropriate size and each split is assigned 
with one Map function defined with respect to data 
structured in (key, value) pairs. The Map function works 
in parallel to convert every pair in the input data, denoted 
as (k1, v1), into a list of pairs in a different data domain, 
denoted as (k2, v2). Next, all the pairs (k2, v2) with the 
same key are collected to form one group for one key. 
Then the Reduce function is applied to each group in 
parallel and the collection of all Reduce calls is the final 
result. The procedures of splitting and mapping makes 
it possible to process the data in parallel and the proce-
dures of shuffling and reducing merge the information by 
key variable to reduce the data scale.

1.1.1. Bootstrap aggregating (bagging)
Bootstrap aggregating, also called bagging, is an ensem-
ble-learning algorithm that applies different models with 
different random samples and uses majority voting to 
combine results for the final decision [15]. The method 
is incorporated in our model to merge results from dif-
ferent feature selection methods. Given a training data 
D of size N with correct labels ωl� = {ω1, . . . ,ωC} rep-
resenting C classes, generate T bootstrapped samples 
Dt of size n by random sampling from D uniformly and 
with replacement. The model m can be applied with 
Dt to construct the classifier ht. With the ensemble 
ε =

{

h1, . . . , hT
}

 derived from the training process, the 
unlabeled instance x in the testing data is classified into 
the class that receives the highest total vote.

Feature selection methods
In this study, we selected five models as representative 
methods from filter, wrapper and embedded methods to 
give a relatively comprehensive discussion and compari-
son of the feature selection methods. However, it is not 
necessary to always use the same feature selection meth-
ods. The applied methods can be determined based on 
the concrete problem and data issues.

Map(k1, v1) → list(k2, v2)

Reduce(k2, list(v2)) → list((k3, v3)).

Fig. 1  The selection and exclusion criteria for the participants
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We chose Mutual Information (MI) as the statistical 
measure for filter methods [16], and applied SVM-RFE as 
one type of wrapper methods [17]. In addition, we used 3 
different models from embedded methods, namely Lasso 
Regression [18], Ridge Regression [19], and Random For-
est [20]. Multiple embedded methods were used, because 
embedded methods have very different characteristics, 
making it difficult to use one to represent the diversity of 
embedded methods. We selected these methods because 
they are representative methods of filter, wrapper, and 
embedded method, and they are often discussed in other 
feature selection studies.

BFSMR
With all the models and techniques introduced above, 
we propose a framework that combines the advantage of 
MapReduce and Bagging and gives a more reasonable set 
of selected features with better interpretability. The nota-
tions used in this section are listed as below.

Notation Meaning

D =
{

dp
}

D is the input data and is split into P 
chunks, denoted as dp,p = 1, . . . , P

ci Feature selection classifier where 
i = 1, . . . ,M

cid The Classifier ID where 
cid ∈ {1, . . . ,M}

s Random sample set with Set ID 
sid ∈ {0, 1, . . . ,M} (sid = 0 for test 
set)

w1j Feature weights based on the 
ranking from each classifier where 
j = 1, . . . , k

w2i Method weights based on the 
model performance where 
i = 1, . . . ,M

fi Feature lists derived from M 
feature selection classifi‑
ers,fi =

{

fij , j = 1, . . . , k
}

F Feature space with unique 
features from M feature 
sts,F =

{

f
′

l , l = 1, . . . , L
}

Vl Voting score for each unique feature 
where l = 1, . . . , L

The whole structure of BFSMR is shown in Fig.  2. 
After splitting the data into chunks, the Map function 
is merged with the bootstrapping procedure in Bagging. 
For each chunk, first it is randomly split into trainset 
and testset. Given M learning models, M bootstrapped 
samples are drawn from the trainset with a set ID sid. In 
addition, a testset is drawn (sid = 0) without being influ-
enced by any process in the trainset.

The sets with the same sid are merged to be used as 
the inputs of the Reduce function. The Reduce function 
works in parallel to each group. The original MapReduce 

normally applies the same model or function to all 
groups, but in BFSMR, we match the models with groups 
based on sid and model ID, so that the different model 
is applied to corresponding groups, which guarantees the 
possibility of using different feature selection methods to 
avoid model bias. The outputs of Reducing are M feature 
lists with K features selected by M models, and the model 
performance. A feature set F is the union of M feature 
lists.

Voting strategy is applied to merge the outputs from 
different models. The voting strategy of Bagging is major-
ity voting with equal probability while we assign feature 
weights (w1) based on the ranking and assign model 
weights (w2) based on their predictive performance. The 
joint weight is calculated as below. Voting with weights 
is calculated (Equation as below) and the top K features 
with the highest votes are selected as the final results.

Experimental setup
The data was imported in chunks with a size of 10,000 
rows and we got 148 chunks in total with 147 full chunks 
and the last chunk only including 8857 rows. The split 
ratio of trainset and testset was 0.8:0.2 and the size of 
bootstrapped random samples was 10% of the trainset.

The five feature selection methods were applied in par-
allel and we selected 10 features from each method. We 
used the nearest-neighbor method to estimate MI in the 
Filter method (number of neighbors = 3) [16]. The fea-
tures that had the maximum MI with the outcome, were 
regarded as features with the highest importance. To 
avoid the problem of long execution time, linear SVM 
was applied as the estimator for SVM-RFE and the abso-
lute value of the coefficient was the feature importance. 
The step of the RFE method was set to 1, meaning that 
one variable was dropped in each iteration and the final 
10 variables left in the model were the selected results. 
To determine the regularization parameter ( � ) for Lasso 
and Ridge regression, the models were iteratively fitted 
along the regularization path on a grid of parameter, and 
the parameters that led to the best performance in the 
cross-validation test were selected, which was 0.002237 
for the Lasso regression and 10 for the Ridge regression. 
As for the Random Forest, we used 50 estimators when 
training the classifier and used Gini impurity to meas-
ure the quality of a split [20]. The most commonly used 
feature importance is Mean Decrease in Impurity (MDI), 
however, impurity-based importance is biased towards 

wjk = w1k × w2j , j = 1, . . . ,M, k = 1, . . . ,K

vl =

M
∑

j=1

K
∑

k=1

vjkwjk , where vjk =

{

1, if fjk is in F
0, otherwise

.
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numeric features or categorical features with high cardi-
nality [21]. To overcome this limitation, we used permu-
tation importance for feature evaluation [21]. All models 
were tested on the same testset. As the Filter method 
selected features without learning algorithms, linear 
regression was applied using the selected features to get 
the predictive performance.

The model applies the voting strategy that takes both 
feature weights and method weights into consideration. 
The feature ranking from the individual feature selec-
tion method was assigned as feature weights (w1). The 
five models were classified into 3 ranks based on model 
performance (details in Results) and the model weight 
was set as 1, 0.5 and 0.2 for each rank respectively (w2). 
To examine whether this voting strategy could effec-
tively select the feature set with better interpretability 
and clinical relevance, it was compared with another two 
voting strategies and the selected results were compared 
[22–24]:

Voting1: Voting with equal score for all features.
Voting2: Voting with feature weights.
Voting3: Voting with both feature and method 
weights.

Evaluation measures
It is common to use performance measures to evaluate a 
learning system, however, in our use case, we would like 
to mainly evaluate the results in terms of interpretability.

There is no consensus about what interpretability is in 
machine learning at the current stage [25]. The results of 
feature selection methods are the potential risk factors of 
a disease, which should already be self-explanatory with-
out an explanation method. However, it still makes dif-
ference if features have better clinical relevance and are 
easier to interpret and implement in practice.

To our knowledge, there is no discussion about the 
dimensions of interpretability of algorithm-identified 

Fig. 2  The main procedures of BFSMR. There are mainly four steps, (1) splitting, (2) mapping which draws bootstrapped samples from each chunk, 
(3) reducing which merges sets with the same Set ID and applies one feature selection classifier on each set and derive one selected feature list, and 
(4) merge procedure which combines the selected feature lists into the final output
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features. The definitions, properties, and requirements of 
AI-explanations can show some potential dimensionali-
ties. Properties of explanations which could lead to good 
interpretability include comprehensibility, certainty, 
importance, novelty, and representativeness [26], and 
human-friendly characteristics of explanations are con-
trastiveness, selectivity, social, inclination to abnormal, 
truthful, consistent with prior belief, general and prob-
able [27].

After summarizing others’ work, we defined the dimen-
sions of interpretability of algorithm-identified risk fac-
tors and evaluate the interpretability in Discussion.

Results
Table1 presents the top 10 features selected from dif-
ferent models. Some variables had negative effects on 
the outcome indicators, meaning that higher values in 
the variables indicated lower risk of obesity. These vari-
ables are noted by (-) in Table1. There are some common 
features, such as age, sex, and mother’s diet education. 
However, the different model preference could still be 
observed. Lasso and Ridge were the specializations of lin-
ear regression with different regularization method, thus, 
they selected similar features, including smoking habits, 
exercise habits, and diet knowledge. Filter showed a pref-
erence for numeric variables (9 out of 10) and they were 
also variables with fewer missing values. Similarly, Ran-
dom Forest had an inclination to numeric variables (4 out 
of 10) and variables with fewer missing values (Sex), but 
it also selected variables about smoking habits, exercise 
habits, and alcohol use. SVM-RFE selected the most dif-
ferent set from the others. Although it also covered diet 
information and Mothers’ exercise habit, the choices of 
the exact variables were different.

The model predictive performance was evaluated 
on the same testset (Table2) based on accuracy and 
F-score. Ridge, Lasso and Filter had good performance 
with both measures, SVM-RFE performed at a moder-
ate level as the F-score was not high, and Random For-
est had the lowest scores of both measures. Although 
the performance of Filter was relatively good, it failed 
to consider variable interactions. Based on the perfor-
mance and model property, the five models were classi-
fied into three ranks with different weights: (1) Rank1, 
Lasso and Ridge (weight = 1); (2) Rank2, Filter and 
SVM-RFE (weight = 0.5); (3) Rank3, Random Forest 
(weight = 0.2).

The voting scores for 3 voting strategies are shown in 
Table  3 and visualized in Fig.  3, which shows the per-
centage of the score of one feature out of the whole 
set. The voting scores can be regarded as the variable 
importance of this ensemble feature selection frame-
work. Some features gradually gained more impor-
tance from Voting1 to Voting3, including age, sex, no 
smoking, child’s diet education, and maternal breast-
feeding, which were the top 5 features selected by Vot-
ing3. In contrast, mother’s diastolic pressure lost its 
superiority. Inadequate physical exercise had a similar 
trend although it was still among the top 10 features 

Table 1  Top 10 features selected from different models based on variable importance

All “Mothers-” in the variables were replaced with “Mo-” for shorter names

RDType, RecommendedDietType; MoRDType, MoRecommendedDitetType; BFType, BreastfeedingType; PE, PhysicalExercise; MoPE, MoPhysicalExercise; MoPEHour, 
MoPhysicalExerciseHour; AdeDKnowledge, AdequateDietaryKnowledge; DCExecution, DietCorrectExecution,

Filter (MI) SVM-RFE Ridge Lasso RandomForest

1 Age MoDietEducation Age Age SystolicPressure

2 Sleep_Normal (–) MoRDType_LowSalt Sex (–) Sex (–) MoDiastolicPressure (–)

3 BFType_Maternal (–) RDType_2000 cal Tobacco_No (–) Tobacco_No (–) MoSystolicPressure (–)

4 DiastolicPressure (–) AdeDKnowledge DietEducation DietEducation Sex

5 MoSystolicPressure MoPE_Inadequate (–) MoTobacco_Yes MoDietEducation Birthyear (–)

6 MoNumberCigarettes DietCompliesAdvice BFType_Maternal (–) BFType_Maternal (–) Tobacco_No (–)

7 Birthheight (–) MoRDType_Free (–) PE_Inadequate Birthyear (–) MoExerciseAdvice (–)

8 MoBMI MoPEHour MoDiabetes_No (–) MoNumberCigarettes MoAlcohol_No (–)

9 Birthweight (–) DiastolicPressure (–) PE_Adequate(–) PE_Inadequate PE_Inadequate

10 MoDiastolicPressure (–) SystolicPressure MoDietEducation DCExecution _No MoTobacco_Ex

Table 2  Comparison of predictive performance among different 
models

Accuracy and F-score were jointly used to evaluate the performance. Lasso, 
Ridge, and filter method had relatively better performance and Random Forest 
had the worst performance

Filter (MI) SVM-RFE Ridge Lasso RandomForest

Accuracy 0.843 0.845 0.844 0.839 0.828

F Score 0.915 0.774 0.915 0.912 0.770
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of Voting3. Mother’s diet education was more stable 
and took almost the same share of voting scores in all 
strategies.

The top 10 features selected by BFSMR are age, sex, 
birth year, breastfeeding type, smoking habit and diet-
related knowledge of both children and mothers, exer-
cise, and Mother’s systolic blood pressure. The results 
indicate that smoking habit, lack of exercise, and unbal-
anced diet of both mothers and children are the risk 
factors of childhood obesity. Besides, boys have higher 
risk than girls and the risk grows along with age. It is 
also found that maternal breastfeeding can reduce the 
risk and younger generation (based on birth year) tend 
to suffer more from obesity.

Discussion
Model interpretability and clinical relevance
Clinical relevance and importance
The voting strategy played an important role in selecting 
a more reasonable feature set with better clinical rele-
vance. When applying individual feature selection meth-
ods, there could be bias in the results caused by model 
limitation. For example, as shown in Table  1, Filter and 
Random Forest had an inclination to numeric variables 
and variables with fewer missing values. In Experimen-
tal setup, we explained that we used permutation impor-
tance for feature evaluation when applying Random 
Forest, as it was known that the commonly used feature 
importance, MDI, would be biased towards numeric 

Table 3  Comparison of the selected variables with high scores calculated from different voting strategies

The top variables changed and the importance of some variables gradually grew with the change from Voting1 to Voting3

All “Mothers-” in the variables were replaced with “Mo-” for shorter names

RDType, RecommendedDietType; MoRDType, MoRecommendedDitetType; BFType, BreastfeedingType; PE, PhysicalExercise; MoPE, MoPhysicalExercise; MoPEHour, 
MoPhysicalExerciseHour; AdeDKnowledge, AdequateDietaryKnowledge; DCExecution, DietCorrectExecution

Voting1 Voting2 Voting3

PE_Inadequate 4 Age 30 Age 25

Age 3 Sex 25 Sex 19.4

BFType_Maternal 3 Tobacco_No 21 Tobacco_No 17

MoDietEducation 3 BFType_Maternal 18 BFType_Maternal 14

Sex 3 MoDietEducation 17 DietEducation 14

Tobacco_No 3 DietEducation 14 MoDietEducation 12

Birthyear 2 MoSystolicPressure 14 PE_Inadequate 8.4

DiastolicPressure 2 SystolicPressure 11 MoTobacco_Yes 6

DietEducation 2 Birthyear 10 MoNumberCigarett 5.5

MoDiastolicPressure 2 MoDiastolicPressure 10 Birthyear 5.2

MoNumberCigarettes 2 PE_Inadequate 10 MoSystolPressure 4.6

MoSystolicPressure 2 DiastolicPressure 9 DiastolicPressure 4.5

SystolicPressure 2 MoRDType_LowSalt 9 MoRDType_LowSalt 4.5

AdeDKnowledge 1 Sleep_Normal 9 Sleep_Normal 4.5

Birthheight 1 MoNumberCigarettes 8 RDType_2.000cal 4

Birthweight 1 RDType_2.000cal 8 AdeDKnowledge 3.5

DietCompliesAdvice 1 AdeDKnowledge 7 MoDiabetes_No 3

DCExecution_No 1 MoPE_Inadequate 6 MoPE_Inadequate 3

MoAlcohol_No 1 MoTobacco_Yes 6 DietComplieAdvice 2.5

MoBMI 1 DietCompliesAdvice 5 SystolicPressure 2.5

MoDiabetes_No 1 Birthheight 4 MoDiastoPressure 2.3

MoExerciseAdvice 1 MoExerciseAdvice 4 Birthheight 2

MoPE_Inadequate 1 MoRDType_Free 4 MoRDTyp_Free 2

MoPEHours 1 MoAlcohol_No 3 MoBMI 1.5

MoRDType_LowSalt 1 MoBMI 3 MoPEHours 1.5

MoRDType_Free 1 MoDiabetes_No 3 Birthweight 1

MoTobacco_Yes 1 MoPEHours 3 DCExecution_No 1

MoTobacco_Ex 1 Birthweight 2 MoExerciseAdvic 0.8

RDType_2.000cal 1 DCExecution_No 1 MoAlcohol_No 0.6

Sleep_Normal 1 MoTobacco_Ex 1 MoTobacco_Ex 0.2



Page 9 of 13Shi et al. BMC Med Inform Decis Mak          (2021) 21:222 	

features or categorical features with high cardinality. 
However, the results turned out that there was still bias 
in the results even if we used permutation importance. 
These results proved that there would be risks that cate-
gorical variables with high missing rates were disregarded 
if some feature selection models were applied individu-
ally. Our method, BFSMR, provided combined results 
from a set of feature selection methods, which could 
reduce or eliminate the bias affected by missing values.

Bagging uses the majority voting with equal probability 
(Voting1). But the close scores of Voting1 made it difficult 
to distinguish the most important ones. For example, 13 
features had scores higher than 2, making it impossible to 
select only the top 10 features as the final output. Voting2 
added feature weights based on the ranking from each 
model, nevertheless, variables with high rankings from 
poorly-fitted models could still affect the results. One 
significant difference between Voting2 and Voting3 was 
the notable decline in the rankings of the numeric vari-
ables of less relevance, e.g. mothers’ systolic pressure, the 
child’s systolic pressure. The relevant numeric variables 
were not negatively affected, on the contrary, the average 
number of mother’s cigarette consumption climbed from 
the 15th in Voting2 to the 9th in Voting3.

Easiness to implement in practice
BFSMR could select variables that were easier to imple-
ment in practice for the follow-up interventions or poli-
cies. For example, although three models (SVM-RFE, 
Ridge, Lasso) covered diet-related information, different 
variables were selected, e.g. diets with less than 2000 cal, 
whether follow the diet advice, whether correctly execute 
diet advice. These variables were concrete about one spe-
cific aspect but it would be difficult to use them to make 
corresponding interventions. The features selected by 
BFSMR were child’s diet education and mother’s diet 
education, which could be easily put in practice in real 
life, for example by arranging lectures at school or sug-
gesting pregnant women taking specifically developed 
courses.

General and probable
BFSMR is a general framework to deal with large-scale 
data and combine results from multiple models. It is flex-
ible because the individual feature selection methods 
applied in this framework are not strictly defined but can 
be replaced with other methods, and more methods of 
interest can be added into the framework. Therefore, it is 
probable to apply BFSMR in most use cases.

Fig. 3  Visualization the comparison of selected variables with high scores calculated from 3 voting strategies. The plot was drawn using the 
percentage of the score of one feature out of the whole set and larger percentage means higher variable importance. Age, Sex, Tobacco_No, 
DietEducation, and BreaskfeedingType_Maternal gradually gained more importance during the changes from Voting1 to Voting3 while the 
importance of MothersDiastolicPressure and PhysicalExercise_Inadequate dropped. MothersDietEducation was more stable and took almost the 
same share of voting scores in all strategies
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Representativeness
In the study, 5 models were chosen as representatives of 
filter, wrapper, and embedded methods, meaning that a 
wide range of model types were covered. Apart from the 
methods, the algorithm-identified risk factors are also 
representative risk factors that can well summarize one 
aspect, for example, child’s diet education is a good rep-
resentative for diet-related suggestions.

Comprehensibility
Although the results of individual model were not 
reported as the final output, the process of applying mul-
tiple models as components of ensemble feature selection 
was a comprehensive exploration of important features. 
Some variables only appeared once in one model, which 
might be neglected if only one model was applied. For 
instance, Sleep_Normal had a negative effect in the Filter 
method, which was in agreement with clinical knowledge 
[28, 29]; mother’s BMI and mother’s diabetes disease his-
tory were reasonable and could indicate genetic influ-
ence; mother’s diet type (Low Salt) and mother’s diet type 
(Free) suggested the ideal diet styles. These variables were 
not included in the current output, but it would be very 
likely these variables were selected if we chose a higher 
number of selected features, for instance, Sleep_Normal 
and mother’s diet type (Low Salt) ranked 12th and moth-
er’s diabetes disease history was at the 17th.

Consistency with prior beliefs
There are numerous studies on the risk factors for child-
hood obesity, which can be classified into two main 
types, the genetic factors and environmental factors [2]. 
This paper focused more on environmental factors, as it 
would be easier to make corresponding policies for envi-
ronmental factors. This type of factors include lifestyle 
factors such as eating behaviors [30], sleeping pattern 
[28, 29], parental feeding styles [30]. The environmen-
tal factors may also include some other factors such as 
environmental chemicals or microbiota, but the database 
used in this paper does not include such information. A 
study in 2001 suggest that the main risk factors for obe-
sity in children include dietary intake, physical activity, 
family characteristics, parents’ lifestyles and environmen-
tal factors such as school policies and demographics [31]. 
Another study in 2013 identified parent BMI, child sleep 
duration and parental restrictive feeding as the main risk 
factors [32]. A more detailed literature review of previous 
studies on risk factors of childhood obesity can be found 
in Additional file 1: Appendix B.1.

Based on the previous studies about the risk factors 
of childhood obesity (Additional file  1: Appendix B.1), 
the main causes include lifestyle factors such as eating 
behaviors, physical activity, sleep, age, gender, parents’ 

lifestyles, and smoking habit, which were all covered in 
our results. Some studies pointed out the relation with 
genetic factors and psychological factors, but such infor-
mation was lacking in our data. In general, our results are 
consistent with prior beliefs.

Contributions and limitations
One contribution of the paper is the distributed imple-
mentation for ensemble feature selection. Although some 
studies applied distributed implementation for individual 
methods [33], few papers tried it for ensemble feature 
selection. A homogeneous-distributed ensemble was 
proposed [34–36], which split the trainset into subsets 
and applied the same method. However, using the same 
method on the divided subsets cannot avoid model bias. 
Thus, it is necessary to apply distributed implementa-
tion for ensemble feature selection when multiple feature 
selections are included. Moreover, MapReduce avoided 
full load, so that the real-world problem of platform limi-
tation was solved.

Another contribution is the voting strategy. In general, 
there are three ways of combining the outputs of ensem-
ble feature selection: combination of label predictions, 
features subsets, and features rankings [37]. The com-
bination of label predictions are most widely used and 
the models are trained to achieve the best performance. 
However, this method cannot work well when the goal 
is to select a subset of features with clinical relevance. 
To solve the problem, some studies combine the results 
by having the intersection or union of the features from 
different selectors [38], and some studies incorporate 
feature rankings (Voting2) [39, 40]. Our voting strategy 
(Voting3) has both feature rankings and model perfor-
mance, making it possible to select a more reasonable set. 
A detailed literature review is in Additional file 1: Appen-
dix B.2.

Furthermore, no discussion was identified on the inter-
pretability of algorithm-identified risk factors. To better 
evaluate interpretability, the dimensions of interpretabil-
ity were defined and summarized in this paper.

Finally, previous studies showed that there were 
regional differences in childhood obesity trends [41], but 
there were no studies in more details on a regional level. 
Basque government’s goal within this study was to find 
out the risk factors of their own region and make corre-
sponding policies.

One main characteristic of BFSMR is its flexibility. 
This paper used 5 feature selection methods, namely 
filter methods based on MI, SVM-RFE, Lasso Regres-
sion, Ridge Regression, and Random Forest. However, it 
is not necessary to apply these methods in all use cases 
and the number of models can be more or less than 5. 
The type of feature selection methods can be adjusted 
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according to the specific research goal of the study. Sim-
ilarly, the model weights can also be adjusted based on 
the model performance. This paper classified the models 
into 3 ranks, because it could be observed that the mod-
els were on high, moderate, and low levels in terms of 
performance evaluation. In a different use case, it could 
happen to evaluate 10 models, and to adopt a classifica-
tion of 4 or 5 ranks or 4 models into 2 ranks (the techno-
logical approach is flexible). In fact, this ensemble feature 
selection method is similar to the process of formulat-
ing standards and industry guidelines by an expert com-
mittee. Each individual method acts as one expert and 
the model weight can be regarded as the priority of one 
expert’s opinion because of the expert’s past experience. 
Therefore, the model weight needs to be discussed case 
by case based on the real situation, so that we don’t give 
a strict requirement of the number of ranks or the value 
of weights. The core values of BFSMR is the distributed 
implementation for ensemble feature selection method 
and the voting strategy to merge the final results.

Most clinical studies of childhood obesity focused on 
smaller age groups to give precise conclusions [42, 43]. 
Our participants had a large age span, aiming for bet-
ter policy making. We defined the outcome indicator on 
a population level, targeting on policy for all children, 
instead of a specific age group. It is acceptable, as the pol-
icy is normally to adjust general behavioral patterns that 
can have long-term effects, and our results could well 
serve this purpose. The current results are for Basque 
Country, subgroup analyses will be done for province-
level and town-level data and it will eventually go to small 
villages.

One limitation of this study is the predictive perfor-
mance of the five models was not very satisfactory due to 
the sparse structure, missing values, and the small num-
ber of selected features. The model performance can be 
further improved if more features are kept, or by using 
methods that are specifically for sparse data. Another 
limitation is causality. The current study, same as other 
classical feature selection methods [44], selected fea-
tures based on correlation, and the models were diag-
nostic models instead of prognostic prediction models 
[45]. However, it could be solved if the individual method 
within the framework was causality-based models or 
prognostic models. In summary, BFSMR acts as a general 
strategy to provide the framework of a meta-algorithm. 
The feature selection models can be replaced if particular 
data issues need to be solved. In terms of generalization, 
one limitation of this study is that all the participants 
were the children from Basque region. Previous studies 
showed that there were regional differences in childhood 
obesity trends [41], thus, the generalization of the identi-
fied risk factors to other populations should be cautious.

Conclusion
We presented a new ensemble feature selection frame-
work that combines MapReduce and Bagging to make it 
possible to deal with large-scale data and applies 5 feature 
selection models to avoid model bias. A collection of risk 
factors of childhood obesity with better interpretability and 
clinical relevance were identified, which solved the practi-
cal research question raised by the department of health, 
to contrast with their experience and knowledge and pro-
vide supports for the decision-making of future interven-
tions and policies. The proposed framework can also be 
applied to select risk factors of other chronic conditions in 
the future.
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