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Abstract 

Background: Many models are published which predict outcomes in hospitalized COVID‑19 patients. The gener‑
alizability of many is unknown. We evaluated the performance of selected models from the literature and our own 
models to predict outcomes in patients at our institution.

Methods: We searched the literature for models predicting outcomes in inpatients with COVID‑19. We produced 
models of mortality or criticality (mortality or ICU admission) in a development cohort. We tested external models 
which provided sufficient information and our models using a test cohort of our most recent patients. The perfor‑
mance of models was compared using the area under the receiver operator curve (AUC).

Results: Our literature review yielded 41 papers. Of those, 8 were found to have sufficient documentation and 
concordance with features available in our cohort to implement in our test cohort. All models were from Chinese 
patients. One model predicted criticality and seven mortality. Tested against the test cohort, internal models had an 
AUC of 0.84 (0.74–0.94) for mortality and 0.83 (0.76–0.90) for criticality. The best external model had an AUC of 0.89 
(0.82–0.96) using three variables, another an AUC of 0.84 (0.78–0.91) using ten variables. AUC’s ranged from 0.68 to 
0.89. On average, models tested were unable to produce predictions in 27% of patients due to missing lab data.

Conclusion: Despite differences in pandemic timeline, race, and socio‑cultural healthcare context some models 
derived in China performed well. For healthcare organizations considering implementation of an external model, 
concordance between the features used in the model and features available in their own patients may be important. 
Analysis of both local and external models should be done to help decide on what prediction method is used to 
provide clinical decision support to clinicians treating COVID‑19 patients as well as what lab tests should be included 
in order sets.
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Background
The coronavirus disease 2019 (COVID-19) caused by 
the SARS-CoV-2 has been devastating compared to 
other viruses (seasonal, avian and swine influenza), in 
regard to both the morbidity and mortality and its eco-
nomic impact, despite advancements in medical care 
since the Spanish Flu of 1918 [1]. COVID-19 has had 
a dramatic impact on health systems globally and the 
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US economy despite assistance from the US Federal 
government, via the CARES Act [2] and other funding 
programs.

The COVID-19 pandemic occurred quickly and was 
rapidly followed by a massive production of academic 
output, including prediction models for a variety of clini-
cal outcomes; the initial models for hospital outcomes 
came from the city of Wuhan in the Hubei province of 
China, where the initial cases were discovered. From 
there, models around the globe surged and were likely 
integrated into many hospital guidelines. However, it is 
unclear if those models could be applied to local cohorts. 
Having a rapidly available and accurate prediction model 
for COVID-19 patients being admitted from the emer-
gency department (ED) would be useful for making 
accurate triage and prognostic assessments to inform 
decisions regarding treatment and resource allocation. 
While knowledge of the likelihood of death in those sent 
home from the ED would also be of interest, this requires 
longitudinal data which is often not as readily available. 
The value of appropriate triage decisions is important, 
especially in time when resources are stretched.

The growth in the volume of readily available health-
care data has facilitated the development of artificial 
intelligence-based models; however, a significant factor 
limiting the utility of dissemination of such models is the 
issue of generalizability. For example, the earliest com-
puter-aided decision models evaluating abdominal pain 
were not able to be replicated in different institutions [3]. 
A mortality prediction tool in acute alcoholic pancreatitis 
(Ranson’s criteria) [4] developed in a small cohort has a 
wide acceptance compared to superior scoring tools [5].

One of the most popular predictions tools in clini-
cal use today is the 2013 ACC/AHA Guideline on the 
Assessment of Cardiovascular Risk [6]. This risk tool uni-
formly overestimated risk in non-diabetic patients in a 
large, multi-ethnic, socioeconomically group of patients 
in California [7].

We performed an analysis of how well published and 
self-developed models would predict clinical outcomes 
after admission on a cohort of diverse urban patients in 
Chicago. Our self-developed models were trained using 
data from our local patient cohort. Published, external 
models were not re-trained with our cohort’s data. We 
aim to close the gap in the understanding if COVID-19 
prediction models on mortality and criticality could be 
potentially used in local cohorts despite ethnic, geo-
graphic and timeline differences. We postulate that due 
to our incomplete understanding of the pathophysiology, 
ethnic, racial and socioeconomic differences by location, 
and improving treatment over time, that models may not 
predict well in a cohort different than their validation and 
development cohorts.

Methods
University of Illinois Hospital (UIH) Cohort
UIH is a tertiary, academic teaching hospital in Chicago. 
The UIC Institutional Review Board approved this study. 
All admissions to UIH for COVID-19 positive patients 
were reviewed for the time of the first COVID-19 posi-
tive test and the date of admission. If the first positive 
COVID-19 test was performed greater than 14 days prior 
to admission or greater than 48  h after admission, the 
patient was excluded. Patients transferred from another 
institution were reviewed for prior COVID-19 testing. 
If the COVID-19 test was greater than 14  days before 
transfer, the patient was excluded. If the transfer was 
not related to any possible COVID-19 symptoms, the 
patient was excluded. If the patient was discharged and 
then readmitted less than 14 days after the first positive 
COVID-19 test, the encounter was included. Patients 
were discharged or expired prior to 8/18/20. Pregnant 
patients were included.

Since our goal was to assess the predictive power of 
our own prediction model as well as some of those in the 
literature, we partitioned our data into a training cohort 
consisting of the first 60% of patients admitted prior to 
5/9/20 and a test cohort consisting of patients admitted 
and discharged from 5/9/20 through 8/18/20.

Variable selection was based on a review of the extant 
literature and expert opinion. The variables selected are 
shown in Table 1. Admission vital signs, laboratory values 
and clinical and radiological features were assessed. The 
results were the first available up to 24 h after admission. 
Two outcomes were evaluated, mortality (death during 
hospitalization), and “criticality”, defined as mortality or 
admission to an ICU.

Literature search
We searched for articles published in PubMed, Embase, 
Arxiv and medRxiv using the search string: [Prediction] 
AND [Human] AND [COVID-19] OR [SARS-COV2] 
AND [Clinical Trial] OR [Observational Trial] which 
were published before 8/27/2020. Articles were reviewed 
to determine whether the models described predicted 
our outcomes of interest and whether there was sufficient 
concordance and detail provided to implement the model 
using our cohort’s data.

Model development
The objective of our model development was to accu-
rately predict patient outcomes using a reduced number 
of key input features. A variety of popular machine learn-
ing algorithms were evaluated to classify mortality and 
criticality. These algorithms include Linear Regression 
[8], Decision Tree [9], Random Forest [10], XGBoost [11], 
LightGBM [12], and CatBoost [13]. The training process 
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Table 1 Characteristics of the development and test cohorts

Characteristics Development cohort (N = 309) Test cohort (N = 207)  P

Missing Data Missing Data

Outcome variables(N, (%))

Mortality 38 (12.3) 21 (10.1) 0.45

Criticality 80 (25.9) 46 (22.2) 0.34

Demographics

Age (Mean, (SD)) 56.5 (16.0) 53.3 (18.5) 0.008*

Female (%) 49.8 48.3 0.73

Race (N (%)) 1% 1.4% 0.22

African American 152 (49.2) 86 (41.5)

Hispanic 37 (12) 25 (12.1)

Other, Non‑ Hispanic 94 (30.4) 82 (39.6)

White 23 (7.4) 11 (5.3)

Vital signs on admission (mean (SD))

Systolic blood pressure 135 (25) 134 (24.7) 0.80

Diastolic blood pressure 78.3 (15) 77.9 (14.3) 0.92

Hearth rate 102 (21) 97.1 (20.1) 0.70

Respiratory rate 23.6 (6.9) 22.7 (6.6) 0.52

Temperature 37.5 (1.1) 37.2 (1.0) 0.095

Oxygen saturation 93.4 (7.5) 97.7 (62.4) 0.16

Clinical and radiological features

BMI, mean (SD) 32.3 (10.5) 32.0 (9.6) 0.56

GCS, mean (SD) 14.9 (0.8) 0% 14.8 (1.2) 1% 0.28

Dyspnea (N (%)) 125 (40.5) 90 (43.5) 0.49

Coma (N (%)) 3 (1) 1 (0.5) 0.54

Pregnant (N (%)) 10 (3.2) 14 (6.8) 0.062

Abnormal chest X‑ray (N (%)) 228 (75) 1.9% 136 (74) 10.6%** 0.67

Laboratory findings (mean, (SD)

White blood cells 6.8 (3.1) 0% 7.7 (3.9) 1% 0.001*

Neutrophiles 5.2 (3.6) 0% 5.6 (3.7) 3.4% 0.038*

Lymphocytes 1.1 (0.7) 0% 1.3 (1) 3.4% 0.024*

Hemoglobin 13.0 (2.2) 0% 12.7 (2.3) 1% 0.57

Hematocrit 39.4 (6.3) 0% 37.9 (6.8) 1% 0.36

RDW 14.9 (2) 0% 15.1 (2.2) 1% 0.68

Platelets 215 (91) 0% 236 (105) 1% 0.15

Creatinine 1.8 (3) 0% 1.9 (2.6) 2.4% 0.47

Lactic acid 1.6 (1.6) 23.3% 1.8 (1.9) 30.4% 0.11

Lactate dehydrogenase 353 (227) 16.5% 386 (521) 27.5%** 0.14

Pro‑calcitonin 1.4 (6.7) 16.8% 2.2 (10.4) 32.9%** 0.12

Troponin I 0.11 (0.8) 32.4% 0.04 (0.1) 31.4% 0.076

B‑type natriuretic peptide 527 (1939) 57% 369 (664) 63.8% 0.10

Albumin 3.7 (0.5) 3.9% 3.6 (0.6) 7.2% 0.009*

ALT 38.8 (44.4) 3.9% 37.8 (49.9) 7.2% 0.88

AST 48.2 (58.3) 3.9% 52.3 (81.3) 7.2% 0.20

Total bilirubin 0.7 (0.9) 3.9% 0.8 (0.7) 7.2% 0.76

Direct bilirubin 0.2 (0.5) 3.9% 0.2 (0.3) 7.2% 0.57

Creatine kinase 281 (471) 63.8% 3071+ (22,782) 67.6% 0.012*

C‑reactive protein 101 (84) 15.5% 98.6 (86.7) 19.8% 0.46

Interleukin 6 24.9 (33.9) 75.1% 28.1 (40.2) 87.9%** 0.17

D‑dimer 1.9 (2.6) 40.8% 2.2 (3) 27.5%** 0.46
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uses a combination of step forward feature selection and 
parametric grid search. Step forward feature selection is 
the process of starting with a single feature and iteratively 
adding one additional feature until there is no increase in 
model performance. For each step in the feature selec-
tion, a parametric grid search is performed to determine 
the optimal parameter set for each model. We use the 
area under the receiver operating characteristic curve 
(AUC) as the evaluation metric.

Statistical analysis of models
No missing data were imputed in our test cohort. Exter-
nal models were included in our analyses if predictions 
could be generated for greater than 60% of the patients 
based on this missingness. If odds or a point scale was 
available, a receiver operator curve was developed and 
the area under the curve (AUC) was calculated.

Confidence interval and comparison of ROCs were 
performed using DeLong’s method [14]. The training and 

test cohorts were compared using Chi-Square tests for 
categorical variables and two-sided t-tests for continu-
ous variables using a significance level of P < 0.05. The 
fraction of missingness for each variable was compared 
between the cohorts using the Bonferroni correction to 
control the family-wise error rate.

Descriptive statistics were performed using Stata 12 SE 
version (StataCorp, TX). Model development was con-
ducted using the Python libraries sklearn (v.0.23.1), Ten-
sorFlow (v.2.2.0), XGBoost (v0.90), LightGBM (v.2.3.1) 
and Catboost (v.0.23.1). Statistical analysis was per-
formed using the pROC package in R. This study was 
approved by the UIC Institutional Review Board.

Results
UIH cohort characteristics model compilation
A description of the UIH cohorts is shown in Table  1. 
There was a total of 516 patients. The training cohort 
included the first 309 patients (60%), and the test cohort 

Table 1 (continued)

Characteristics Development cohort (N = 309) Test cohort (N = 207)  P

Missing Data Missing Data

Ferritin 884 (1562) 7.1% 930 (1360) 17.4%** 0.45

Medical condition

Hypertension 178 (57.6) 111 (53.6) 0.37

Heart disease 94 (30) 56 (27) 0.41

Stroke 23 (7.4) 11 (5.3) 0.34

Diabetes 161 (52.1) 96 (46) 0.20

Asthma 65 (21) 45 (22) 0.85

COPD 24 (7.8) 13 (6.3) 0.52

Chronic kidney disease 52 (17) 38 (18) 0.65

End‑stage renal disease 30 (9.7) 24 (12) 0.49

Cancer 33 (11) 23 (11) 0.88

Transplant 1 (0.3) 1 (0.5) 0.78

Human immunodeficiency virus 7 (2.3) 1 (0.5) 0.11

Immunosuppression 2 (0.6) 9 (4.3) 0.004*

Sickle cell disease 6 (2) 6 (2.9) 0.48

Nicotine use 34 (11) 32 (16) 0.14

Alcohol use 59 (19) 45 (22) 0.46

Substance use 16 (5) 11 (5.3) 0.95

Variables needed for external models only

Blood urea nitrogen, mean (SD) 23.5 (20.7) 1.9%

eGFR, mean (SD) 70.9 (40.6) 2.4%

Partial thromboplastin time, mean (SD) 34.4 (6.5) 42.5%

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular 
filtration rate; GCS, Glasgow coma scale; RDW, red blood cell distribution width; SD, standard deviation
* Continuous variables were compared using a t-test and categorical variables, including missingness, were compared using a Chi-square test
** P < 0.05 using a chi-square test, development versus test cohort

Significance was set at 0.05
+ A single very high, but clinically consistent creatine kinase accounted for the very large mean in this group
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was the subsequent 207 patients (40%). The test cohort 
was slightly younger, 53.3 vs 56.5  years [P = 0.008]. 
Though the whole racial distribution was not significantly 
different between the cohorts, the proportion of self-
declared black patients was 49% in the training cohort 
and 42% in the test cohort. The lymphocyte, white blood 
cell and neutrophil counts were significantly higher in the 
test cohort.

Though some lab tests were performed on almost all 
patients, many tests were performed in a more discre-
tionary fashion. The missingness of some of the more 
discretionary tests was higher in the test cohort than in 
the training cohort: ferritin 7.1–17.4%, Lactate Dehy-
drogenase (LDH) 16.5–27.5%, Procalcitonin 16.8–32.9%, 
Interleukin 6 (IL-6) 75.1–87.9%. D-dimer was missing 
less frequently in the test cohort, 40.8–27.5%.

Model compilation summary
Ninety-one abstracts were reviewed. After applying our 
inclusion criteria, 41 articles remained. The models and 
references are shown in Table 2.

Over 60% of the models (n = 26) were derived in China, 
11 in Europe, 3 in the US and 2 were multinational. The 
most common methods were logistic regression (n = 25) 
and Cox Regression (n = 12).A small number of models 
used neural networks and decision trees. Among models 
which published an AUC, the AUC’s ranged from 0.74 to 
0.98.

UI health internal model development
Multiple methods of machine learning were assessed to 
develop the best prediction model of the training (60%) 
cohort. The best models for both mortality and critical-
ity were random forest models, based on the AUC values. 
Table  3 lists the key modeling parameters and covari-
ates for the mortality and criticality models. The covari-
ates are listed in the order of importance generated by 
the step forward regression. The key parameters for the 
random forest models were determined during the grid 
search of the development data set. The AUC for the 
mortality model in the training cohort was 0.98, and for 
criticality it was 0.97.

If model coefficients in the papers in Table 2 were suf-
ficiently described and the model variables were available 
for more than 60% of admissions, the model was used 
to predict outcomes in the UIH test cohort. Results are 
shown in Table 4.

A total of 10 models were assessed using the test 
cohort, 8 from the literature and 2 internal. Seven of the 
external models used logistic regression and one used a 
decision tree. One external model predicted criticality; 
the remainder predicted mortality. The most common 
variables used in the models were the age (7 models), 

lymphocyte count or lymphocytes/WBC ratio (6 models), 
C-reactive protein (CRP) and LDH (4 models), D-dimer 
(3 models) and BUN (2 models). The number of features 
used in each model ranged from 2 to 11, with a median 
of 3.5. These models assessed clinical features and labora-
tory testing upon admission. In addition, 1 model explic-
itly included pregnant patients [19], 2 excluded pregnant 
patients [28, 42], and 5 were undetermined [20, 26, 44, 
46, 51].

Three of the models, B, G and H [19, 46, 51], had open 
access web-based calculators to predict outcomes for 
individual patients. One model used a decision tree of 
only three variables which is easy for a clinician to use 
(A) [42]. Two models used a nomogram to try to simplify 
use (D and F) [26, 44].

All external models were trained using cohorts of Chi-
nese patients. Though there were non-Chinese cohort 
models in Table  2, none of them provided sufficient 
description of their models to be implemented on our 
test cohort without retraining.

Common reasons why models were not used were the 
lack of availability of the coefficients needed to calculate 
a prediction score, lack of concordance between the fea-
tures used in the model and features available in our test 
cohort, and outcome data not available in our test cohort 
(e.g., mortality).

Figure  1 shows the confidence intervals of the AUC’s 
obtained on the test cohort. Table 4 and Fig. 1 show that 
the best estimate for the AUC ranges from 0.68 for model 
G to 0.89 for model C. The internal models have an AUC 
of 0.84 for mortality and 0.83 for criticality. The mortality 
model with the highest AUC, C, was not statistically dif-
ferent than the UIH mortality model, 0.89 (0.82–0.96) vs 
AUC 0.84 (0.74–0.94), [P > 0.5].

The confidence intervals range from 0.13 to 0.30. The 
difference in performance between the published fit and 
that of its performance on our test set varied significantly. 
For model B this difference in AUC was only 0.04 and for 
model E it was 0.26. The UI Health models were in the 
middle with a 0.14 AUC difference.

For all 8 models, the mean values for lab results and 
those of the UI Health test cohort are shown in Table 5. 
The variables shown were used in at least one model 
and were available in five or more of the model cohorts. 
Age and CRP were reported in all papers. The creatinine 
was reported in seven papers. Though rigorous statisti-
cal testing cannot be performed due to the inability to 
obtain the raw data, some of the variables are clinically 
significantly different between the cohorts from China 
and UIH. The mean CRP at UIH is more than three times 
higher than in the external model average, the creatinine 
is two-fold higher and the LDH is roughly 1/3 higher.
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Discussion
All the models in Table 1 could not be used to make pre-
dictions on our test cohort for multiple reasons. Without 
chart review, symptomology and its duration are difficult 
to obtain, excluding some models. Unusual imaging grad-
ing schemes or mandatory CT scans were not available in 
our cohort. Some studies used labs that were not ordered 
frequently in our hospital. Lack of longitudinal follow up 
limited the use of timed mortality, i.e., 30-day etc. These 
issues, along with the lack of well described coefficients 
of models produced the inability to use models except for 
the 8 models in Table 1.

The features used in the models were surprisingly 
diverse. The number of variables in each model ranged 
from 2 through 11, with 19 different variables across the 
studies. The most common variables used were age, lym-
phocyte count, CRP and LDH. It is surprising that only 
7 of the 10 models used age as a predicting variable, and 
the 3 models that did not use it did not perform well. In 
large multi-site cohorts examined in Britain [56], the US 
[57] and internationally [58], age was a strong predictor 
of mortality.

Three of the external models performed very well, with 
AUC’s of 0.84–0.89. This demonstrates that although the 
patients were geographically distant, ethnically different, 
in different health systems and cultures, and at different 
times during the pandemic, reasonable prediction was 
possible. Our initial hypothesis was that these models 
would not work well, but this was not the case in all the 
models.

It is likely that some of the models may have had better 
performance if retrained using our local cohort, but this 
was not done as the purpose was to see how they worked 
“out of the box”. This appeared to be the intent of many 
of the authors of the published models as evidenced by 
the publishing of web calculators, nomograms and deci-
sion trees. One of the issues which may cause worse or 
better performance in a model is that the outcomes have 
been found to be a function of time during the pandemic, 

not just patient factors, with improving outcomes more 
recently [59, 60].

Models A, F, G and H were also evaluated in a review 
and cohort prediction comparison by Gupta et  al. [61] 
using their cohort of 440 patients from London with a 
mortality rate of around 28%. For Models F, G and H, the 
AUCs in our cohort were slightly different than in the 
London Cohort [61] respectively, model F, 0.84 vs. 0.76, 
model G, 0.68 vs. 0.74 and model H, 0.72 vs. 0.69.

Review of the characteristics of the cohorts in Table 5 
is instructive in understanding why some of the models 
did not perform well. Model A is a decision tree based 
on only 3 features, CRP, LDH and the percentage of lym-
phocytes. The first decision node suggests mortality if the 
LDH is greater than 365 U/L. In their cohort, the average 
LDH was 274 U/L. The average LDH in our test cohort 
was 386 however, thus a large portion were predicted to 
die at the first node, causing a poor positive predictive 
value (PPV). In the London cohort the average LDH was 
about the same as ours, 395 U/L, and this model per-
formed poorly in that cohort also [61].

The average LDH was roughly 1/3 higher in our test 
cohort than in the average of the cohorts from China. It 
is not clear what the reason for this is. In a healthy multi-
ethnic cohort from Hawaii [62], there were at most minor 
differences between black, Hispanic, White and Asian 
patients in their LDH, suggesting that the differences in 
LDH are not likely due to racial factors. It is possible that 
a difference in the time of infection to presentation might 
explain the difference. The other models which used LDH 
predicted well, but this might be in part related to use of 
a logistic regression instead of a decision tree.

The average CRP in our cohort is roughly 350% of the 
average in the external models, 99 mg/L vs. 27 mg/L. Four 
models used the CRP and only one model performed 
well, model C. The creatinine was significantly higher 
in our cohort than in any of the derivation cohorts and 
as well as the average of the studies, 0.84  mg/dL. Only 
one model used the creatinine, model H. Its derivation 
cohort average creatinine was 0.72  mg/dL. Thus, model 

Table 3 Internal Model Fit on first 60% of admissions for mortality and criticality

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C-reactive protein; O2 Sat, oxygen saturation; RDW, red blood cell 
distribution width; WBC, white blood cell count

Model Method Key parameter Covariates

Mortality Random forest Number of estimators: 100
Max depth: 5
Minimum sample Split: 3

Age, diastolic pressure, O2 Sat, 
BMI, AST, creatinine, CRP, fer‑
ritin, platelet, RDW, WBC

Criticality Random forest Number of estimators: 100
Max depth: 5
Minimum sample Split: 2

Age, O2 Sat, ALT, AST, creati‑
nine, CRP, ferritin, platelet, 
RDW, WBC, neutrophil/lym‑
phocyte ratio
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H used both the CRP and creatinine, helping explain 
its poor performance. For creatinine, there are studies 
showing socioeconomic and ethnic variations in chronic 
kidney disease [63] with one systematic review showing 
the prevalence of chronic kidney disease in China was 
less than a fourth of the rate in the US [64]. The higher 

creatinine in the test cohort may not be related only to 
differences in illness at presentation, but rather differ-
ences in the prevalence of CKD.

It is not fully clear why the models produced at UIH 
using our training cohort did not perform better on 
our test cohort, though there are some likely factors. 

Fig. 1 Area under the curve (AUC) confidence intervals for Table 4 models

Table 5 Values of the most common variables in the 8 external models and the test cohort

*  Bolded, italicized, underlined values represent variables used in the final models
** These values are for the entire cohort, validate and test, N = 516

 Cr creatinine, CRP C reactive peptide, IQR interquartile range, LDH lactate dehydrogenase, Neut neutrophile count, Lymph lymphocyte count, Lymph/WBC lymphocyte 
to white blood cell ratio, SD standard deviation, UIH University of Illinois Hospital

Characteristics Age (N = 8) CRP (mg/L) 
(N = 8)

Cr (mg/dl) 
(N = 7)

LDH (U/L) 
(N = 6)

Lymph (1000/
uL) (N = 6)

Lymph/WBC 
(N = 6)

Neut (1000/uL) 
(N = 4)

Model cohort

A 58.8 26.3* N/A 274 N/A 0.14 N/A
B 48.9 34.8 0.86 314 1.4 N/A 4.1
C 56.5 21.1 1.08 148 N/A 0.24 N/A
D 65.0 22.5 0.78 272 1.1 0.19 4

E 65.0 6.2 0.76 N/A 1.3 0.23 3.9

F 62.0 64.5 0.83 362 0.8 0.11 N/A
G 63.5 41.3 0.84 345 0.9 0.14 N/A

H 61.0 2.7 0.72 N/A 1.4 N/A 3.5

Total (Mean, 
(SD))

60.1 (5.4) 27.4 (19.8) 0.84 (0.12) 286 (77) 1.1 (0.3) 18% (5) 3.9 (0.3)

UIH cohort**

Mean (SD) 53.3 (18.5) 98.6 (86.7) 1.93 (2.63) 386 (521) 1.3 (1) 18% (11) 5.8 (3.6)

Median (IQR) 55 (40–67) 75.2 (32–146) 1.02 (0.8–1.6) 297 (230–417) 1.1 (0.7–1.5) 16% (10–24) 4.7 (3.3–7.3)
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The AUC for mortality decreased from 0.98 to 0.84 
and for criticality, from 0.97 to 0.83. In analysis of the 
entire cohort, we were able to determine that the mor-
tality and criticality were associated with the admission 
date. This is consistent with publications showing an 
improved mortality rate over time [59, 60]. The WBC, 
lymphocytes and neutrophils were not all used in each 
model and all went up in the test cohort. Thus, it is pos-
sible that some variable not in the models changed over 
time, producing a worse fit compared to the first 60% of 
patients.

The number of cases for which a model is unable to 
generate a prediction due to missing data is an impor-
tant practical consideration for model implementation. 
The fraction of the test cohort for which predictions 
could not be generated due to missingness ranged 
between 17 and 31% for external models. The UI Health 
models could not generate predictions in 27% of the 
patients. Though retrospectively missing data can be 
imputed, this is not so easy in real time by clinicians 
during patient care, so was not done. This demonstrates 
non standardized test ordering, which is not surprising 
as our understanding of what is useful and necessary 
for testing in suspected COVID patients has evolved.

It is interesting to note that many of the tests which 
have been used commonly in these and other models 
were missed more frequently in the test cohort than the 
earlier development cohort. Ferritin 17.4% from 7.1%, 
LDH 27.5% from 16.5%. It is not clear why these tests 
were ordered less over time, particularly LDH with 
many publications demonstrated its prognostic power 
[15, 16, 21, 22, 25, 27, 42–45, 50, 52, 53]. It is possible 
that the ordering of these inflammatory prognostic 
markers [65] decreased as clinicians’ confidence with 
clinical prognosis improved.

D-dimer on the other hand was missing less fre-
quently in the test cohort, 27.5% from 40.8%. This dif-
ference may be due to an increased concern for venous 
thromboembolism in COVID 19 infections [66] which 
developed over time.

An important question is what model to use to pro-
vide prognostic information to clinicians. Using your 
own data to inform future care is consistent with a 
learning health system [67]. The ideal situation is that 
clinical decision support (CDS) could supply the best 
prediction for a patient based on the most recent trends 
at the time. Another reason to use your own data, espe-
cially with COVID-19, is that the disease, treatment 
and outcomes are likely to change over time [59, 60], 
while the models in the literature are static. An addi-
tional benefit of using your own data and predictive 
models is the ability to see which diagnostic tests are 

most useful prognostically, but are not ordered enough, 
leading to more evidenced based order sets.

Our literature search has limitations due to the ina-
bility to ensure that all possible synonyms were used 
along with other reasons that the search strategy may 
have missed articles. As related to COVID-19, the rate 
of discovery and publication is so rapid that many mod-
els were likely published between the time of study 
completion and study publication.

Limitations related to our cohort and analysis are first 
that this is a single site study, and these models may have 
performed differently at other sites. The size of the test 
cohort contributed to the relatively large confidence 
intervals of the AUC’s, making statistical significance dif-
ficult to prove. We were unable to follow patients con-
sistently after discharge, thus could not measure timed 
outcomes like 30-day mortality. Lastly, we could not con-
trol for changes in treatment which have occurred over 
time.

Conclusions
Both internal and some external models were found to 
work well at predicting mortality in our test cohort. The 
3 best external models used at least age, LDH and lym-
phocytes. Inconsistent ordering of lab tests led to the 
inability to generate predictions for 27–31% of our cohort 
using the 3 best external models and the 2 UIH models.

As not all the external models worked well, it would be 
difficult to know which model to use for future admis-
sions at a particular time during the pandemic as treat-
ment and patient mix can change. As an institution’s 
own prior patients are most similar to their next group 
of patients, using models from local data should be 
considered.
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