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Abstract 

Background:  Immune-checkpoint inhibitors (ICIs) have introduced novel immune-related adverse events (irAEs), 
arising from various organ systems without strong timely dependency on therapy dosing. Early detection of irAEs 
could result in improved toxicity profile and quality of life. Symptom data collected by electronic (e) patient-reported 
outcomes (PRO) could be used as an input for machine learning (ML) based prediction models for the early detection 
of irAEs.

Methods:  The utilized dataset consisted of two data sources. The first dataset consisted of 820 completed symptom 
questionnaires from 34 ICI treated advanced cancer patients, including 18 monitored symptoms collected using the 
Kaiku Health digital platform. The second dataset included prospectively collected irAE data, Common Terminology 
Criteria for Adverse Events (CTCAE) class, and the severity of 26 irAEs. The ML models were built using extreme gradi-
ent boosting algorithms. The first model was trained to detect the presence and the second the onset of irAEs.

Results:  The model trained to predict the presence of irAEs had an excellent performance based on four metrics: 
accuracy score 0.97, Area Under the Curve (AUC) value 0.99, F1-score 0.94 and Matthew’s correlation coefficient (MCC) 
0.92. The prediction of the irAE onset was more difficult with accuracy score 0.96, AUC value 0.93, F1-score 0.66 and 
MCC 0.64 but the model performance was still at a good level.

Conclusion:  The current study suggests that ML based prediction models, using ePRO data as an input, can predict 
the presence and onset of irAEs with a high accuracy, indicating that ePRO follow-up with ML algorithms could facili-
tate the detection of irAEs in ICI-treated cancer patients. The results should be validated with a larger dataset.
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Background
In recent years, there has been a remarkable develop-
ment in cancer immune checkpoint inhibitor (ICI) thera-
pies. ICIs have become the first line treatments in several 
malignancies  [1–12]. However, ICIs are associated with 
unique immune related adverse events (irAEs). These 
toxicities can arise from various organ systems, and, 
at any time point without temporal connection to the 
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therapy which makes these more unpredictable than AEs 
with traditional cancer therapies. irAEs may also persist 
or appear in a similar manner after ICI discontinuation 
while immune-mediated toxicity seems to be independ-
ent of the  dose and duration of the given anti-PD-(L)1 
treatment  [13–15]. Even though irAEs can be severe and 
even life threatening, if caught and treated early, most of 
them are reversible  [16]. Thus, early detection of irAEs 
could result in an improved safety of the treatment and 
better quality of life (QoL).

Artificial intelligence (AI) based analytics have gained 
growing interest in the field of cancer care. Deep learning 
systems have shown promising results especially in can-
cer diagnostics  [17]. AI based methods can be used to 
analyze vast data pools to create predictive and prognos-
tic analytics for generating value-based healthcare assets. 
In addition, recent data shows that ML algorithms could 
identify patients with cancer who are at risk of short-
term mortality  [18]. The possibility of creating truly 
individual prognostic assessments could facilitate more 
timely conversations between patients and health care 
personnel (HCP) regarding goals and values.

Due to the unique nature of irAEs, there is a need for 
all-comprising assessment, grading, and long-term sur-
veillance of patients’ symptoms. Patient reported out-
comes (PROs) consist of health-related questionnaires 
complete by the patients, which can capture symptoms 
and signs. Evolving data suggests that electronic (e) PRO 
tools could be one solution for optimizing patient sur-
veillance during and after ICI therapies  [19, 20]. ePROs 
combined with other clinical data could be used to 
develop machine learning (ML) based prediction mod-
els to better foresee irAEs. irAEs can be demanding to 
distinguish from acute infections or other cancer related 
symptoms and early detection may be sacrificed with sel-
dom treatment visits at the care unit (up to 6 weeks). ML 
models could provide a tool to enhance both the  irAE 
diagnosis and early detection and facilitate medically rel-
evant interaction between the patient and HCP.

We have previously shown that the real-world symp-
tom data collected with Kaiku Health ePRO tool on can-
cer patients receiving ICI therapy aligns with the data 
from clinical trials, and that correlations between dif-
ferent symptoms occur, which might reflect therapeutic 
efficiency, side effects, or tumor progression [20, 21]. We 
first explored the possibilities of ML based prediction 
models on ePROs to create prediction models of symp-
tom continuity of cancer patients receiving ICIs, and 
showed that it is feasible [22]. Based on our previous 
work on ML modelling, and the ePRO symptom correla-
tions, we speculated that if symptoms can predict irAEs, 
symptoms could work as a surrogate to irAEs. Thus, we 
hypothesized that a ML based prediction model for irAEs 

of cancer patients receiving ICIs could be created based 
on ePRO symptom data coupled with clinical data.

In this study, anonymized and aggregated ePRO data 
collected with the Kaiku Health ePRO tool, in addition 
to prospectively collected irAE data containing the initia-
tion and end dates, CTCAE class, nature and severity of 
irAEs, was used to train and tune prediction models built 
using an open source Python library XGBoost (extreme 
gradient boosting algorithm) for the  detection of the 
presence and onset of irAEs [23–25].

Methods
Patients
The study subjects (n = 34) consisted of patients recruited 
to the prospective KISS trial investigating ePRO fol-
low-up on cancer patients receiving ICIs  [19]. In brief, 
the trial included patients with advanced cancers (non-
small cell lung cancer, melanoma, genito-urinary cancers 
and head and neck cancers) treated with anti-PD-(L)1s 
in outpatient settings with the  availability of internet 
access and email. At the initiation of the treatment phase 
(within 0–2  weeks from the 1st anti-PD-(L)1 infusion), 
patients received an email notification to complete the 
baseline electronic symptom questionnaire of 18 symp-
toms and weekly thereafter until treatment discontinua-
tion or 6 months of follow-up. Data on the irAEs (nature 
of AE, date of onset and resolving, dates of change in AE 
severity, and the highest grade based on CTCAE classifi-
cation)  were prospectively collected in the trial.

The study was approved by Pohjois-Pohjanmaan 
sairaanhoitopiiri (PPSHP) ethics committee (number 
9/2017), Valvira (number 361), and details of the study 
are publicly available at clinicaltrials.gov (NCT3928938). 
The study was conducted in accordance with the Decla-
ration of Helsinki and Good Clinical Practice guidelines.

Prediction models
The aim of this study was to create a model for predict-
ing the presence (is the predicted irAE truly an irAE) 
and onset (is an irAE developing) of irAEs based on 
evolving patient-reported symptoms collected digitally 
in prospective manner from cancer patients receiv-
ing ICI therapies. For both modelling cases, the output 
of the prediction model is a continuous value [0—1] 
depicting the probability for the positive event, i.e., 
presence or onset of irAEs. With a classification thresh-
old (0.5 was used with both models), the continuous 
probabilities were converted into binary outcomes, i.e., 
when the predicted probability for the positive event 
is larger than 0.5, prediction is labeled positive (irAE 
onsetting or present), and if less than 0.5, then nega-
tive (irAE not onsetting or present). Hence, the model-
ling methodology used in this study follows a general 
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framework of binary classification in machine learn-
ing (ML). The first dataset included 820 filled symptom 
questionnaires from from 34 ICI treated cancer patients 
in outpatient settings, comprising 18 monitored symp-
toms collected using the Kaiku Health digital platform. 
The second dataset included physician-confirmed pro-
spectively collected irAE data in the eCRFs of the KISS 
trial from those 34 patients, containing the  initiation 
and end dates, CTCAE class, nature (colitis, diarrhea, 
arthritis, rash, hyperglycemia, neutropenia, pneumoni-
tis, itching, cholangitis, mucositis, hypothyreosis, hepa-
titis) and severity of 26 irAEs. The timelines of ePROs 
and irAEs were synchronized according to dates. Of 
note, some patients might have experienced multi-
ple irAEs, thus, the incidence of irAEs in this patient 
cohort was ~ 40% (n = 14). Multiple observations across 
same patients were used to create a timeline of irAEs, 
however, in every time point analyzed, the parameters 
differ comprising a new sample. Furthermore, the gra-
dient boosting trees-algorithm used can handle inter-
correlated observations or features.

Two ML models were built using an open source 
Python library XGBoost, which offers a widely used high-
performance implementation of gradient boosting, an 
established algorithm suitable for classification problems. 
Gradient boosting is an ensemble-learning algorithm, 
i.e., it is an ensemble of many, usually tens or hundreds 
of decision trees. These decision trees, i.e., classification 
trees, are weak learners, but when combined using gradi-
ent boosting approach, they form a strong learner capa-
ble of capturing complex relationships in the training 
data. By combining the ePRO data and the clinical data, 
the first model was trained to detect the presence and 
the second model the onset (0–21 days prior to the diag-
nosis) of irAEs. We also tested several other commonly 
used ML models, such as logistic regression, elastic-net 
regression, support vector machines, LightGBM and ran-
dom forests, but XGBoost had the best performance with 
the test dataset, and, thus, it was chosen as the model for 
the study.

The dataset was split into training (70% of the data) 
and test sets (30% of the data) by  random allocation at 
patient-observation level. The test set was left out from 
the model training and tuning and was used only to eval-
uate the model performance. The hyperparameter tuning 
for both prediction models was done using grid search 
with repeated, stratified fivefold cross-validation with 
five repeats. The model features included patient infor-
mation including age, sex, and time from the treatment 
initiation, and ePRO data from 18 monitored symptoms. 
From the symptom data, three past values, linearly scaled 
based on the time difference from the latest report, and 
the latest change in symptom severity were included as 

features for each symptom. This yielded 75 features in 
total for both models.

The prediction performance of the models was evalu-
ated using four commonly used metrics: accuracy, Area 
Under the Curve (AUC), F1-score and Mathew’s correla-
tion coefficient (MCC), which are described shortly next. 
Accuracy describes how many predictions were correct 
as percentages, and 100% indicates a perfect classifica-
tion. AUC is a performance metric for binary classifica-
tion ranging from 0 to 1. F1-score is the weighted average 
of precision (how many of the cases predicted as positive 
are actually positive) and recall (how many of the posi-
tive cases are detected) which gets values between 0 and 
1. Matthew’s correlation coefficient (MCC) summarizes 
all possible cases for binary predictions: true and false 
positives, and true and false negatives. MCC is also suit-
able for analyzing imbalanced datasets, where other class 
is much rarer than the other. MCC can be considered as 
a correlation coefficient between the observed and the 
predicted classifications and it gets values between −  1 
and 1, where 1 is a perfect classification, 0 is random 
guessing and −  1 indicates a completely contradictory 
classification.

Results
 In this patient group, the longest irAE lasted for 799 days, 
and the shortest two days while median duration was 
61  days. The model trained to predict the presence of 
irAEs had an excellent performance with the test dataset. 
According to the accuracy score, both models performed 
at a very good level. The accuracy score for the prediction 
of the presence of irAEs was 0.97, and 0.96 for the onset 
of irAEs. The AUC values (0.99 for the presence of irAEs 
and 0.93 for the onset of irAEs) suggested a good qual-
ity level of the  model performance. The F1-score (0.94) 
indicates that the model was accurate in the prediction 
of the presence of irAEs. However, F1-score for the pre-
diction of the onset of irAEs was somewhat lower, 0.66. 
According to the MCC values, the model performed well 
in predicting the presence of irAEs (0.92) while the accu-
racy in predicting the onset of irAEs was lower, 0.63. The 
performance metrics for the ML models are presented in 
Table 1.

Figure  1 presents the confusion matrix for predicting 
the presence of irAEs and Fig. 2 for predicting the onset 
of irAEs. As is evident from Fig. 1, the prediction perfor-
mance for the presence of irAEs was excellent as there 
were only two false negative (the lower left corner) and 
six false positive (the upper right corner) predictions with 
the test dataset. The false negatives were identified as the 
cases where the prediction model did not predict a pres-
ence of irAE for a test dataset sample, which was actu-
ally positive, i.e., an irAE was present. The false positives, 



Page 4 of 8Iivanainen et al. BMC Med Inform Decis Mak          (2021) 21:205 

on the other hand, were the cases where the model pre-
dicted the presence of irAE for the sample, but the sam-
ple was actually negative, i.e., there was no irAE present.

The prediction performance for the onset of irAEs was 
much lower as can be seen in Fig. 2. There were only 17 
positive samples in the test dataset of which 11 were clas-
sified correctly as positive and six were classified as nega-
tive, thus, being false negatives. In addition, there were 
five false positives in the test dataset.

Figure  3 presents the feature importance plot for the 
model predicting the presence of irAEs and Fig. 4 for the 
model predicting the onset of irAEs. The presented fea-
ture importances display the relative average improve-
ment in prediction accuracy across all trees in the model 
where the feature in question is used. The feature impor-
tances are relative, i.e., they display how much features 
contribute to the final prediction relative to each other. A 
higher value indicates that the feature is more important 
for generating the prediction compared to a feature with 
a lower value.

As is presented in Fig. 3, the most important features 
for predicting the presence of irAEs were related to diar-
rhea, pain in joints, dizziness, age and time from the 
treatment initiation (weeks in treatment). According to 
Fig. 4, for predicting the onset of irAEs, the most impor-
tant features were related to fever, chest pain, stomach 
pain, dizziness, nausea, and diarrhea. Furthermore, Fig. 3 
reveals that, roughly, two thirds of the features contrib-
uted to the predictions and one third was not used. The 
features, which do not contribute to the predictions, 
could be removed using feature selection, but it is not 
mandatory, or does not impact the model performance 
due to the tree structure of the used algorithm. A similar 
number of features were utilized in the prediction of the 
onset of irAEs neither, as is presented in Fig. 4.

Discussion
In this study, ePRO and irAE data related to advanced 
cancer patients treated with ICIs were investigated to 
better understand their potential correlation. The aim 
was to use prospectively collected patient-derived data 
and clinical data from treating physicians during ICI 
treatments to build ML based tools to improve the early 
detection of irAEs, and ultimately, enhance patient care, 
QoL and cost-effectiveness of ICIs. The results show that 
ML models based on the ePRO and structured electronic 
health care record (EHR) data could accurately predict 
the presence of irAEs. The ML models had a good level of 
discrimination in predicting the onset and continuation 
of irAEs.

The feature importance analysis revealed that diar-
rhea and pain in the joints, known irAEs with predictive 
nature, contributed the most to the prediction accuracy 

Table 1  Performance metrics for the prediction models for the 
presence and onset of irAES

Presence of irAEs Onset of irAEs

Accuracy 0.97 0.96

AUC​ 0.99 0.93

F1-score 0.94 0.67

MCC 0.92 0.64

Fig. 1  The confusion matrix for predicting the presence of irAEs

Fig. 2  The confusion matrix for predicting the onset of irAEs
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when predicting the presence of irAE. Combined with 
clinical domain knowledge, the importance of these 
features could be interpreted that if ICI treated cancer 
patients report these symptoms, especially with a higher 
severity; they very often reflect the presence of irAE. In 
contrast, in predicting the future onset of irAE, fever, 
chest, and stomach pain were the predominant features 
in the model. All these symptoms are commonly present 
with cancer patients and demand further assessment and 

intervention aiming to improve symptom control and 
QoL. Furthermore, in rare cases, such symptoms could 
imply an onset of a fatal irAE such as colon perfora-
tion, pneumonitis, or myocarditis that require ambula-
tory interventions. In addition, these symptoms often 
indicate progressive disease in lung cancer patients or 
patients with lung metastases, which underlines the 
importance of prompt diagnostic measures to exclude 

Fig. 3  Feature importance plot for the model predicting the presence of irAE
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pseudo-progression with concomitant irAE demanding 
rapid initiation of an immunosuppressive medication  
[14].

There are several limitations to this analysis. The most 
relevant limitation is the low number of study subjects. 
However, the total amount of reported symptoms is close 
to 20,000 which increases the value of the data collected. 
In addition, the data pool was not sufficient large enough 
to create prediction models for individual irAEs. On the 

other hand, also in clinical practice the differential diag-
nostics of irAEs has proven to be demanding due to the 
generic onset of irAEs. For that, we feel that an early 
identification of any irAE probably enhances the can-
cer care especially taking into account the non-specific 
symptom and irAE correlation, and over time cumulation 
of multiple irAE on individual patients.

Furthermore, our cohort consisted of ICI-monotherapy 
treated patients and may not be generalized to patients 

Fig. 4   Feature importance plot for the model predicting the onset of irAEs
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treated with combination therapies. According to regis-
try data, however, the toxicity profile of ICI-ICI or ICI-
chemotherapy compared to ICI-monotherapy differs 
mainly in the overall incidence rather than in the variety 
of symptoms  [14, 26–30]. In addition, our study pro-
vides a proof-of-concept for building ML based predic-
tion models on ePRO data and clinical data and can be 
further exploited also to create models for the combina-
tion therapies of ICIs. The F1-score and the MCC value 
for the prediction of the onset of irAE were somewhat 
low. The lower level of performance of the model in pre-
dicting the onset of irAEs probably reflects the rather 
low incidence of irAEs in ICI-monotherapy treated can-
cer patients. Nevertheless, used modelling methods and 
approaches were chosen to overcome the issues related 
to imbalanced data sets, and intercorrelated parameters 
to minimize such bias. These methods and approaches 
included, e.g., utilization of sample weights (giving more 
emphasis on the rare positive samples in model training), 
utilization of F1 score and MCC as performance metrics 
and using a regularized tree-based model, XGBoost.

Evolving data show that EHR based predictive algo-
rithms may improve clinicians’ prognostication and 
decision-making  [31, 32]. Oncology-specific ML algo-
rithms based on EHR data have been shown to accurately 
predict short-term mortality among patients starting 
chemotherapy  [33, 34]. However, utilization of elec-
tronic patient-derived symptom data, ePROs, related to 
ICI therapy toxicity in creating ML algorithms is a novel 
approach. Furthermore, ePROs have many advantages 
compared to paper questionnaires such as reducing 
timely and locational limitations and offering continuous 
collection of symptoms in a cost-effective manner  [35–
37]. Thus, based on the results of the study, it is feasible to 
use ePROs in the development of ML based approaches, 
such as symptom prediction models to enable the earlier 
detection of toxicities. Furthermore, we argue that ePRO 
follow-up combined to ML models for ICI toxicity pre-
diction would optimize the clinical impact of the therapy. 
Future research will focus on combining other clinical 
data such as laboratory values to the model to create a 
criterion-standard prognostic assessment tool to predict 
ICI related toxicity. Whether this would be enhanced 
by combining the symptom reports of a patient to other 
eHealth apps sensing for example metabolic or physi-
ologic changes, is another fascinating possibility  [38].

Conclusions
The current study suggests that ML based prediction 
models using ePRO and EHR data as an input can pre-
dict the presence and onset of irAEs with a high accu-
racy. Thus, it indicates that digital symptom monitoring 

combined with ML could facilitate the detection of irAEs 
in ICI-treated cancer patients.
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