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Abstract 

Background:  Better phenotyping of routinely collected coded data would be useful for research and health 
improvement. For example, the precision of coded data for hemorrhagic stroke (intracerebral hemorrhage [ICH] and 
subarachnoid hemorrhage [SAH]) may be as poor as < 50%. This work aimed to investigate the feasibility and added 
value of automated methods applied to clinical radiology reports to improve stroke subtyping.

Methods:  From a sub-population of 17,249 Scottish UK Biobank participants, we ascertained those with an incident 
stroke code in hospital, death record or primary care administrative data by September 2015, and ≥ 1 clinical brain 
scan report. We used a combination of natural language processing and clinical knowledge inference on brain scan 
reports to assign a stroke subtype (ischemic vs ICH vs SAH) for each participant and assessed performance by preci-
sion and recall at entity and patient levels.

Results:  Of 225 participants with an incident stroke code, 207 had a relevant brain scan report and were included in 
this study. Entity level precision and recall ranged from 78 to 100%. Automated methods showed precision and recall 
at patient level that were very good for ICH (both 89%), good for SAH (both 82%), but, as expected, lower for ischemic 
stroke (73%, and 64%, respectively), suggesting coded data remains the preferred method for identifying the latter 
stroke subtype.

Conclusions:  Our automated method applied to radiology reports provides a feasible, scalable and accurate solu-
tion to improve disease subtyping when used in conjunction with administrative coded health data. Future research 
should validate these findings in a different population setting.
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Background
UK Biobank (UKB) is a prospective population-based 
cohort study with extensive phenotypic and genotypic 
information on > 500,000 participants (www.​ukbio​
bank.​ac.​uk). It is an open access resource, established 

to facilitate research into the determinants of a wide 
range of health outcomes [1]. Disease outcomes are 
ascertained primarily via linkages to routinely collected 
coded national administrative health datasets [2], ena-
bling the identification of a broad range of disease 
phenotypes with sufficient accuracy for many research 
studies [2–4]. However, these coded data are often 
incomplete and less accurate when it comes to identify-
ing specific disease subtypes [2, 3]. For example, up to 
40% of participants with a stroke code in hospital, death 

Open Access

*Correspondence:  kristiina.rannikmae@ed.ac.uk
†Kristiina Rannikmäe and Honghan Wu contributed equally to this work
1 Centre for Medical Informatics, University of Edinburgh, NINE Edinburgh 
BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01556-0&domain=pdf


Page 2 of 9Rannikmäe et al. BMC Med Inform Decis Mak          (2021) 21:191 

record or primary care administrative data in UKB do 
not have a code specifying their stroke subtype, even 
though review of the full text medical records shows 
that a stroke subtype was known in over 99% of cases 
[2]. Further, among subtype specific codes, hemor-
rhagic stroke codes may have precision as low as 42% 
[2]. This will be a limitation for many researchers since 
stroke is a heterogeneous disease, and genetic and envi-
ronmental risk factors to date have been found to be 
very subtype specific. Indeed, the International Stroke 
Genetics Consortium has already identified stroke sub-
typing as a top research priority [3]. Similarly, while 
coded data can be used to identify all-cause dementia, 
accuracy in identifying dementia subtypes, in particu-
lar vascular dementia, is much lower [4, 5]. This may be 
a limitation for researchers studying genetic and envi-
ronmental associations specific to disease subtypes, 
and hence automated, scalable methods are urgently 
needed to improve disease subtyping.

Possible solutions to enhance the accuracy of coded 
data and improve the ability to deep-phenotype (e.g. sub-
type) all participants at scale include linkage to national 
disease-specific audit and registry datasets and/or the 
development of automated tools to extract data from 
participants’ detailed electronic medical records (EMR). 
While linkage to disease-specific datasets is promising, 
these data are limited to select diseases, may not cover 
all regions or nations of the UK, may cover limited time 
periods, do not always capture primary care and out-
patient as well as inpatient encounters, and may have 
unknown accuracy. On the other hand, approaches rely-
ing on mining the complete EMR are limited by the chal-
lenges of data anonymization and of accessing the many 
different systems used by hospitals and other regional 
healthcare providers across the UK. For diseases that 
are diagnosed based on imaging, an alternative approach 
would be to access not the complete EMR but only the 
participants’ relevant clinical radiology reports. Since 
imaging reports are stored in more accessible and uni-
fied data repositories (including, in the UK, national Pic-
ture Archiving and Communications Systems in Scotland 
[6] and Wales [7] and seven regional imaging networks 
in England [8]) and contain far less text than the entire 
EMR, both research access and anonymization of these 
data are likely to be much less challenging.

Inferring disease subtypes from free text is challenging 
for computers, as it is usually beyond the scope of named 
entity recognition tasks. For example, inferring that the 
combination of the two entities “bleeding” and “intracer-
ebral” signifies intracerebral hemorrhage (ICH) requires 
clinical knowledge. While deep learning methods have 
great potential to learn such associations, large datasets 
would be required to train them. At the same time, many 

disease subtypes are rare by nature, which is a limitation 
for supervised learning.

By combining natural language processing (NLP) with 
clinical knowledge inference, this work aimed to investi-
gate the feasibility and added value of automated meth-
ods applied to clinical radiology reports in ascertaining 
accurate disease subtype information for participants 
with any stroke code in a regional UKB subpopula-
tion. We used stroke as an exemplar disease, specifically 
looking to improve hemorrhagic stroke identification. 
Stroke patients always require brain imaging to exclude 
alternative diagnoses and determine the stroke subtype, 
although ischemic stroke is not always visible on imaging 
done very soon after symptom onset [9].

Methods
Study population
We conducted the study in a sub-population of 17,249 
UKB participants in the Lothian region of southeast 
Scotland. All participants’ records were linked to national 
administrative health datasets, providing hospital, death 
record and primary care administrative coded data. 
Within this UKB sub-population, we identified partici-
pants with ≥ 1 stroke code in their linked health data, 
indicating a stroke diagnosis after their recruitment 
to UKB. ICD-10 and Read v2 codes that were used to 
identify stroke cases are available in Additional file  1: 
Table S1. The follow-up period was from the participant’s 
date of recruitment up to the end of September 2015, the 
date at which data were complete for all sources at the 
time of this study. Clinicians screened the participants’ 
EMR and extracted all clinical brain scan reports (MRI, 
CT, CTA, MRA, DSA) available relating to the respective 
codes (Fig. 1). Further detail about the study population 
is published elsewhere [2].

Automated methods applied to clinical brain scan reports 
to derive stroke subtypes
The automated method pipeline was composed of five 
steps (detailed in Fig.  2), including NLP (named entity 
recognition followed by machine learning) followed by 
applying clinical knowledge inference. We used an off-
the-shelf tool—SemEHR [10], developed and trained on 
EMR in UK National Health Service (NHS) Trusts in 
London, and further extended on Scottish imaging data-
sets [11]. We derived entity labels for each scan report 
(full list is available in the first column of Table 3 in the 
“Results” section).

Steps 1–4 in Fig.  2 illustrate the process of identify-
ing relevant entity labels for each scan report. Essen-
tially, it comprised two phases. First, it used a baseline 
NLP model from SemEHR to obtain an initial set of 
annotation results, which were contextualized (positive/



Page 3 of 9Rannikmäe et al. BMC Med Inform Decis Mak          (2021) 21:191 	

negated/hypothetical/history mention/not a pheno-
type) mentions of Unified Medical Language System 
[12] concepts (detailed in [10]). More detail about con-
textualizing with examples is provided in Additional 
file 1: Table S2. A mapping was then used to retain rel-
evant mentions (those were mapped to the list in Table 3) 
and only positive mentions were retained. In the second 
phase, two authors (neurologist KR and medical student 
ST), blinded to each other’s decisions, annotated a ran-
domly selected subset of 40 reports to check agreement. 
Inter-annotator agreement was substantial (90% agree-
ment, k 0.735) and all scan reports were then annotated 
by one author (medical student ST) (step 2 in Fig. 2). We 
used these human annotations to further improve the 
NLP model via SemEHR’s continuous learning frame-
work, adopting a tenfold cross validation for the further 
improvement and validation (results reported in Table 3).

Once entity labels were assigned to each scan, we then 
used clinical knowledge inference on the entity labels to 
infer a single diagnostic stroke subtype label for each scan 
report: primary intracerebral hemorrhage [ICH], primary 

subarachnoid hemorrhage [SAH], primary ischemic 
stroke [IS] (step 5 of Fig. 2, full list of rules in Table 1). 
If a participant had more than one scan report, and the 
inferred diagnostic stroke subtype labels were different 
across these reports, the participant was classified into 
all inferred stroke subtype categories for the subsequent 
analyses. Such rules encode clinical knowledge to infer 
participant-level stroke subtypes in a computable format 
and are directly reusable in new settings. Although we 
considered the more common reasons for a false-positive 
stroke/stroke subtype diagnosis in our specific dataset 
when developing the domain-expert rules, the underly-
ing principles are not unique to this dataset and hence we 
expect them to be generalizable across other stroke data-
sets. The methods and rules are publicly available [13].

Data analyses
We calculated the proportion of participants with a 
stroke code where automated methods could assign a 
stroke subtype based on clinical brain scan report(s).

Fig. 1  Selection of included UK Biobank (UKB) participants. GP general practitioner, NHS National Health Service; Information for code validation 
refers to the participant having any information on the hospital electronic patient record system to allow an expert stroke physician to confirm or 
reject the accuracy of the coded diagnosis [2]
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Precision and recall of automated methods in assigning 
a stroke subtype among all UKB participants with any stroke 
code
For automated stroke subtype diagnoses at a participant 
level, we calculated precision (or positive predictive value, 
i.e. the percentage of participants allocated a particular 
stroke subtype by the automated method who were true 
positives for that subtype) and recall (or sensitivity, i.e. 
the percentage of participants who truly had a particular 

stroke subtype detected by the automated method). We 
used stroke physician adjudications derived based on the 
participants’ complete EMR (including, but not limited to 
the clinical brain scan reports) as the ground-truth. We 
calculated 95% confidence intervals (CIs) using the exact 
Clopper-Pearson method in StatsDirect [14]. We com-
pared the results of the automated method to the results 
of using administrative disease codes alone based on our 
earlier work [2]. We also calculated the entity label-level 

Fig. 2  Pipeline for automated disease subtyping based on clinical scan reports. The medical student who undertook the scan report annotations to 
train the Sem-EHR tool for the current task was a final year medical student who had completed their clinical neurology and stroke modules. They 
spent time reading the literature around the topic and practiced scan report annotation under the training of a neurologist before the study

Table 1  Domain-expert rules to combine entity labels into a single diagnostic label for each scan report

British English spelling was used for entity labels in the original study. ICH, primary intracerebral hemorrhage; SAH, primary subarachnoid hemorrhage, IS, primary 
ischemic stroke

Diagnostic labels Inclusion reasons Exclusion reasons

ICH Presence of entity label: (a) intracerebral haemorrhage Presence of ≥ 1 entity labels: (a) metastatic 
tumour or tumour; (b) contusion; (c) time recent 
and ischaemic stroke; (d) transformation; (e) 
subarachnoid haemorrhage + aneurysm (f ) 
subdural haematoma

SAH Presence of entity label: (a) subarachnoid haemorrhage Presence of ≥ 1 entity labels: (a) metastatic 
tumour or tumour; (b) contusion; (c) transforma-
tion; (d) intracerebral haemorrhage if no men-
tion of aneurysm; (e) subdural haematoma

IS Presence of entity labels: (a) time recent and (b) ischaemic stroke
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precision and recall values, using physician annotated 
scan reports as the ground truth.

Precision and recall of automated methods 
in assigning a stroke subtype among UKB participants 
with a hemorrhagic stroke subtype code
We next limited our analyses to participants with a hem-
orrhagic stroke subtype code. Our previous work found 
that the hemorrhagic stroke subtype code recalls were 
100% but precision was much lower, ranging from 42% 
for ICH to 71% for SAH [2]. We hypothesized that auto-
mated methods applied to specifically to participants 
with a hemorrhagic stroke code would improve the accu-
racy of the coded data without sacrificing the recall.

Predicting the best possible performance of automated 
methods in assigning a stroke subtype among UKB 
participants with a hemorrhagic stroke subtype code
To understand the best results that an automated 
approach could potentially achieve, we further investi-
gated if clinical brain scan reports contain the necessary 
information for a human expert to assign a hemorrhagic 
stroke subtype. To study this, we performed a further 
round of expert stroke physician adjudications, asking 
an expert to assign a stroke subtype based on the clini-
cal brain scan report. This was done by 2 expert adju-
dicators blinded to each other’s adjudications to assess 
inter-adjudicator agreement. We compared the results to 
the ground truth obtained from stroke expert physician 
adjudications based on the complete EMR (including, but 
not limited to the clinical brain scan reports).

Results
Of the 225 cases with a stroke code in our UKB sub-
population, 207 (92%) had a relevant clinical brain scan 
report available (Fig.  1). The number of cases in each 
diagnostic category as annotated by experts is provided 
in Additional file 1: Table S3a. Of these 207 cases, 72 had 
multiple relevant reports, and the total number of unique 
reports analyzed was 352. Only one of the 72 participants 
with multiple relevant reports was assigned to two dif-
ferent stroke subtype categories (ICH and SAH) with the 
automated methods.

Data analyses
Overall, scan report-based automated methods were able 
to assign a stroke subtype to 149 of the 207 cases (72%) 
(Additional file 1: Table S3b). 113 of these 149 assigned 
subtypes were confirmed by experts as being accurate 
(PPV 76%). This means that automated methods can 
assign an accurate stroke subtype in 55% (113/207) of 
cases.

Precision and recall of automated methods in assigning 
a stroke subtype among all UKB participants with any stroke 
code
Participant-level results of automated methods showed 
very good precision for ICH (89%; 8 true-positive among 
9 identified cases), good precision for SAH (82%; 14 true-
positive among 17 identified cases) and moderate preci-
sion for IS (73%; 91 true-positive among 124 identified 
cases) diagnoses, representing a significant improvement 
in precision compared with coded data for ICH (89% vs 
42%), a slight improvement for SAH (82% vs 71%) and 
a worsening for IS (73% vs 83%). Recall was very good 
for ICH (89%), good for SAH (82%) and moderate for IS 
(64%), representing a slight worsening for ICH and SAH 
(100% vs 82% and 89%), and a slight improvement for IS 
(49% vs 64%) compared with coded data. (Table 2).

Entity-level precision and recall estimates were good, 
ranging from 78 to 100%, and from 83 to 100%, respec-
tively (Table 3).

Precision and recall of automated methods 
in assigning a stroke subtype among UKB participants 
with a hemorrhagic stroke subtype code
When limiting the analyses to participants with a hemor-
rhagic stroke code, precision improved for SAH from 82 
to 88%, but remained unchanged for ICH. As expected, 
the recall estimates were unchanged (Table 4).

Predicting the best possible performance of automated 
methods in assigning a stroke subtype among UKB 
participants with a hemorrhagic stroke subtype code
Expert adjudication of scan reports showed only slightly 
improved results compared to automated methods 
applied on scan reports, with precision of 90% and 100%, 
and recall of 100% and 88% for ICH and SAH respectively 
(Additional file  1: Table  S4). This suggests that (a) the 
information contained in the clinical brain scan reports 
is sufficient to assign a hemorrhagic stroke subtype in the 
majority of participants and (b) automated methods are 
only slightly inferior to the human adjudicator. Only the 
first expert adjudicator’s results are reported here since 
inter-adjudicator agreement for assigning a stroke sub-
type was very good at 97%.

Discussion
Our results demonstrate the potential for significant 
added value and feasibility of using automated methods 
on clinical brain scan reports to improve stroke sub-
typing in UKB. While the automated method assigned 
a correct stroke subtype diagnosis to only 55% cases 
overall, its main benefit came from markedly improv-
ing the precision of hemorrhagic stroke codes. As 
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expected, ischemic stroke code accuracy remained 
similar. This approach of combining NLP and clinical 
knowledge inference is potentially scalable across the 
UK and may also scale well in other settings. It may 
also be relevant to disease subtyping for other condi-
tions, where information from images is important in 
the diagnosis of disease subtypes. Furthermore, the 
SemEHR tool used in this project can be easily adapted 
for research into other phenotypes by adopting transfer 
learning technologies [15].

Table 2  Participant-level diagnostic label precision and recall estimates against reference standard (i.e. expert physician adjudications 
based on the complete EMR)

ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; IS, ischemic stroke; IS (including cases with an unspecified subtype assigned as IS) = all cases where 
a stroke subtype could not be assigned with automated methods or where the code was unspecified for a stroke subtype were assumed to be ischemic stroke; 
Precision = positive predictive value (proportion of true-positive cases among all cases). Recall = sensitivity (proportion of all true-positive cases in the population 
identified). Absolute numbers of cases provided in brackets. The dataset used for the precision and recall calculation from codes in our previous work [2] included 
a total of 225 participants with a stroke code. The dataset used for the precision and recall calculation from automated method in this study includes a total of 
207 participants with a stroke code. The 207 are a subset of the 225 participants with a stroke code who also had a relevant clinical brain scan report available. 18 
participants among the 225 participants did not have a brain scan available and were hence excluded from this study

Stroke subtype Precision (i.e. positive predictive value)
(95% CI)

Recall (i.e. sensitivity)
(95% CI)

From codes (based on 
previous work [2])

From automated method From codes (based on 
previous work [2])

From automated method

ICH 42% (31–54%)
(11/26)

89% (52–100%)
(8/9)

100% (72–100%)
(11/11)

89% (52–100%)
(8/9)

SAH 71% (54–83%)
(17/24)

82% (57–96%)
(14/17)

100% (80–100%)
(17/17)

82% (57–96%)
(14/17)

IS 83% (75–89%)
(73/88)

73% (65–81%)
(91/124)

49% (41–57%)
(73/149)

64% (56–72%)
(91/142)

IS (including cases with an 
unspecified subtype assigned 
as IS)

80% (76–83%)
(147/184)

77% (71–83%)
(141/182)

99% (95–100%)
(147/149)

99% (96–100%)
(141/142)

Table 3  Entity label-level precision and recall estimates

Numbers are mean values of tenfold cross validation

Concept mentions Precision (%) Recall (%)

Metastatic tumor 93 87

Aneurysm 97 100

Intracerebral haemorrhage 95 100

Time old (temporal words/phrases indicating old events, e.g., old ischemic stroke) 78 83

Subdural haematoma 97 83

Contusion 100 100

Subarachnoid haemorrhage 90 100

Related to (words/phrases indicating relations between two events, e.g., bleeding because of a recent fall) 78 100

Ischaemic stroke 90 99

Time recent (temporal words/phrases indicating recent events, e.g., accute ischemic stroke) 91 97

Meningioma 100 100

Transformation 88 100

Traumatic 100 75

Table 4  Participant-level  diagnostic label precision and recall 
estimates among those with a hemorrhagic stroke code

ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; 
Precision = positive predictive value (proportion of true-positive cases among all 
cases). Recall = sensitivity (proportion of true-positive cases identified among all 
true-positive cases). Absolute numbers of cases provided in brackets

Precision (95% CI) Recall (95% CI)

ICH 89% (52–100%)
(8/9)

89% (52–100%)
(8/9)

SAH 88% (62–98%)
(14/16)

82% (57–96%)
(14/17)
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Compared to coded data alone, for hemorrhagic 
stroke, the automated method improved precision at the 
expense of slightly poorer recall. Depending on the study 
design, more importance can be attributed to either esti-
mate, however our achieved trade-off is likely to be pre-
ferrable for many research studies. For ischemic stroke, 
the effect was the opposite, resulting in a lower precision 
at the expense of improved recall. An additional caveat 
is that the true-positive ischemic stroke cases identified 
by the automated method are likely to be different to the 
true-positive cases missed. This is because cases iden-
tified will have had a stroke resulting in a visible lesion 
on the scan, and hence are likely to be clinically more 
severely affected. Therefore, for ischemic stroke, unless 
the automated method can achieve a near-perfect recall, 
many research studies are likely to prefer using coded 
data to avoid this bias.

As a substantial proportion of clinical features are 
only available in free text [16], NLP has been extensively 
studied and applied to extract clinical features from 
medical records [17–29]. Methodologies used range 
from rule-based approaches [23, 27] to machine learn-
ing approaches [17, 22, 24–26] to deep learning meth-
ods [18]. However, to date most of the work has focused 
on named entity recognition tasks, such as semantics 
in domain terminologies (e.g. ontology-driven infer-
ences) [10, 28] and identification of contextual mentions 
(e.g. negation, temporality and the person to whom the 
information refers to) [15, 18]. Very few studies [17] have 
investigated methods to help derive disease sub-phe-
notypes from free text, where the information to derive 
these exists but additional clinical knowledge is needed 
to derive it. Our work addressed this gap by combin-
ing NLP with clinical knowledge inference. Advantages 
of this approach are that it does not require the very 
large datasets required to train machine learning meth-
ods, along with the potential both to transfer knowledge 
to new datasets from external sources and to apply the 
approach in other languages. This is currently a relatively 
understudied area, with very few sharable resources 
available.

Previous studies applying NLP and machine learning 
to classify stroke into subtypes have focused on automat-
ing ischemic stroke subtyping into specific sub-categories 
using the EMR [30, 31] or a selection of available features 
[32]. Others, such as the Edinburgh Information Extrac-
tion for Radiology reports (EdIE-R) [33] have shown 
good performance of text mining systems in subtyp-
ing already expert-validated stroke cases into the three 
main subtypes (IS, ICH and SAH) based on radiology 
scan reports. Our study differs from these in two main 
ways. Firstly, it is nested in a population-based cohort 
study rather than a disease specific cohort. We combine 

existing information from national administrative health 
datasets with automated methods by identifying partici-
pants with a high prior probability of having had a true-
positive stroke diagnosis (represented by them having a 
stroke code in the administrative data) followed by the 
application of automated methods to subtype stroke into 
the three main types (IS, ICH and SAH). This approach 
means that the results are applicable to other population-
based studies and large biobanks using administrative 
data for disease identification (e.g. the UK-based Gen-
eration Scotland [34] study and SAIL Dataset [35]). Sec-
ondly, we use expert stroke physician adjudications based 
on the complete EMR to derive ground truth diagnoses. 
This step is important, since while in a large number of 
cases the correct hemorrhagic stroke subtype diagno-
sis can be reached by the expert based only on the brain 
scan report, in a proportion of cases, additional informa-
tion from the complete EMR is required in addition. One 
example of this would be a case where a patient’s brain 
scan report describes a brain hemorrhage, which could 
be secondary to head injury (i.e. a traumatic hemorrhage, 
not a stroke) or it could be a primary hemorrhage (i.e. 
a stroke), and additional medical history regarding any 
mention of a relevant traumatic event prior to symptom 
onset in the EMR will help make the correct final diagno-
sis. We are not aware of any previous studies combining 
these two features in order to automate stroke subtyping.

Our results show that in large population-based 
cohorts, the ascertainment of cases via codes indicating 
stroke combined with subsequent automated methods 
applied to the free text of brain scan reports is a feasi-
ble and potentially scalable approach for enhancing the 
accuracy of stroke subtyping. Our primary approach was 
to first identify participants with a high prior probability 
of having had a stroke of any subtype (defined as partici-
pants with any stroke code in administrative datasets) 
and then apply automated methods to enhance the accu-
racy of specific subtype diagnosis (IS vs ICH vs SAH). 
We also explored the benefit of identifying participants 
with a high prior probability of having had a hemorrhagic 
stroke subtype (defined as participants with a hemor-
rhagic stroke specific code in administrative datasets) 
before applying automated methods. This improved the 
precision of SAH subtyping slightly, but would need to be 
validated in larger datasets.

The strengths of our study include the application 
and testing of existing methods on a real-world data-
set. In addition, we tested the performance of the 
methods against robust ground-truth diagnoses made 
by specialist physicians based on the complete EMR. 
To maximize the reusability of our work, we deliber-
ately decoupled the NLP component from the clinical 
knowledge inference component in our pipeline, so that 
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the latter can be reused in different settings. We have 
also made the model and inference rules publicly avail-
able [13] to facilitate future similar studies by others. 
The imaging reports however are currently only avail-
able for UKB sub-cohorts via individual data linkage 
projects.

Our study also has some limitations. The relatively 
wide confidence intervals for precision and recall suggest 
a high variability of these estimates, which could be due 
to the small sample size and heterogenicity of the sample, 
particularly for the SAH and ICH cases. Also, this work 
didn’t have a replication or an external validation cohort 
for evaluating the pipeline. Furthermore, in our study, we 
included only participants’ first-ever stroke events and 
their relevant clinical brain scans were selected manually 
by experts, whereas this step would also need to be auto-
mated to make the approach scalable in large datasets. 
We envisage this may involve including all brain scans 
within a certain timeframe from the stroke code. Finally, 
we did not apply a rule-based approach to tackle the issue 
of some participants having multiple brain scans with 
competing disease subtypes. Developing methods to 
address this may improve the performance of automated 
methods further.

Further work to build on these results is now needed 
and should focus on: (1) validating our automated meth-
ods in further datasets, which could include additional 
UK Biobank sub-cohorts as well as data from other pop-
ulation-based cohorts; (2) investigating the time interval 
between the code(s) and clinical scan reports to enable 
inclusion of the most relevant data; (3) investigating 
the usefulness of the automated methods in identifying 
recurrent stroke events; (4) developing rules for disease 
subtype adjudication based on multiple reports per par-
ticipant; and (5) expanding this work to investigate dis-
ease subtyping of other conditions beyond stroke.

Conclusions
We have developed an automated pipeline which can be 
applied to clinical scan reports to enable significantly 
improved stroke subtyping. Furthermore, we demon-
strate the feasibility and scalability of this approach, as 
well as its potential future application to a much wider 
range of phenotypes.
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