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Abstract 

Background:  Artificial Intelligence has the potential to revolutionize healthcare, and it is increasingly being deployed 
to support and assist medical diagnosis. One potential application of AI is as the first point of contact for patients, 
replacing initial diagnoses prior to sending a patient to a specialist, allowing health care professionals to focus on 
more challenging and critical aspects of treatment. But for AI systems to succeed in this role, it will not be enough for 
them to merely provide accurate diagnoses and predictions. In addition, it will need to provide explanations (both to 
physicians and patients) about why the diagnoses are made. Without this, accurate and correct diagnoses and treat-
ments might otherwise be ignored or rejected.

Method:  It is important to evaluate the effectiveness of these explanations and understand the relative effective-
ness of different kinds of explanations. In this paper, we examine this problem across two simulation experiments. For 
the first experiment, we tested a re-diagnosis scenario to understand the effect of local and global explanations. In a 
second simulation experiment, we implemented different forms of explanation in a similar diagnosis scenario.

Results:  Results show that explanation helps improve satisfaction measures during the critical re-diagnosis period 
but had little effect before re-diagnosis (when initial treatment was taking place) or after (when an alternate diagnosis 
resolved the case successfully). Furthermore, initial “global” explanations about the process had no impact on immedi-
ate satisfaction but improved later judgments of understanding about the AI. Results of the second experiment show 
that visual and example-based explanations integrated with rationales had a significantly better impact on patient 
satisfaction and trust than no explanations, or with text-based rationales alone. As in Experiment 1, these explanations 
had their effect primarily on immediate measures of satisfaction during the re-diagnosis crisis, with little advantage 
prior to re-diagnosis or once the diagnosis was successfully resolved.

Conclusion:  These two studies help us to draw several conclusions about how patient-facing explanatory diagnos-
tic systems may succeed or fail. Based on these studies and the review of the literature, we will provide some design 
recommendations for the explanations offered for AI systems in the healthcare domain.
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Introduction
Background
AI systems are increasingly being fielded to support diag-
noses and healthcare advice for patients [1]. Although 

these systems are still in their infancy, they have the 
potential to serve as a first point-of-contact for patients, 
and eventually may produce diagnoses and predictions 
about patient’s health, perform routine tasks, and provide 
non-emergency medical advice. This has the potential to 
provide innovative solutions for improved healthcare out-
comes at a reduced cost. In fact, numerous systems are 
currently in development or being fielded that place an 
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AI as the first point of contact for patients [2–13]. Almost 
all these systems (e.g., chatbots) are dialogue-based and 
provide initial diagnosis, medical advice, or consultation 
based on the information they gather from the users. 
Some of them may also provide recommendations if the 
patient needs to visit the doctor or submit report to doc-
tors for further analysis. These systems have the poten-
tial to address the efficiency gap and thus reduce medical 
costs by automating tasks, triaging patients to the most 
appropriate services and allowing them to self-care, and 
thus have enthusiasm from medical providers. For exam-
ple, the UK’s National Health Services (NHS) announced 
a partnership with Amazon to allow elderly people, blind 
people and other patients who cannot easily search for 
health advice on the internet to access the information 
through the AI-powered voice assistant Alexa [13]. That 
day is not far when AI might take a primary role in the 
initial consultation, routine check-ups, or triage advice. 
However, in order to replace or supplement human diag-
nosis from physicians and health care professionals, it 
may not be enough for the AI diagnosis system to just 
be accurate. An accurate diagnosis without justification 
or explanation might be ignored, even from a competent 
physician. This was perhaps first noted in the early days 
of medical diagnosis systems, Teach and Shortliffe [14] 
found that when considering AI diagnostic systems, the 
most important desire of both physicians and non-phy-
sicians was that it should be able to explain its diagnostic 
decisions. In contrast, avoiding incorrect diagnoses and 
erroneous treatments were rated among the least impor-
tant properties. A more recent study surveying expert 
physicians on clinical decision support systems (CDSS) 
[15] showed that although accuracy is now a greater 
concern, understanding the underlying reasoning of the 
system (“CDSSs act like block boxes”) remains a top con-
cern among diagnosticians. Other research shows that 
clinicians’ trust and understanding of AI diagnostic sys-
tems are also improved by explainable systems [16, 17]. 
Recently, Holzinger et al. [18] argued that Explainable AI 
(XAI) may help to facilitate transparency and trust for 
the implementation of AI in the medical domain, so we 
expect that any successful patient-focused AI diagnoses 
system will also provide explanations and justifications of 
that diagnosis so that the patient can understand why a 
diagnosis is made or a treatment plan is recommended. 
It is even possible that an average diagnosis system with 
better explanation will lead to better healthcare outcomes 
than a perfect diagnosis system without explanation.

A variety of algorithms have been identified for provid-
ing explanations of AI diagnostic systems, both within 
and outside the field of healthcare. For example, early 
expert systems provided rule-based logical explanations 
that were tightly coupled to the knowledge the systems 

used to make diagnoses [19–23]. More recently, research-
ers have focused on visualizing elements of the classifi-
cation algorithms being used to make a diagnosis (e.g., 
heat-map image analysis), and visualizing decision trees 
or complex additive models [24–28]. Other researchers 
have explored using case-based explanations, provid-
ing examples, and compelling support for the systems’ 
conclusions [29–35]. Consequently, there are several 
algorithmic approaches to both diagnosis and explana-
tion of diagnoses that have been explored in medical AI. 
However, neither of these approaches has emphasized on 
patient-centered communication which helps to develop 
a shared understanding of patient problems [36]. Patient-
centered communication considers a patient as an active 
partner in the healthcare environment and values the 
patient’s wants, needs, and preferences [37]. Explanations 
to the patients are a crucial part of the communication 
[38] and it helps to understand their illness and prob-
lems in a clearer way [39]. Physicians who exhibit these 
behaviors gain a higher level of trust among patients [40]. 
A recent study also showed that if patients feel that the 
AI systems are providing them personalized care, it helps 
reduce the resistance to AI-based diagnosis [41]. But 
it is not clear which current XAI methods are effective 
for patient-centered communication, whether a single 
method is sufficient, or whether the explanations need to 
be tailored to individual patients, situations, or different 
timepoints during diagnosis. Furthermore, the literature 
on XAI in healthcare focuses primarily on algorithms, 
rather than the impact the algorithms have on patients 
(such as their satisfaction, trust, understanding, or will-
ingness to use the system in the future) for establishing 
their compatibility with patient-centered communication 
[42]. Understanding how trust in these systems is con-
structed would provide an insight into how these systems 
would be used, misused, or disused [43].

One approach we have pursued to study explainable AI 
(XAI) in healthcare is to understand the types of expla-
nations real physicians offer when they interact with 
patients. For example, Alam [44] conducted an interview 
study with physicians to document how they explained 
diagnoses to the patients. The results suggest that phy-
sicians use a variety of explanation methods, which are 
dependent on context, including time (i.e., early or later 
in diagnosis) and the patient or patient’s advocate’s iden-
tity (including cultural, education, age, and other con-
cerns). The explanations identified included the use of 
logical arguments, examples, test results, imagery, analo-
gies, and emotional appeals. The results of this study also 
suggest that physicians tend to provide different types of 
explanations at different points of diagnosis. Although 
many of these explanations have been explored in the 
XAI literature [45], few systems have acknowledged the 
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variety and contextual aspects of the different explana-
tion types.

Methods for providing explanations
In the present paper, we will report on two experiments 
we conducted that explore how different types of expla-
nations may impact satisfaction and trust in a simulated 
AI diagnostic system. In these studies, we will examine 
several different types of explanations that have been 
proposed and explored in the XAI community. As such, 
our explanations are general and might apply to many 
kinds of AI and Machine Learning algorithms, from rule-
based systems, Bayes networks, and decision trees to 
deep networks and complex ensemble approaches. One 
such type of explanation is whether the goal of the expla-
nation is to inform about the diagnostic process, versus 
justify why a particular diagnosis was made. These expla-
nation types are respectively referred to as “global” and 
“local” explanations [46–49].In general, Alam [44] found 
that physicians report using both methods; sometimes 
they explain how a particular disease or diagnostic pro-
cess works; other times they justify why a particular diag-
nosis is given based on evidence (symptoms, test results, 
history, etc.).

Another important distinction is the means by which 
an explanation is provided. Alam [44] also found that 
physicians’ explanations mapped onto many of the expla-
nation types studied in the XAI literature, including case-
based information and examples [50, 51], analogies [52, 
53], logical arguments [54, 55], visualizing imagery and 
highlighting important aspects [56, 57]. For imagery, AI 
healthcare systems may use graphs to show the relative 
probability of different outcomes or the relative impor-
tance of different symptoms for those outcomes, which 
is more akin to how the LIME algorithm [58] works for 
diagnostic features. Physicians may present visualiza-
tion differently from how AI systems offer visual expla-
nations, but even the use of x-rays and other test reports 
are generally accompanied by explanations highlighting 
the location of critical signs indicating a diagnosis—with 
a similar goal as gradient-based heatmaps [59–62] in XAI 
systems. Of course, the particular visualizations provided 
by algorithms such as LIME [63] may themselves be hard 
to understand. We are focused on the general question of 
whether representing feature and outcome importance is 
informative, and not the specific question of whether a 
particular algorithm that supports this is useful.

Next, we will report the results of two studies in 
which we tested a variety of explanation methods and 
approaches in a simulated diagnostic situation. Rather 
than testing a single explanation of an isolated case, we 
designed a garden path scenario in which symptoms ini-
tially pointed to one diagnosis, but later it became clear 

that another diagnosis was correct. This provided an 
emerging diagnosis, which we believe is particularly well-
suited to understand how simulated patients both trust 
and understand an AI diagnostic system.

Experiment 1
Hoffman et  al. [64] argued that elements of satisfaction 
and trust follow from an improved understanding of an 
AI system that might be gathered from different kinds of 
explanations. Consequently, we hypothesize that expla-
nations will induce greater satisfaction, trust, under-
standing, and perceptions of accuracy. However, no 
existing theories suggest whether these benefits should 
exist throughout a scenario, or only at certain time 
points, and so we will investigate whether these potential 
benefits change over time. We also hypothesize that both 
global and local explanations will be beneficial in com-
parison to control but may have differential effects when 
compared to one another. To investigate this, we tested 
participants interacting with a simulated AI system that 
initially gives the most likely but incorrect diagnosis, but 
later it changes the diagnosis to the correct disease once 
further testing is complete. This provides an important 
case for understanding explanation, because, at all times, 
the AI can be judged to be behaving optimally given its 
information—even when its diagnosis is incorrect.

Method
Participants
Eighty undergraduate students at Michigan Techno-
logical University took part in the study in exchange for 
partial course credit. They were enrolled in the “Intro-
ductory to Psychology” course. Students in the class are 
typically first or second-year undergraduate students.

Procedure
We created a diagnosis scenario in which a simulated 
AI system gives a most likely but incorrect diagnosis but 
later changes the diagnosis to the correct disease. The 
scenario involved gastrointestinal disorders and symp-
toms, which are often difficult to diagnose in real-world 
situations. The participants played the role of patients 
in the scenario, instructed to say they were suffering 
from specific symptoms (abdominal pain, cramps, diar-
rhea, fatigue, and joint pain). A simulated AI system 
(called MediBot.ai) provided diagnostic information 
about the scenario, initially concluding that the patient 
was suffering from Irritable Bowel Syndrome (IBS), and 
advised patients to follow a specific diet chart and come 
back for follow up next week. After one week, the par-
ticipants were told that they had begun to feel better, but 
the symptoms started getting worse after that. When the 
patient did not feel good even after three consecutive 
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weeks, MediBot determined that the patient might not 
be suffering from the “most likely” condition IBS and 
changed its diagnosis, ordered additional diagnostic tests, 
and determined the patient was suffering from Celiac 
disease, which occurs due to gluten allergy (the ‘ground 
truth’ of the scenario). Participants had to communicate 
with MediBot through six simulated weeks, but the study 
took around 20 min to complete. All participants experi-
enced the same basic scenario with identical symptoms 
and diagnoses. To maintain certain intervals between 
the simulated weeks, they were given brief crosswords to 
solve during the intervals. After they solved one cross-
word, they were asked to start following up with MediBot 
and play their role as patients again.

Participants were divided into three groups: Control, 
global explanation, and local explanation. The control 
group received no explanation of why MediBot was mak-
ing any decision in any week. The global explanation 
group received an initial tutorial describing how MediBot 
does diagnosis in general and focusing especially on how 
the AI follows a most-likely diagnostic approach, which 
means that it may make errors in particular cases. This 
included two examples: (1) A success case of the first 
diagnosis, and (2) a failure case for the first diagnosis, 
but eventually a successful second diagnosis. The Local 
explanation group received local justifications about each 
decision and prediction of MediBot throughout the sce-
nario. Local justifications explained why the MediBot 
made a particular decision for a particular case. For this 
group, MediBot showed a probability chart of the disease 
likelihood of the patient in each week (see Fig.  1), rep-
resenting the probability or likelihood of different out-
comes visually, and including descriptive text explanation 
about why it was making a particular decision.

The Additional file 1: Appendix lists the entire scenario 
for a patient across six weeks of diagnosis. After each 
simulated week, participants were asked to rate their sat-
isfaction, trust, perception of accuracy, sufficiency, use-
fulness, and completeness for the explanations received 
from MediBot (Rating scale range was 1–21), These are 
some of the key attributes of explanations identified in 
the literature and are referred to as “Explanation Sat-
isfaction Scale” attributes [64]. At the end of the study, 
participants also rated their agreement about their 
understanding of the AI system in four 5-pointLikert 
scale statements (see Table 2).

Results
Both the control and the global explanation groups 
expressed less satisfaction, trust, perception of accu-
racy, sufficiency, usefulness, and completeness than the 
local explanation group, as shown in Fig. 2 (Rating scale 
was 1–21, but the figure shows 10–20 range for clearer 

visual). As a rough assessment of difference, we mark 
pairwise differences at each week that were significant 
at the p < 0.05 level according to a paired-samples t-test 
with a “*”.

The control group and global explanation groups 
received the same scenario with no local explanations, 
and only differed in whether they saw an initial global 
explanation of the AI, and so the fact that they did not 
differ from one another on these ratings suggest that the 
satisfaction ratings focus the user on the immediate situ-
ation and are not impacted by global understanding.

We examined the rating for each dimension of explana-
tion satisfaction scales with a Type-III factorial ANOVA 
examining the main effects of time, explanation condition 
(local, global, and control), and their interaction using the 
R package ‘ez’ [65]. The Type-III ANOVA examines the 
main effects AFTER the interaction has been accounted 
for, allowing us to identify residual effects of explana-
tion types across all time points. The results are shown 
in Table 1.

All interactions of Time and Explanation were signifi-
cant at the p < 0.05 level except for the trust response. 
The tests also showed the main effects of explanation 
were statistically significant for accuracy indicating that 
it was deemed better for explanation conditions across 
the entire duration of the experiment. Finally, the main 
effects of time were seen for all measures, indicating that 
the scenario was potent enough to manipulate subjective 
measures of trust as it moved through initial diagnosis to 
rediagnosis to resolution.

Welch t-test was conducted for comparing each pair of 
explanations at each week, the local explanation group 
with the control group, local explanation group with a 
global explanation group, and global explanation with the 
control group. The significant differences between each 
pair at each week are shown in Fig. 2 with a “*”.

In contrast to the satisfaction ratings, the ratings of 
understanding elicited at the end of the scenario did in 
fact lead to differences between global explanation and 
the other conditions (see Fig.  3). A one-way ANOVA 
showed that the three explanation conditions were sig-
nificantly different (p < 0.05) for the statements “I under-
stand MediBot is following a systematic elimination 
method” (F (2,77) = 8.7, p < 0.001) and “I understand why 
MediBot changed its mind between week 4 and week 5” 
(F (2,77) = 8.3, p < 0.001), but they were not significantly 
different for the statements “I do not understand what 
MediBot is doing” (F (2,77) = 2.6, p = 0.08) and “I think 
MediBot is behaving erratically” (F (2,77) = 2.3, p = 0.11).

We used a post-hoc Tukey test at a p < 0.05 signifi-
cance level on the three groups to examine pairwise 
differences (see Table 2). We used the TukeyHSD func-
tion in Rstudio for the post-hoc tests that only return 
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the significance value for post-hoc tests and not any 
specific statistics. The global explanation condition 
produced ratings that were significantly better than 
the local explanation for statements 1 and 2, and both 
the local and global conditions were rated better than 
the control for statements 2 and 4. There were no dif-
ferences between groups on statements 1 and 3. Thus, 
although the initial global explanation was not help-
ful for improving satisfaction during the scenario, it 
provided a better overall understanding of the general 
method of diagnosis by the AI system.

Discussion and summary
Impact of local explanation/justification
In this study, we examined how a re-diagnosis event 
impacted satisfaction and trust, and how different kinds 
of explanations impacted satisfaction, trust, and under-
standing of an AI system. Overall, the study showed that 
satisfaction and trust are harmed at the critical points 
during rediagnosis, even when the system is making the 
best diagnosis based on available information. Interest-
ingly, the global explanation, which attempted to inocu-
late participants by teaching them that this very situation 

Fig. 1  Week 4 (top panel) and 5 (bottom panel) Probability Chart and Explanation. Initial diagnosis of IBS changes as information emerges, and the 
explanations constitute the relative certainty of each disease in these bar charts and text description
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might occur, did little to reduce the impact of the redi-
agnosis on immediate measures of satisfaction and trust. 
Local justifications had effects throughout the scenario, 
but their greatest effect was at the point of rediagnosis, 
in which they typically prevented a significant decline 
in subjective ratings of trust and satisfaction; and main-
tained this higher level of satisfaction until the end of the 
scenario when the diagnosis was resolved.

Thus, we found that local justifications were effective, 
but their effect is time sensitive. During a critical situa-
tion or when AI was making errors, local justifications 
were very effective and powerful explanations for the 
patients.

Impact of global explanations
In contrast, pre-test global explanations using exam-
ple diagnoses do not show the same benefits. The global 
explanation did not help to raise satisfaction measures 
during the diagnosis in comparison to the control group 
that received no explanations. However, the global expla-
nation brought significant changes to the perception of 
the overall understanding of the AI system.

This study shows an initial demonstration of the time 
course of trust, satisfaction, and understanding during 
an unfolding diagnostic scenario. In the study, we used 
very simple visual explanations—bar charts describing 
the probabilities of different outcomes, with accompany-
ing text. It is important to note that these explanations 
appeared effective, even though they are much simpler 
than many current explanatory algorithms that have been 
proposed for similar situations.

Fig. 2  Results for explanation satisfaction scales
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There are a number of alternative methods that have 
been explored for the explanation of classification and 
diagnosis. One approach attempts to focus attention on 

important causal factors in a classification decision or 
diagnosis [66]. Although like our study, the relative likeli-
hood of different outcomes is typically shown, algorithms 
also often try to identify the importance of different fea-
tures in making the diagnosis. For example, in the IBS/
Celiac scenario, a symptom of joint pain supported celiac 
better than IBS, but not enough to override the higher 
base rate of IBS (especially because joint pain could arise 
from other sources and thus be attributed to something 
else). A single test for a gluten allergy would have been 
sufficient to change the diagnosis from the higher-base-
rate IBS to the low-base-rate Celiac but could not impact 
the diagnosis if the test is not run. It might be important 
to let the patient understand how different signs and 
symptoms feed into the overall diagnosis.

A second method for explanation has been to rely on 
judiciously chosen examples. Examples and cases are 
known to be important methods for reasoning and per-
suasion [29, 30, 67] and have been extensively explored in 
the XAI literature [45].

To understand how more complex explanations might 
impact satisfaction and trust, we conducted a second 
study using a similar diagnosis scenario to investigate 
how different forms of local explanations affect patient 
satisfaction, trust, and perception of accuracy during 
diagnosis, which we will report next. The first study was 
mostly exploratory, and the second study was designed to 
test more specifically what we found in the first one. In 
this second study, we will examine and compare feature-
highlighting approaches with case-based approaches.

Experiment 2: Exploring local explanation
Experiment 1 established that combining a logical ration-
ale and a visual depiction of the probability distribution 
across outcomes provided some benefits to subjective 
assessments of satisfaction. Along with these components 
of explanation, XAI systems also use examples (both 
positive and contrasting) to help a user understand why 
a decision was made. The goal of this study was to inves-
tigate whether these different forms of explanation in an 

Table 1  Results from Type-III factorial ANOVA for explanation 
satisfaction scales (n = 80)

Time and explanation refer to the main effects and Explanation: Time refers to 
the interaction between these independent variables

Time (week) Explanation Explanation: time

Satisfaction F (5,385) = 8.20
p < 0.001

ηp
2 = 0.04

F (2,77) = 0.54
p = 0.58
ηp

2 = 0.01

F (10,385) = 2.28
p = 0.01
ηp

2 = 0.02

Sufficiency F (5,385) = 7.52
p < 0.001

ηp
2 = 0.03

F (2,77) = 1.63
p = 0.20
ηp

2 = 0.03

F (10,385) = 3.14
p < 0.001
ηp

2 = 0.03

Completeness F (5,385) = 6.20
p < 0.001

ηp
2 = 0.03

F (2,77) = 2.95
p = 0.06
ηp

2 = 0.04

F (10,385) = 2.28
p = 0.01
ηp

2 = 0.02

Usefulness F (5,385) = 11.27
p < 0.001

ηp
2 = 0.06

F (2,77) = 0.95
p = 0.39
ηp

2 = 0.01

F (10,385) = 2.83
p = 0.002
ηp

2 = 0.03

Accuracy F (5,385) = 17.40
p < 0.001

ηp
2 = 0.08

F (2,77) = 4.16
p = 0.02
ηp

2 = 0.06

F (10,385) = 2.18
p = 0.02
ηp

2 = 0.02

Trust F (5,385) = 13.31
p < 0.001

ηp
2 = 0.07

F (2,77) = 3.03
p = 0.05
ηp

2 = 0.04

F (10,385) = 0.87
p = .0.50
ηp

2 = 0.01

Fig. 3  Results from statement ratings

Table 2  Post-hoc Analysis for final understanding

Each pair-wise comparison (n = 80) was performed with a pairwise Tukey HSD test

Control- local Ex Control-global Ex Local–global

1. I do not understand what MediBot is doing diff = 0.61
p = 0.06

diff = 0.22
p = 0.77

diff = 0.39
p = 0.45

2. I understand MediBot is following a systematic elimination 
method

diff = −0.49
p = 0.002

diff = −0.6
p = 0.002

diff = 0.1
p = 0.83

3. I think MediBot is behaving erratically diff = 0.45
p = 0.09

diff = 0.18
p = 0.74

diff = 0.26
p = 0.55

4. I understand why MediBot changed its mind between 
week 4 and week 5

diff = − 0.73
p < 0.001

diff = − 0.63
p = 0.02

diff = − 0.1
p = 0.9
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AI diagnostic system affect patient satisfaction, trust, and 
perception of accuracy. We implemented three forms of 
explanation: written rationales, visuals + rationales, and 
examples + rationales, in a diagnosis scenario similar to 
the one in Experiment 1. Again, a simulated AI system 
gave a most likely but incorrect diagnosis, but later it 
changed the diagnosis to the correct disease. We hypoth-
esized that each of the explanation types would provide 
benefits over control, and (as demonstrated in Experi-
ment 1), they would do so primarily at the critical redi-
agnosis point. Furthermore, we hypothesize that adding 
additional information to written rationales (in the form 
of example or visualizations) may provide an additional 
benefit because they may provide the information in a 
more comprehensible way, and so we will test whether 
either produces a benefit over rationale alone.

Method
Participants
One hundred and thirteen undergraduate students at 
Michigan Technological University took part in the study 
in exchange for partial course credit. No participant from 
the first experiment participated in this experiment but 
the population was similar to the first experiment.

Procedure
The study was conducted online, and it took 15–20 min 
to complete. Participants gave their consent online before 
taking part in the study. They played the role of a patient 
suffering from a gastrointestinal disorder interacting 
with the simulated AI system slightly modified from the 
Experiment 1 scenario.

This time, the simulated patient suffered from abdomi-
nal pain, cramps, bloating, diarrhea, fatigue, and joint 
pain and had no family history of gastrointestinal dis-
eases but had recently been exposed to a natural water 
source, making an initial diagnosis of Giardia likely. 
When tests for this came back negative, MediBot pre-
dicted that it might be IBS and asked to follow the IBS 
diet. The patient’s condition was inconsistent for a 
few weeks following the diet, then eventually MediBot 
resolved the diagnosis as Celiac disease and confirmed it 
with tests.

Participants were randomly assigned into one of four 
groups, each receiving a different form of explanation: (1) 
text rationales as an explanation; (2) visuals + rationales 
explanation; (3) examples + rationales, and (4) a control 
group.

Rationales are the narrative justifications of how 
MediBot made decisions. Visual explanations include 
figures of the likelihood of each suspected disease 
based on features MediBot used to make decisions as 
shown in the top panel of Fig.  4. These visualizations 

were akin to the LIME algorithm [63] but were gener-
ated via a simple probabilistic Bayesian model (the 
symptom likelihood visualizations were given by the 
conditional probability of each disease given the symp-
tom). We also showed the equivalent probability chart 
provided in Experiment 1, which showed the relative 
probability of each disease.

The example-based explanation included examples of 
similar cases diagnosed by MediBot in the past, as illus-
trated in the bottom panel of Fig. 4. We used example-
based explanations where the system gave an example 
of a previous case and explained how it was diagnosed.

In week 5, instead of showing a positive example, it 
used an example that explains why it did not consider 
Celiac disease the most-likely condition at the begin-
ning of the consultation. The rationales-only group saw 
all the justifications included in the visual and example-
based explanation, only the figures and examples were 
removed from the explanation.

As in Experiment 1, participants interacted with 
MediBot for six simulated weeks and received an expla-
nation about its prediction and diagnosis each week. 
After each simulated week, participants were asked 
to rate their satisfaction, trust, perception of accu-
racy, sufficiency, usefulness, and completeness for the 

Fig. 4  Sample explanations used in Experiment 2. Top panel shows 
visualizing feature weights and rationale; bottom panel shows 
example-based explanations
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explanations, as in Experiment 1 but this time they 
rated the measures using 7-point Likert scale.

Results
Since we had a challenging multi-comparison analy-
sis with six DVs (satisfaction, trust, perception of accu-
racy, sufficiency, usefulness, completeness) and 4 
conditions (control, rationales, visuals + rationales, exam-
ples + rationales), we decided to organize the ratings for 
all six weeks into three sets: Week 1 and 2 averaged into 
Time 1 (initial diagnosis), Weeks 3 and 4 averaged into 
Time 2 (critical rediagnosis) and Weeks 5 and 6 averaged 
into Time 3 (resolution of diagnosis). The mean rating for 
all six attributes (satisfaction, trust, perception of accu-
racy, sufficiency, usefulness, and completeness) across 
conditions are shown in Fig. 5 (7-point Likert was used 

for ratings, but the figure shows 3–7 range for clearer 
visual).

We examined the rating for each dimension of explana-
tion satisfaction scales with a Type-III factorial ANOVA 
examining the main effects of time, explanation condi-
tion, and their interaction using the R package ‘ez’ [65]. 
The Type-III ANOVA examines the main effects AFTER 
the interaction has been accounted for, allowing us to 
identify residual effects of explanation types across all 
time points. The results are shown in Table 3. The test of 
the interaction is the primary indicator of the effective-
ness of an explanation because different conditions began 
with little difference and converged by the end of the 
study.

All interactions of Time and Explanation were signifi-
cant at the p < 0.05 level. The tests also showed the main 
effects of explanation were statistically significant for 

Fig. 5  Rating for explanation satisfaction scales
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sufficiency, completeness, accuracy, and trust indicating 
that these were deemed better for explanation conditions 
across the entire duration of the experiment. Finally, the 
main effects of time were seen for all measures, indicat-
ing that the scenario was potent enough to manipulate 
subjective measures of trust as it moved through initial 
diagnosis to rediagnosis to resolution.

To understand the differences between the Explanation 
Conditions at each time set, we conducted Tukey post-
hoc tests for each of the six scales using the R package 
agricolae [68]. The results are shown in Table 4.

For Time 1, there are no significant differences between 
any pair of explanation types overall six dimensions 
except accuracy. At Time 2, there are no significant differ-
ences between visuals + rationales and examples + ration-
ales for satisfaction, sufficiency, completeness, trust, and 
accuracy. But they both were better than control and 
rationales for satisfaction, sufficiency, completeness, and 

accuracy. At Time 3, there are no differences between any 
of the explanation types, indicating that the resolution of 
the scenario produced uniformly high satisfaction. Only 
during the rediagnosis crisis weeks, when the system was 
noticeably wrong, there were statistically significant dif-
ferences between explanation conditions.

Figure  6 summarizes these 6 measures with a sin-
gle grand average that encapsulates the basic effect of 
explanation conditions in our scenario. A Type-III fac-
torial ANOVA on the average score showed a statis-
tically significant difference in overall satisfaction by 
time (F (2,218) = 144.68, p < 0.0001), explanation (F 
(3,109) = 4.43, p = 0.006) and the time by explanation 
interaction (F (6,218) = 9.14, p < 0.001).

A post-hoc Tukey test showed there were no signifi-
cant differences between any pair of explanation types 
at Time 1; there are no significant differences between 
visuals + rationales and examples + rationales but they 
both are better than control and rationales at Time 2, and 
there were no differences between any of the explanation 
types at Time 3.

Table 3  Results from Type- III factorial ANOVA for explanation 
satisfaction scales (n = 113)

Time and explanation refer to the main effects and Explanation: Time refers to 
the interaction between these independent variables

Time (week) Explanation Explanation: time

Satisfaction F (2,218) = 126.52
p < 0.001

ηp
2 = 0.25

F (3,109) = 1.97
p = 0.12
ηp

2 = 0.04

F (6,218) = 8.01
p < 0.001

ηp
2 = 0.06

Sufficiency F (2,218) = 114.65
p < 0.001

ηp
2 = 0.25

F (3,109) = 3.38
p = 0.02
ηp

2 = 0.06

F (6,218) = 8.78
p < 0.001

ηp
2 = 0.07

Completeness F (2,218) = 104.24
p < 0.001

ηp
2 = 0.24

F (3,109) = 4.85
p = 0.003
ηp

2 = 0.08

F (6,218) = 6.54
p < 0.001

ηp
2 = 0.06

Usefulness F (2,218) = 110.36
p < 0.001

ηp
2 = 0.25

F (3,109) = 0.82
p = 0.49
ηp

2 = 0.02

F (6,218) = 5.06
p < 0.001

ηp
2 = 0.05

Accuracy F (2,218) = 88.26
p < 0.001

ηp
2 = 0.20

F (3,109) = 9.95
p < 0.001
ηp

2 = 0.16

F (6,218) = 8.14
p < 0.001

ηp
2 = 0.07

Trust F (2,218) = 64.71
p < 0.001

ηp
2 = 0.16

F (3,109) = 4.71
p < 0.001
ηp

2 = 0.08

F (6,218) = 4.10
p < 0.001

ηp
2 = 0.04

Table 4  Significant differences between conditions (n = 113) at each Set according to the Tukey test, any pairing not mentioned was 
not significantly different for that Set

Time 1 Time 2 Time 3

Satisfaction None Visual; examples > rationale; control None

Sufficiency None Visual; examples > rationale; control None

Completeness None Visual; examples > rationale; control None

Usefulness None Visuals were better than control None

Accuracy Example > control Visual; examples > rationale; control None

Trust None Visuals; examples > control None

Fig. 6  Mean rating for Overall Satisfaction
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To investigate this in detail, we did a separate analy-
sis for comparing  (1) rationale vs. control; (2) ration-
ale vs. visuals + rationales; and (3) rationale vs. 
examples + rationales. This maps onto our hypothesis as 
well. A Type-III factorial ANOVA examined the main 
effects of time, explanation condition, and their interac-
tion. The main effects of explanation were not statisti-
cally significant for neither of them: rationale vs. control 
(F (1,54) = 3.4, p = 0.07), rationale vs. visuals + ration-
ales (F (1,55) = 1.22, p = 0.27), and rationale vs. exam-
ples + rationales (F (1,54) = 2.37, p = 0.13). The main 
effects of Time were significant at the p < 0.05 level for 
rationale vs. control (F (2,108) = 132.42, p < 0.001), ration-
ale vs. visuals + rationales (F (2,110) = 85.12, p < 0.001), 
and rationale vs. examples + rationales (F (2,108) = 66.97, 
p < 0.001). Interactions of Time and Explanation were 
statistically significant at the p < 0.05 level both ration-
ale vs. visuals + rationales (F (2,110) = 21.16, p < 0.001) 
and rationale vs. examples + rationales (F (2,108) = 9.72, 
p < 0.001) but not for rationale vs. control group (F 
(2,108) = 0.66, p = 0.52).

Discussion and summary
This study demonstrated several important results. First, 
like Experiment 1, explanations only appear to matter 
substantially during crisis weeks. It must be noted that 
this crisis was not due to a specific mistake or error on 
the part of the AI, but it was a consequence of making a 
most-likely diagnosis based primarily on the relative base 
rate of two diseases that have similar symptomology. Sec-
ond, we found that richer explanations (visuals + ration-
ales and examples + rationales) are the most effective 
at these critical points, but otherwise do not differ sub-
stantially from the control group. Next, for the majority 
of measures, rationales alone were no better than the 
control group. Additionally, although the visualization 
was substantially different from example-based explana-
tions, we found no evidence that one method was more 
effective than the other. Finally, once the system came to 
a resolution the explanation no longer mattered and par-
ticipants gave high satisfaction ratings.

Notably, this experiment did not test several condi-
tions that might also be interesting. First, because of 
the lack of impact of global explanation on satisfaction 
measures, we did not compare global explanations in this 
study, either alone or accompanying the local explana-
tions. We have no data on whether the global explanation 
would improve local justifications in this scenario but 
suspect that they would have little impact here as well. 
We also did not examine whether together, examples 
and visualizations would be better than either individu-
ally. The fact that subjective ratings improved at Time 3 
versus Time 2 shows that there would certainly be room 

for improvement in the score but given that neither were 
substantially impaired during Time 2 in comparison to 
the baseline Time 1 suggests that satisfaction may be as 
high as it can be under the circumstances of a disease 
that has not yet been cured. Finally, we examined only 
a single method of selecting examples. This method was 
sufficient to increase self-rated satisfaction of the system, 
but it may be the case that there are a variety of exam-
ple types that could provide better or worse explana-
tions. Our examples were chosen specifically to provide 
similar cases in the past that produced similar outcomes; 
another approach would be to use contrastive examples 
that highlight a critical aspect of the symptoms that led 
to the current diagnosis.

General discussion
The two studies reported here allow us to draw several 
conclusions about how patient-facing explanatory diag-
nostic systems may succeed or fail. Overall, they show 
the importance of context on explanations. For example, 
justifying a decision is important to maintain satisfaction 
in the system; different kinds of explanations impact the 
patient differently, and the timing of explanations is also 
critical. We will examine the main lessons from these 
studies next and provide some recommendations for 
existing AI diagnostic systems.

Lesson: explanations are time‑sensitive
These studies found that explanations are differentially 
effective at different timepoints. At the critical times 
when the AI is making errors, explanations can be very 
helpful for improved patient satisfaction, whereas they 
were often no different from control when things at 
non-critical points. This suggests that to manage patient 
attention and focus, developers may wish to avoid bur-
dening patients with explanations when none are needed. 
Not only can this be distracting, but an explanation for 
something that is already understood may make the 
patient think they misunderstand something (why else 
would it need to be explained). Consequently, explana-
tions should be used judiciously at appropriate times.

The impact of explanations at the critical Time 2 is 
important because this is the point at which real patients 
might start abandoning the system, seeking second opin-
ions, or failing to adhere to recommendations. The type 
of error seen in this scenario is especially pernicious 
because the diagnosis was in some sense optimal, even 
though it is wrong. The study shows that under the right 
circumstances, an explanation may mean the difference 
between seeing this and thinking that the diagnosis sys-
tem is fundamentally unreliable or inaccurate.
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Lesson: significance of global explanation
Global explanations were not as effective as local justi-
fications for immediate measures of patient satisfaction 
and trust. Nevertheless, they showed significant improve-
ment in some post-scenario measures—ones related to 
the perception of global or overall understanding of the 
diagnosis by the AI system. And so, that should not be 
ignored if developers are really trying to build an XAI 
system for the patients. Thus, not only are different expla-
nations effective at different times, but they also impact 
different aspects of their assessment of the system.

Lesson: effectiveness of local justification
These studies showed the power of local justification/
explanation on immediate measures of satisfaction. 
When used at the right time, a local justification could 
be a powerful improvement for diagnostic systems. Our 
results suggest that system developers should concen-
trate on investing more effort into explanations in cases 
where the system may be wrong, and especially when a 
diagnosis is changing. Most XAI systems currently focus 
on a single time point explanation, but if a system can 
detect that its predictions are changing in a single case, 
this is an especially important point to use explanation.

Lesson: the format of explanation matters
Across the two studies, we examined several different 
formats of explanation. We found that even a simple vis-
ualization showing the likelihood of different outcomes 
was effective (Exp. 1), as were more complex visualiza-
tions (Exp. 2) and examples (Exp. 2). However, a writ-
ten logic-based narrative explanation alone (Exp. 2) did 
not improve subjective assessments of satisfaction. Not 
only that, but a detailed global explanation anticipating 
the type of mistakes the AI would make had its greatest 
impact on post-scenario ratings of knowledge and not 
immediate measures of satisfaction. There are various 
forms of visual explanations and case-based or example-
based explanations offered in XAI literature. Our studies 
suggest that instead of asking simple comparisons about 
“which kind of explanation is better”, researchers should 
start addressing questions about when and how different 
kinds of explanations are effective and helpful.

Lesson: diagnosis is not simply classification
One final observation we make is that it is a mistake to 
think about AI diagnosis as merely a classification prob-
lem that determines a disease or condition based on 
symptoms and signs. For example, Alam [44] identified 
how diagnosis involves explaining why and how the AI is 
making the diagnosis. As in our scenario, an error is not 
necessarily an actual mistake, it might be the most likely 
outcome that happens to be wrong for an individual. In 

other cases, the course of treatment may not simply be 
following the most-likely option. Instead, a treatment 
(e.g., antibiotics) may be pursued even if it is not the 
most likely if it has little risk, but the consequences of not 
treating it are large. Moreover, the present studies show 
that the necessary explanations depend on an evolv-
ing time course of diagnosis, and explanation is likely to 
interact with this timeline, as it may help surface infor-
mation the physician did not previously know.

Recommendation for existing AI diagnostic systems
Based on the main lessons learned from our studies, we 
have several recommendations for existing AI diagnos-
tic systems using the healthcare chatbot “Ada” as a rep-
resentative example to show how it could be improved 
based on our findings. Ada offers an AI-powered health 
and symptom assessment application that helps its users 
to understand their health condition and navigate to the 
appropriate care [69]. One possible improvement is to 
maintain persistent awareness of symptom tracking and 
change. Though Ada tracks symptoms after it provides 
possible causes of the symptoms of a user, it does not 
provide any recommendation or explanation if the symp-
toms worsen or persist and does not track if there are any 
new symptoms either. Symptom change represents criti-
cal points at which explanations are important. At such 
critical points, it should be able to explain to the user why 
this is happening.

A second improvement would be to incorporate global 
explanation about the diagnostic strategy. Although Ada 
provides some local visual justifications while presenting 
the likelihood of the possible causes, it does not provide 
any explanations about how it makes decisions in gen-
eral. Such global explanation may help users understand 
the overall decision-making process. Third, more infor-
mation about alternative outcomes and diagnoses seems 
to be important. Ada provides a full assessment report of 
the symptoms showing how many people out of 10 peo-
ple with similar symptoms might have some medical con-
dition, but it only focuses on a single time point. It could 
incorporate what may happen if any of the symptoms 
change over time and provide some example cases as 
explanations for the users. Finally, explanations via exam-
ple cases can be useful, especially to highlight variety and 
contrasting outcomes.

Limitations
This study was designed to test several general explana-
tion mechanisms in a hypothetical diagnostic scenario, 
tested on a relatively inexperienced and homogenous col-
lege population. This somewhat limits our ability to gen-
eralize to conclusions about how an older, less educated 
population might have responded in these scenarios or 
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an older population with more experience dealing with 
health care or gastrointestinal disorders. This is a limita-
tion of our approach, but it is important to acknowledge 
that the diagnostic systems we are simulated do not exist, 
and our participants were not really suffering from the 
disorder, but we believe that at the current state of pro-
spective development, even rough assessments of  satis-
faction can be valuable. Certainly, our results may exhibit 
some differences if there were multiple complex scenar-
ios or cases with a specific target population e.g., older 
adults, patients of rare or chronic diseases. Such a sub-
ject population may interpret these explanations differ-
ently from what we found in our study. Our studies may 
provide a guideline for future research that will involve 
user evaluation of real-world patient-facing AI diagnos-
tic systems, where it will be useful to know what kind of 
explanations are effective for their trust, satisfaction, and 
understanding of these systems. Furthermore, the experi-
ments serve as a baseline for validating the scenario and 
the satisfaction measurements to establish that together, 
they can create a situation in which satisfaction is sensi-
tive to explanation. Future research is needed to establish 
whether these scenarios and measures will generalize to 
other populations.

Another limitation of this work involves the extent to 
which measures of satisfaction and trust of a simulated 
patient in our scenario matter, given the fact that they 
are likely to have very limited knowledge of the diag-
nostic problem before using a hypothetical diagnos-
tic system. Currently, a patient might consult WebMD 
or other on-line sources to find possible diagnoses that 
map onto symptoms they are experiencing. This may 
help them understand the different possibilities and may 
even allow them to try different non-medical treatments 
(changes of diet, etc.) without consulting a physician. 
Yet they are unlikely to be able to legitimately assess the 
trustworthiness of the system because they do not have 
the knowledge of a physician with an understanding of 
both biological mechanisms and the likelihood of differ-
ent diagnoses. Whether patient satisfaction is related to 
the accuracy of the system, it is likely to influence adop-
tion and abandonment, and so care must be taken to 
ensure that these measures of satisfaction and trust are 
not interpreted as related to the accuracy of the system 
(which [64] distinguished as relating to performance).

Conclusion
To improve patient satisfaction and trust at such points, 
building AI systems with higher accuracy might not be 
enough, and may not even be possible. In critical situa-
tions, AI systems may offer an erroneous diagnosis in 
the process of determining the most-likely disease or 

condition, but patients would not understand the reason 
behind this if they do not get exposed to the explanations 
and justifications. Incorporating appropriate explana-
tions with the AI systems may help a patient understand 
the diagnosis better in these situations and make them 
satisfied with the diagnosis as well.
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