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Abstract 

Background:  An ongoing outbreak of a novel coronavirus (2019-nCoV) pneumonia continues to affect the whole 
world including major countries such as China, USA, Italy, France and the United Kingdom. We present outcome 
(‘recovered’, ‘isolated’ or ‘death’) risk estimates of 2019-nCoV over ‘early’ datasets. A major consideration is the likelihood 
of death for patients with 2019-nCoV.

Method:  Accounting for the impact of the variations in the reporting rate of 2019-nCoV, we used machine learning 
techniques (AdaBoost, bagging, extra-trees, decision trees and k-nearest neighbour classifiers) on two 2019-nCoV 
datasets obtained from Kaggle on March 30, 2020. We used ‘country’, ‘age’ and ‘gender’ as features to predict outcome 
for both datasets. We included the patient’s ‘disease’ history (only present in the second dataset) to predict the out-
come for the second dataset.

Results:  The use of a patient’s ‘disease’ history improves the prediction of ‘death’ by more than sevenfold. The models 
ignoring a patent’s ‘disease’ history performed poorly in test predictions.

Conclusion:  Our findings indicate the potential of using a patient’s ‘disease’ history as part of the feature set in 
machine learning techniques to improve 2019-nCoV predictions. This development can have a positive effect on pre-
dictive patient treatment and can result in easing currently overburdened healthcare systems worldwide, especially 
with the increasing prevalence of second and third wave re-infections in some countries.
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Background
A zoonotic coronavirus has crossed species to infect 
human populations. This virus, unofficially known as 
2019-nCoV, was first detected in people exposed to a sea-
food or wet market in Wuhan, China. Similar to other 
pathogenic human respiratory coronaviruses, 2019-nCoV 
triggers respiratory disorders that are severe in some 
cases. More than 1,133,758 confirmed cases were regis-
tered as of 5 April 2020, with 62,784 deaths [1].

This disease has now evolved to be spread by human-
to-human communication. Typical clinical signs in 
2019-nCoV patients include fatigue, dry cough, trouble 
swallowing (dyspnoea), headache, and pneumonia. The 
development of the disease can result in progressive res-
piratory failure due to alveolar damage (as observed from 
computerized transverse chest tomography images) and 
even death.

As a ribonucleic acid (RNA) virus [2], 2019-nCoV also 
has an intrinsic characteristic of a high mutation rate; 
however, as found in other coronaviruses, the mutation 
rate may be significantly lower than those of other RNA 
viruses owing to its genome-encoded exonuclease. This 
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feature offers the potential for this recently developed 
zoonotic viral pathogen to evolve and more easily spread 
from person to person, likely becoming more virulent.

Recently, machine learning techniques have been 
applied successfully to a wide range of problems includ-
ing those in the health care field [3–5]. Since the appear-
ance of 2019-nCoV, many researchers have employed 
machine learning techniques to predict patterns related 
to various genotypic and phenotypic viral traits com-
bined with human social behaviour. Randhawa et. 
al. introduced an intrinsic genomic signature of the 
COVID-19 virus and used it for an ultra-fast, scalable, 
and highly accurate classification of entire 2019-nCoV 
virus genomes along with a machine learning-based 
alignment-free approach [6]. Ozturk et  al. proposed a 
deep model to use X-ray images for early detection of 
COVID-19 cases [7]. They obtained a 98.08% accuracy 
and 87.02% accuracy for discrete and multi-classes. Their 
DarkCovidNet model can help clinicians make the diag-
nosis more rapidly and accurately. In [8], the problem of 
automatic classification of pulmonary diseases including 
the recently emerged 2019-nCoV from X-ray images was 
considered. A state-of-the-art convolutional neural net-
work (CNN) called Mobile Net was trained from scratch 
to investigate the importance of the extracted features for 
the classification task. A classification accuracy of 87.66% 
was achieved among seven classes. This approach also 
achieved 99.18%, 97.36% sensitivity and 99.42% specific-
ity in 2019-nCoV identification.

Researchers have also used artificial intelligence (AI) 
algorithms to combine chest CT findings with clini-
cal symptoms, exposure history and laboratory testing 
to quickly diagnose patients who are 2019-nCoV posi-
tive [9]. Their system correctly identified 17 of 25 (68%) 
patients and achieved an area under the curve of 0.92. 
In [10], a clinical text classification paradigm using weak 
supervision and deep representation was proposed to 
reduce human effort. Support vector machine (SVM), 
random forest (RF), multilayer perceptron neural net-
work (MLPNN), and CNN were tested using a weak 
supervision paradigm. Precision, recall, and F1 score 
were used as the metrics to evaluate the performance. 
CNN achieved the best performance. Although many 
other studies focusing on supervised machine learn-
ing applied to 2019-nCoV in various ways have been 
reported in the literature, no studies have explored pre-
dictions of death from 2019-nCoV as we start to explore 
in this paper. These early experiments have met with 
varying success. However, with the introduction of new 
datasets, researchers are eager to engage various machine 
learning techniques to help manage this outbreak.

Initial datasets were very sparse and at first included 
only a single country. Consequently, as 2019-nCoV 

spread, the increased awareness and recordkeeping 
meant that the datasets grew with respect to the num-
ber of features and size. Nonetheless, at the beginning of 
April 2020, only a small number of datasets were avail-
able to researchers. Nevertheless, we choose two datasets 
from Kaggle [11, 12]. Table 1 shows the recovered, con-
firmed cases and deaths due to this virus over time.

We focused our work on predicting impending death 
from 2019-nCoV based on the given data. Our aim was 
to develop a tool for precise risk prediction to facili-
tate urgent treatment targeted at high-risk individuals. 
Our analysis focuses on many state-of-the-art algorith-
mic developments that have demonstrated promise in 
improving disease prediction. The development of a more 
in-depth understanding and theoretical study of critical 
problems related to algorithmic construction and learn-
ing theory was crucial in the advance of these methods. 
These include trade-offs for optimizing efficiency [13] 
using physically reasonable constraints, and integration 
of prior information and uncertainty. Our contributions 
are as follows:

1	 We created, trained and tested models based on five 
machine learning techniques from the two Kaggle 
datasets. Machine learning hyper-parameters were 
tuned to obtain models with optimal performance.

2	 We confirmed that using the patient’s ‘disease’ his-
tory resulted in more than a sevenfold increase in the 
accuracy of prediction of death.

3	 We developed a machine learning tool for death 
prediction to facilitate urgent treatment targeted at 
high-risk individuals. The tool works for ‘early’ data-
sets with few deaths but will improve with the addi-
tion of more patient cases. Thus, it can be used for 
countries now developing cases and those with many 
cases.

4	 In the future, improved death predictions can assist 
worldwide healthcare systems in fighting this out-
break.

The rest of this paper is organized as follows. In 
“Related work” section describes important work, 
concepts and metrics associated with our work. We 
discuss different machine learning techniques and sta-
tistical metrics used in this paper. We then outline the 
method used to set up our experiments including data-
set descriptions and parameters utilized for machine 
learning techniques in “Methods” section. Our results 
are given in “Results” section together with a discus-
sion giving the importance of using a patient’s ‘disease’ 
history as a feature in the 2019nCoV datasets. In “Dis-
cussion” section, we first analyse our results and then 
discuss multi-class AUC generalizations, ROC curves 
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and hyper-parameter settings in depth. Finally, we pre-
sent our conclusions in “Conclusion” section.

Related work
Here we provide a brief explanation of the three 
ensemble and two conventional methods used in 
machine learning. These are important because they 
are used to build the models used for predictions in 
our experiments. Then, we discuss the metrics used to 
evaluate the performance of these models.

Ensemble methods
An ensemble is a composite model combining a set of 
low-performing classifiers to construct an improved 
classifier. An individual vote is performed by the clas-
sifier and the final prediction label is returned, result-
ing in majority voting [14]. In essence, ensemble 
learning methods are meta-algorithms incorporat-
ing many methods of machine learning into one pre-
dictive model to improve performance. We selected 
three ensemble methods based on the literature per-
formance on assisting with pandemic predictions 
[15–17]. These are AdaBoost, bagging and extra-trees 
classifiers. These methods are described below.

AdaBoost classifier
AdaBoost or adaptive boosting combines several classi-
fiers to improve classifier accuracy. AdaBoost is an itera-
tive ensemble method. It creates a strong classifier by 
combining several poorly performing classifiers to obtain 
effective classifier with high precision [18]. The basic idea 
behind Adaboost is to set classifier weights and train the 
data sample in each iteration to ensure precise predic-
tions of unusual observations [19]. Many other machine 
learning techniques can be used as base classifier if they 
accept weights on the training set [20].

Suppose we are given a set of training data (x1, y1),…
,(xn, yn) where the output variable is yi = 1, 2,…,M. M is 
the number of classes. The goal is to find a classifica-
tion rule Y(x) from the training data, for example, the 
rule with the lowest misclassification error rate. Thus, 
when given a new input xi, we can assign it a class label 
y from 1,…,M. AdaBoost constructs a classifier starting 
with the unweighted training sample. The classifier is 
used to produce class labels. The weight of the training 
data point is increased (boosted) if a training data point 
is misclassified. Then, using the new weights, which are 
no longer identical, a second classifier is constructed. 
Then, the weights are increased by misclassified training 
data, and the process is repeated. Usually, 500 or 1000 
classifiers can be set up in this fashion. Each classifier is 

Table 1  Recovered, confirmed cases and deaths by 2019-nCoV virus over time [11, 12]

Date Deaths Confirmed Recovered

China Korea China Korea China Korea

1/22/2020 17 0 548 1 28 0

1/25/2020 42 0 1406 2 39 0

1/28/2020 131 0 5509 4 101 0

1/31/2020 213 0 9802 11 214 0

2/1/2020 259 0 11,891 12 275 0

2/5/2020 563 0 27,440 18 1115 1

2/9/2020 905 0 39,829 27 3219 3

2/13/2020 1369 0 59,895 28 6217 7

2/17/2020 1864 0 72,434 30 12,462 10

2/21/2020 2238 2 75,550 204 18,704 17

2/25/2020 2665 12 77,754 977 27,676 24

2/29/2020 2837 17 79,356 3150 39,320 28

3/1/2020 2872 18 79,932 3736 42,162 30

3/5/2020 3015 35 80,537 5766 52,292 88

3/9/2020 3123 51 80,860 7382 58,804 166

3/13/2020 3180 67 80,945 7979 64,196 510

3/17/2020 3230 81 81,058 8320 68,798 1401

3/21/2020 3259 102 81,305 8799 71,857 2612

3/23/2020 3274 111 81,439 8961 72,814 3166
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assigned a value, and the final classifier is specified as the 
linear combination of each stage’s classifiers. We let W(x) 
denote a weak multi-class classifier that assigns a class 
label to x.

We now describe AdaBoost-SAMME, which is 
used in multi-class settings. The following steps are 
taken by the algorithm. Initially, Adaboost selects a 
training subset randomly. The observation weights 
wi =

1
n , i = 1, 2, . . . , n are initialized. The AdaBoost 

machine learning model is iteratively trained by select-
ing the training set based on the accurate prediction of 
the last training as follows: for each iteration k = 1 to 
K, (1) fit the classifier Wk(x) to the training data using 
wi. (2) Calculate the error rate by assigning the weight 
to the trained classifier according to the accuracy of 
the classifier: errk =

∑n
i=1 wi

(

ci �= Y (k)(xi)
)

/
∑n

i=1 wi. 
A more accurate classifier will get a higher weight. 
(3) Calculate the weight of the weak classifier accord-
ing to α(k) = log(1− err(k)/err(k))+ log (M − 1) . 
For our 3-class system, we need only err(k) < 2/3 . (4) 
Update the weights by assigning the higher weight to 
wrongly classified observations so that in the next itera-
tion these observations will obtain the higher prob-
ability for classification: wi = wi.exp(α(k).(ci 6 ≠ Y (k)(xi)) 
where i = 1, 2,…,n. (v) Re-normalize wi. In the final step, 
output an approximation to the Bayes classifier by per-
forming a “vote” across all of the learning algorithms: 
C∗(x) =

∑K
k=1 α

(k).Y (k)(xi) = m.

Bagging classifier
A bagging (decision tree) classifier is a meta-estima-
tor ensemble that trains base classifiers on the original 
dataset’s random subsets with different subset used for 
each base classifier and then aggregates their individual 
predictions (either by voting or by averaging) to form 
a final prediction [21]. A learning set S consists of data 
(xn,yn),n = 1,…,N where x are either class labels (‘gender’ 
and ‘disease’) or a numerical response (‘age’). Assume 
that we can use this learning set to generate a predictor 
ν(x,S). Now, suppose that a sequence of learning sets Sj 
are given, each consisting of independent observations 
from the same underlying distribution as S. Our task is to 
use Sj to obtain a better predictor than the single predic-
tor ν(x,S) of the learning set. The constraint is imposed 
that only the sequence of predictors ν(x,S) is permitted. 
A training set of size N is sampled for each trial t = 1, 2, 
…T with substitution from the original instances. This 
training set is the same size as the original data set but 
may not include any instances, while others appear more 
than once. An obvious procedure is to replace ν(x,S) with 
an average over j, if y is numerical that is νagg(x) = ES(x, 
S) where the subscript agg is the aggregation function 
and ES is the expectation over S. If a class k ∈ 1, 2, …,K 

is predicted, then it could be aggregated by voting. This 
is performed by taking the k for which Nk is maximum. 
However, typically we have a single learning set S. Never-
theless, a process leading to νagg can still be accomplished 
by taking repeated bootstrap samples S(T) from S forming 
ν(x, S(T)). Thus, a sample classifier is created by the learn-
ing system, and the final classifier is produced by com-
bining the classifiers from these trials. If y is numerical, 
νT becomes νT(x) = avgTν(x, S(T)) where avg is the average 
function. If y is a class label, ν(x, S(T)) becomes a vote for 
νT(x).

Suppose a patient requires a 2019-nCoV symptom-
based diagnosis. The patient would prefer to do multiple 
tests with many doctors rather than using only one doc-
tor. The most common diagnosis is expected to be the 
correct diagnosis and a consensus decision from a wide 
number of doctors is expected more accurate. In bagging, 
each doctor will act as a version of a particular predic-
tor. An ensemble is created by having multiple versions 
of a predictor. We note this can be created by one or 
more doctors. To train each predictor, bagging creates a 
training data set or bootstrap sample. Usually, a bagging 
meta-estimator can be used as a means for reducing the 
variance of a black-box estimator (e.g., a decision tree), 
integrating randomization into its construction process 
and then making an ensemble of the results [22]. We 
choose the decision tree as the sub-classifier of the bag-
ging algorithm. The underlying concept of bagging is that 
variation is minimized by averaging models and the accu-
racy of “weak” classifiers is increased. “Weak” classifiers 
are classified as classifiers that alter their final predictions 
drastically with no modifications to training data. In bag-
ging, we repeatedly sample from a training set using sim-
ple random sampling with replacement. A single “weak” 
classifier is trained for each bootstrap sample. Then, these 
classifiers are used on test data to predict class labels and 
the class that receives the majority of the votes wins (ties 
are resolved arbitrarily).

Extra‑trees classifier
This class implements a meta-estimator that fits a num-
ber of randomized decision trees (i.e. extra-trees) on 
different dataset sub-samples and uses the average to 
improve the predictive accuracy and balance over-fitting 
power [23]. The algorithm for extra-trees generates an 
ensemble of unpruned decision trees. By picking cut-
points entirely at random, it separates the nodes and 
uses the whole learning sample S (rather than a boot-
strap replica) to expand the trees. The algorithm first 
selects an input variable to divide the data at each stage 
of the tree expansion u1,…,uK. Then, it performs K splits 
to produce pieces p1,…,pK. This is done by determining 
a random cut-point uc uniformly in [uS

min, uS
max], where 
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uS
max and uS

min are the maximal and minimal values of u 
in the data sample S, respectively. If the input variable is 
continuous, then the cut-point is also chosen randomly, 
i.e. independently of the class labels [24]. The algorithm 
returns a split sζ such that it is maximum in S = si,S where 
i = 1,…,K. It has two parameters: K, which is the number 
of randomly chosen input variables for each node, and 
nmin, which is the minimum sampling size for node split-
ting. With the complete learning sample, these param-
eters are used in many iterations to create an ensemble 
model. To yield the final prediction, the predictions of the 
trees are aggregated by casting a vote and obtaining the 
majority. The underlying rationale of extra-trees is that 
the precise randomization of the cut-point and input var-
iable paired with the average of the ensemble should be 
able to minimize variation more strongly than the weaker 
randomization strategies.

Conventional methods
Many conventional learning algorithms have attracted 
intense attention in many research fields [25]. We 
selected two conventional methods based on their per-
formance for assisting with pandemic predictions as 
reported in the literature[26]. These methods are the 
decision tree and k-nearest neighbour (k-NN) classifiers.

They are described below.

Decision tree classifier
Prior to describing in detail the construction of this 
classifier, we define D as the data set. D is built by m 
attributes and n records. x1, x2,…,xi. The target variable 
is yi = {0,1} where 1 ≤ i ≥ n. Therefore, a record can be 
expressed as xi = [xi1, xi2,…,xim,yi] and D = {xi|1 ≤ i ≥ n}.

Decision tree algorithms [27–30] classify records by 
conjunctive rules (e.g. ‘disease’ = yes and ‘sex’ = female 
and ‘age’ ≥ 60). Several decision tree algorithms apply 
information theory to separate data by computing the 
entropy iteratively. When the data is split on the basis 
of attribute a, we denote this entropy by H(D) and 
the information gain by IG(D,a). The expected value 
of the contained information or entropy is given by 
H(D) = Σp(b)log(b), where D is the training data set, Y is 
the target variable in D, b is a classified value in Y, and 
p(b) is the probability that an object in D is classified as b.

The amount of uncertainty reduced due to the 
split is the information gain, which is given by 
IG(D,a) = H(T) − Σp(a)H(a), where A is an attribute 
based on the split, p(a) is the probability that an object 
in D contains attribute A = a, and H(a) is the entropy 
of the subset of D, where attribute A = a. The decision 
tree chooses the attribute with the greatest information 
gain as a splitting criterion at a local level. The decision 
tree algorithm chooses the attribute with the highest 

information gain to be a node after determining the infor-
mation gain of each attribute, which splits the data set 
into two or more subsets. The procedure continues itera-
tively until a complete decision tree is constructed.

k‑nearest neighbor classifier
The k-nearest neighbor (k-NN) classifier [31, 32] calcu-
lates the class membership of a test patient sample by 
using the k closest neighbors in an outcome of a major-
ity vote. Provided a patient with a death outcome to 
be imputed and a pool of other patients with ‘similar’ 
features, in terms of disease similarity, the algorithm 
searches for the k-closest subjects and infers an estima-
tion for the required value outcome. Initially, the distance 
from the current patient and the other candidate subjects 
is computed. A weighted average of the respective values 
is then obtained in the k of the most related patients and 
used as a plausible estimate of the required patient. The 
process is iterated for each outcome value of the given 
patients to impute the whole dataset. The algorithm takes 
into account the disease feature in the patient data and 
controls both the mixed existence of the feature data 
with the inclusion of these in the distance estimation of 
multiple classes (‘recovered’, ‘isolated’ and’ death’). The 
class information is maintained for each of the nearest 
k neighbors. If there are more than two winners in the 
majority vote, then there is a tie, which is arbitrarily bro-
ken to determine the winner.

The k-NN algorithm proceeds as follows for an ith sub-
ject with a death outcome value to be imputed. To 
account for the disparity between the ranges, the features 
of the subject sample, along with its candidate samples, 
are normalized to the [1, 1] interval. The difference 
between subject i and each candidate j is then deter-
mined by applying the Minkowski metric. Let v = (v1, 
v2,…,vN) and u = (u1, u2,…,uN) be the feature vectors of 
subject i and candidate j, respectively. The distance 
between v and u is given by 

(

∑N
i=1 |vi − ui|

p
)1/p

 where p 
is an integer between vi and ui. If either vi or ui is absent, 
or both, the feature of the ith index does not add to the 
distance. Once the distances to all the candidates have 
been determined, the k closest ones are chosen.

Statistical metrics
Once a model based on machine learning techniques is 
constructed, it is necessary to evaluate its performance 
[33]. The desired model to assist in providing the neces-
sary treatment for the patients that most at risk must be 
reliable at predicting deaths. We use the accuracy, preci-
sion, recall and F1-Score statistical metrics to measure 
the performance of the models in our experiments [34, 
35]. To calculate these values, several other values are 
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necessary. True positive (TP), True negative (TN), False 
negative (FN) and False positive (FP). Both TP and TN 
indicate a consistent result between the prediction and 
the actual outcome. Conversely, FN and FP indicate that 
the predictions are not the same as the actual condition. 
For our death prediction, we recognized that FP results 
are not as dangerous as FN. Therefore, our aim was to 
minimize the number of false negatives (FN) because 
these are the cases where death is not correctly predicted 
and the patient does not receive adequate medical atten-
tion. We briefly describe these metrics and their calcula-
tions in the following sub-sections.

Accuracy
The most popular classification metric is accuracy, 
defined as the fraction of the samples correctly predicted. 
It is described by Eq. 1.

Precision
Precision is the proportion of the successfully predicted 
occurrences that are in fact positive. It is described by 
Eq. 2.

Recall
Recall (also called sensitivity) is the proportion of suc-
cessful events that are predicted correctly. It is described 
by Eq. 3.

F1‑Score
The F1-score is the harmonic mean of recall and preci-
sion, with the greater score interpreted as a better model. 
It is described by Eq. 4.

Methods
The overall steps used in our study are outlined in Fig. 2. 
In step 1, we obtained input data. We used two data-
sets from Kaggle [11, 12]. These datasets were obtained 
on March 30 2020. Dataset1 has 1086 cases with nine-
teen (19) features and dataset2 2756 cases with eight-
een (18) features. The number of ‘death’ patients from 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1− Score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

dataset1 was 63, ‘released’ was 314 and ‘isolated’ was 709. 
The number of ‘death’ patients from dataset2 was 53, 
‘released’ was 874 and ‘isolated’ was 1828. Training data 
for Dataset1 consisted of 652 records, while Test data had 
164 records. Training data for Dataset2 consisted of 2204 
records, while Test data had 552 records.

The feature set and outcome variable were separated 
and formatted in step 2. Steps 3, 4 and 5 include splitting 
the dataset into Training and Testing and using the Train-
ing data to train and create an appropriate model. Initial 
experiments predicted two outcomes (‘Alive’ and ‘Death’) 
and were followed by experiments that predicted three 
outcomes (‘recovered’, ‘isolated’ or ‘death’). The common 
outcome is ‘death’. We aim to develop a model that accu-
rately predicts ‘death’. Hence we construct a model for 
‘death’ independently. We build a model for predicting 
the probability of death that would not be used to pre-
dict ‘recovered’ or ‘isolated’. However, this model may not 
be optimal. Further, at steps 6 and 7, we tune the model 
hyper-parameters to obtain optimal results. During step 
8, we use our Test data and optimal model to obtain 
2019-nCoV predictions. Finally, in step 9, we notify rel-
evant authorities of the outcome.

The models were evaluated using accuracy, precision, 
recall and F1-score. For each patient, we predict each 
outcome using a number of features. The initial fea-
tures were ‘country’, ‘gender’ and ‘age’ from both data-
sets yielding three sub-samples. We filtered out patient 
cases that do not include all of the features. This created 
a total number of 816 cases in dataset1 and 2754 cases 
in dataset2. Then, we included the patient’s disease his-
tory feature, ’disease’ from dataset2, producing our final 
sub-sample. There were no invalid cases for this feature 
set. We created an outcome variable for the categorical 
outcome of ‘recovered’, ‘isolated’ and ‘death’. The follow-
ing lists shows our four sub-samples.

•	 The first sub-sample was obtained from dataset1 and 
has the feature set ‘country’, ‘age’ and ‘sex’ with two 
outcomes (‘alive’ and ‘death’).

•	 The second sub-sample was obtained from dataset1 
and has the feature set ‘country’, ‘age’ and ‘sex’ with 
three outcomes (‘recovered’, ‘isolated’ or ‘death’).

•	 The third sub-sample was obtained from dataset2 
and has the feature set ‘country’, ‘age’ and ‘sex’ with 
three outcomes (‘recovered’, ‘isolated’ or ‘death’).

•	 The fourth sub-sample was obtained from dataset2 
and has the feature set ‘disease’, ‘age’ and ‘sex’ with 
three outcomes (‘recovered’, ‘isolated’ or ‘death’).

The models were trained on these four sub-samples 
using three ensemble and two conventional algorithms. 
Python version 3.5 and Scikit learn machine learning 



Page 7 of 13Khan and Ramsahai ﻿BMC Med Inform Decis Mak          (2021) 21:172 	

libraries were used [36]. The models are calibrated or 
tuned by changing the values of their respective hyper-
parameters; for example, the AdaBoost classifier used a 
decision tree with a maximum depth of 2, learning rate 
of 2 and number of estimators equal to 100. We take each 
of the hyper-parameters and vary them randomly within 
a range using a random number generator within a pro-
gram loop. For example, the number of estimators varied 
between 1 and 180. This means that for each experiment, 
the value for this hyper-parameter can be any value in [1, 
1]. Since we seek to construct models with higher Recall 
values, this was our primary criteria for selecting ‘better’ 
models. The five machine learning techniques were used 
with the following hyper-parameter settings in all of the 
experiments after tuning for optimal performance, see 
Table 2: The models were trained on 80% of the subsam-
ples and tested on 20%. The following steps were used for 
each experiment:

1.	 The data files were retrieved from the input directory.
2.	 The data were cleaned.
3.	 The outcome variable was defined.
4.	 The data were divided into training and testing sets.
5.	 Non-numeric features were mapped to numeric val-

ues.

6.	 The machine learning technique and hyper-parame-
ters were chosen.

7.	 The model was created using the training data.
8.	 Predictions were obtained by applying the model on 

the testing set.
9.	 Evaluations of model performance were performed 

using the relevant test metrics.

We performed experiments selecting the eventual best 
model as described in “Results” section. However, once 
a healthcare system has obtained the highest perform-
ing model, they can run the above steps using the model, 
which provides guidance on how to facilitate the treat-
ment of certain patients based on their health status. For 
instance, if the health status is death, then measures can 
be taken to improve the care for the patient. This will 
enable a more effective use of healthcare resources in the 
health center or hospital.

Results
Dataset1 [11] provides daily level details (time series 
data) from 2019-nCoV on the number of infected cases, 
deaths and recovery. The data were made available from 
22 Jan 2020. The main file that we utilized in this dataset 
is covid 19 data.csv, which is described by the following:

Table 2  Optimum hyper-parameter settings for experiments

Setting AdaBoost Bagging Extra-Trees Decision Tree k-NN

Base Estimator None None NA NA NA

# Estimators 100 10 100 NA NA

Learning rate 2 NA NA NA NA

Algorithm SAMME.R Bagging Gini Gini KDTree

Metric Mean label accuracy Mean label accuracy Gini Impurity Gini Impurity Euclidean distance

Random state None Random generation None Random generation NA

Max. samples to train 
needed to train base 
estimator

NA 1 NA NA NA

Out-of-bag samples to 
estimate generalization 
error

NA None None NA NA

Use whole ensemble to fit NA Yes Yes NA NA

# Jobs to run in parallel NA 1 1 NA 1

Random resampling NA 3141 12 NA NA

Min. sample to be a leaf NA NA 2 2 NA

Sample weighting NA NA All equal, weight of 1 All equal, weight of 1 NA

# of features for best split NA NA Square root of the # of 
features

Max. features = # of 
features

NA

Min. number of leaf nodes NA NA Unlimited NA NA

Split criteria NA NA Impurity level > 0 NA NA

Reuse previous call to fit 
and add more estimators 
to ensemble

NA No Yes NA NA

Number of neighbours NA NA NA NA 1
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•	 Sno—Serial number
•	 Observation Date—Date of the observation in 

MM/DD/YYYY​
•	 Province/State—Province or state of the observa-

tion (Could be empty when missing)
•	 Country/Region—Country of observation
•	 Last Update—Time in Coordinated Universal Time 

(UTC) at which the row is updated for the given 
province or country. (Not standardized and so 
please clean before using it)

•	 Confirmed—Cumulative number of confirmed 
cases till that date

•	 Deaths—Cumulative number of of deaths till that 
date

•	 Recovered—Cumulative number of recovered cases 
till that date

Dataset2 [12] is generated by the KCDC (Korea Centers 
for Disease Control & Prevention), which announces the 
information of COVID-19 quickly and transparently. The 
data were made available from 24 Feb 2020. The main file 
that we utilized in this dataset is PatientInfo.csv, which 
contains the following fields: patient id, global num, sex, 
birth year, age, country, province, city, disease, infection 
case, infection order, infected by, contact number, symp-
tom onset date, confirmed date, released date, death date 
and state.

Dataset1 has 42.40% female and 57.6% male patients, 
while dataset2 has 55.95% female and 44.05% male 
patients. Neither dataset1 nor dataset2 were skewed 
based on their age frequency as shown in the age fre-
quency distribution histogram plots on Figs.  1 and 2. 
However, a further inspection of both datasets shows that 
it is particularly unbalanced for the outcome of death. 
There are only 7.10% of deaths in dataset1 and less than 
2.0% in dataset2.

We initially tested fourteen classifiers: Gaussian naive 
Bayes, support vector machine, linear discriminant anal-
ysis, one versus rest, gradient boosting, random forest, 
bagging using a decision tree base estimator, bagging 
using a logistic regression base estimator, neural network 
multilayer perceptron, adaboost, bagging, extra-trees, 
decision tree and k-NN. However, for brevity we select 
the top five of these models that are described in “Related 
work” section.

Training models on unbalanced data produce inaccu-
rate findings for the prediction on death. This is due to 
the vast number of alive cases. Our initial tests indicate 
high (0.94–0.97) precision, recall and F1-scores for sur-
vival prediction (alive) yet very low (0.31–0.50) for death 
prediction as shown in Table 3 for the model trained on 
sub-sample one. The very low recall values (0.31–0.38) 
are attributed to the large number of incorrect predic-
tions for deaths (FN). Improving theses death predictions 
facilitates targeted treatment of high-risk patients. Given 
that predicting deaths is preferable to having high model 
accuracy (0.6–0.91), obtaining a high recall is more sig-
nificant. Thus, the aim of the subsequent experiments is 
to obtain a high recall value in the prediction of death. 
Low accuracy can contribute to low precision and recall 
when estimating positive data points. Low recall is based 
on a large number of false negatives (FN) and small num-
ber of true positives (TP) (Fig. 3).

Upon separating the outcome into the three categories 
‘recovered’, ‘isolated’ and ‘death’, no improvement was 
obtained in the prediction of death as shown in Table 4. 
In this experiment, recall remained low (0.31–0.38) 
for death prediction. Thus, we choose a new dataset 
with which to build new models. This third experiment 
was run using sub-sample three as shown in Table  5. 

Fig. 1  Distribution of patient age for dataset1. Age frequency 
histogram plot for dataset1

Fig. 2  Distribution of patient age for dataset2. Age frequency 
histogram plot for dataset2
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However, the recall in predicting ‘death’ was again poor 
(0.10–0.40). In this experiment precision, recall and 
F1-score remained low (0.02–0.40) for death prediction. 
We now introduce ‘disease’ as a feature in the prediction 
model using sub-sample four, see Table 6. We observed a 
vast improvement in recall predicting ‘death’ (0.43–0.86). 
AdaBoost achieved the highest recall value of 0.86, which 
was slightly better than that of the bagging, extra-tree 
and decision tree classifiers, all of which scored 0.71. 
Even though bagging did not achieve the highest recall 
value for deaths, its overall death prediction was the best 
with precision, recall and F1-score at 0.71. Additionally, 
bagging successfully predicted ‘isolated’ cases at a preci-
sion (0.72), recall (0.84) and F1-score (0.77).’Isolated’ and 
‘death’ prediction facilitates urgent treatment targeted at 
high-risk individuals. This model minimizes the num-
ber of false negatives (FNs) in death predictions so that 
the patients that require adequate medical attention are 
accurately identified. It must be noted that even though 
the k-NN recall value was the lowest (0.43), it improved 
by more than a threefold (0.43) over its previous perfor-
mance when ‘disease’ was not part of the model.

Table 3  Metrics of machine learning models for two most common outcomes on dataset1

Outcome Metric AdaBoost Bagging Extra-Trees Decision Tree k-NN

Alive Precision 0.95 0.95 0.94 0.95 0.95

Recall 0.96 0.97 0.97 0.97 0.95

F1-Score 0.95 0.96 0.95 0.96 0.95

Death Precision 0.45 0.50 0.44 0.50 0.42

Recall 0.38 0.38 0.31 0.38 0.38

F1-Score 0.42 0.43 0.36 0.43 0.40

Accuracy 0.60 0.92 0.91 0.91 0.91

Fig. 3  Major steps outlined in our method

Table 4  Metrics of machine learning models for three most common outcomes on dataset1

Outcome Metric AdaBoost Bagging Extra-trees Decision tree k-NN

Recovered Precision 0.29 0.44 0.47 0.38 0.34

Recall 0.81 0.59 0.56 0.56 0.41

F1-Score 0.23 0.51 0.51 0.45 0.37

Isolated Precision 0.82 0.85 0.84 0.84 0.81

Recall 0.30 0.81 0.83 0.78 0.78

F1-Score 0.44 0.83 0.83 0.81 0.80

Death Precision 0.09 0.50 0.44 0.50 0.42

Recall 0.31 0.38 0.31 0.38 0.38

F1-Score 0.14 0.43 0.36 0.43 0.40

Accuracy 0.38 0.74 0.74 0.71 0.69
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Discussion
Machine learning techniques have been applied to the 
challenging problem of early prediction of mortality of 
intensive care unit (ICU) patients [37]. A patient’s health-
care utilization pattern may provide a more precise esti-
mates of risk for adverse events (AE) or death [38]. To 
perform this prediction, a machine learning technique 
is used to predict the risk of AE or death within 90 days 
of surgery. In another study, electronic medical records 
(EMR) support the development of machine learn-
ing techniques for predicting disease incidence, patient 
response to treatment, and other healthcare events [39]. 
The machine learning model is used to optimize per-
formance of predicting mortality and ICU stay time. 
Experiments reported in [40] showed that machine-
learning approaches applied to raw electronic health 
records (EHR) data can be used to build models for use 
in research and medical practice. These approaches can 
identify novel predictive variables and their effects to 
inform future research in predicting patient mortal-
ity for coronary artery disease. The mortality rate of the 
novel 2019-nCoV continues to rise and we showed that 

machine learning techniques are useful for predictions in 
2019-nCoV.

Our experiment showed vast improvement in pre-
diction performance using ‘disease’ in the model. Such 
increase in the performance of these machine learn-
ing techniques is an indication of the high importance 
of including patient health information in 2019-nCoV 
cases. This will help clinicians to better predict the worst 
outcome for a 2019-nCoV patient. Using these predic-
tions, better health-care measures can be targeted to 
those in need. This can result in a much higher increase 
in the number of ‘recovered’ cases. Additional datasets 
can strengthen these models in the future as more data 
become available. However, we note that even though 
1.92% of the cases resulted in death for dataset2, Ada-
Boost was still able to obtain a significant recall value of 
0.86, while bagging obtained a recall value of 0.71.

The AdaBoost ensemble model is used to classify and 
make accurate and reliable predictions for in-hospital 
mortality among patients with pancreatic cancer who 
undergo pancreatic resection [41]. In [42], bagging is 
one of the techniques used to predict if a United States 

Table 5  Metrics of machine learning models for three most common outcomes on dataset2

Outcome Metric AdaBoost Bagging Extra-trees Decision tree k-NN

Recovered Precision 0.34 0.40 0.39 0.39 0.29

Recall 0.12 0.18 0.12 0.12 0.31

F1-Score 0.18 0.25 0.19 0.19 0.30

Isolated Precision 0.62 0.69 0.69 0.69 0.66

Recall 0.50 0.88 0.91 0.91 0.64

F1-Score 0.55 0.77 0.78 0.78 0.65

Death Precision 0.02 0.33 0.33 0.33 0.11

Recall 0.40 0.10 0.20 0.20 0.10

F1-Score 0.04 0.15 0.25 0.25 0.11

Accuracy 0.38 0.65 0.65 0.65 0.53

Table 6  Metrics of machine learning models for two most common and ‘disease’ outcomes on dataset2

Outcome Metric AdaBoost Bagging Extra-trees Decision tree k-NN
Recovered Precision 0.22 0.36 0.30 0.30 0.31

Recall 0.20 0.22 0.11 0.11 0.39

F1-Score 0.21 0.27 0.16 0.16 0.34

Isolated Precision 0.66 0.72 0.71 0.71 0.71

Recall 0.57 0.84 0.88 0.88 0.62

F1-Score 0.61 0.77 0.78 0.78 0.66

Death Precision 0.08 0.71 0.56 0.56 0.30

Recall 0.86 0.71 0.71 0.71 0.43

F1-Score 0.15 0.71 0.63 0.63 0.35

Accuracy 0.47 0.66 0.66 0.66 0.55
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heatwave is likely to result in high or moderate mortality. 
The bagging ensemble model performed admirably but 
further improvement was suggested. Another study [43] 
observed that in-hospital mortality of elective patients1 
is low, because these admissions do not lead to an emer-
gency or urgent admission. Nonetheless, there are still 
some cases of death for elective admission in hospitals. 
The researchers developed a technique by using machine 
learning-based models to predict death for the case of 
elective admissions. Bagging with the highest AUC can 
be considered to correspond to excellent discriminating 
performance. The AdaBoost and bagging models were 
effective in ‘death’ prediction for 2019-nCoV.

This result is spectacular and prompts immediate inter-
est in the fruitfulness of using the bagging2 model built 
on sub-sample four in other 2019-nCoV datasets. At the 
time of writing this paper many more deaths have been 
reported than are used in these experiments. While 
the data for these deaths are not publicly available, our 
experiments showed that including ‘disease’ in datasets 
improves the performance of the models using machine 
learning techniques in ‘death’ prediction. This can be very 
valuable for clinicians in allocating treatment to 2019-
nCoV patients. By utilizing either future datasets or the 
current dataset with additional data, the results obtained 
with this model can reduce the burden on health care 
systems worldwide.

Patients are quite uncertain whether they are diag-
nosed with 2019-nCoV and whether they really have this 
virus. Large health resources may be used to care for 
patients who in fact are not sick with 2019-nCoV but are 
still treated for this disease. This will consume valuable 
resources that can be allocated to patients who actually 
have 2019-nCoV. The results obtained from our system 
shows that there will be less chances of falsely predict-
ing an 2019-nCoV. This means that health-care resources, 
for example hospitals could spend more time, staff effort 
and medical equipment including medicines on treat-
ing those cases that have 2019-nCoV. This could greatly 
lower their overall cost in treating with this virus. This 
the major reason for the focus of our study on obtaining 
good Recall values. This means that the predictions of the 
patients predicted to have 2019-nCoV are less likely to be 
incorrect. Consequently, using classifiers with good recall 
values will tremendously reduce the burden on health-
care systems.

Generalizations of the AUC for the multi‑class setting
We determined multi-class AUC-ROC scores for each 
model in our experiments [44, 45]. Since AdaBoost and 
bagging were found to be the best models, we only pre-
sent their multi-class AUC-ROC scores. In our first 
experiment, “Metrics of machine learning models for 
two most common outcomes on dataset1,” AdaBoost 
obtained 0.53, and bagging obtained 0.80. In our second 
experiment, “Metrics of machine learning models for 
three most common outcomes on dataset1,” AdaBoost 
obtained 0.68, while bagging obtained 0.66. In our third 
experiment, “Metrics of machine learning models for 
three most common outcomes on dataset2,” AdaBoost 
obtained 0.79, while bagging obtained 0.80. Last, in our 
final experiment, “Metrics of machine learning models 
for two most common and ‘disease’ outcomes on data-
set2,” AdaBoost achieved 0.60, while bagging attained 
0.74. For the purposes of this study, these multi-class 
AUC-ROC scores support our choice of bagging as the 
best classifier for death prediction.

Binary classification ROC curves
Furthermore, we produced ROC curves [46] for all five 
binary classification models (Fig. 4) using our final exper-
iment, "Metrics of machine learning models for two most 
common and ’disease’ outcomes on dataset2". The curves 
were obtained using ’death’ as the positive label, while 
all other labels were negative. The area under the ROC 
curve for AdaBoost binary classification was 0.94, while 
Bagging binary classification obtained an area of 0.84. 
This result supports the identification of AdaBoost and 
Bagging as good predictors for death prediction.

The ROC curves for Decision Tree and k-NN with an 
AUC of 0.71 were not significantly different from that 
obtained using Extra-Trees (AUC = 0.79). Also, the ROC 

Fig. 4  Binary classification models: ROC curves

1  An elective procedure is one that is chosen (elected) by the patient or physi-
cian that is advantageous to the patient but is not urgent. Elective surgery is 
decided by the patient or their doctor.
2  Bagging has better general performance.



Page 12 of 13Khan and Ramsahai ﻿BMC Med Inform Decis Mak          (2021) 21:172 

curve for all the models are above the y = x line showing 
that it results in a high True Positive rate for the same 
False Positive rate. The AUC for AdaBoost is the highest 
followed by that of Bagging. Therefore, AdaBoost is the 
most appropriate classifier to predict the occurrence of 
Death.

Hyper‑parameter settings
Each experiment was run 1000 times with varying hyper-
parameter value(s). The hyper-parameters were randomly 
chosen for each run. The best performance for each run 
based on our specified criteria. In addition, the hyper-
parameter values were validated using Optunity [47, 48]. 
Even though we experimented on many different hyper-
parameter settings for each model to attain an ‘optimal’ 
value, our attempts and the search performed using 
Optunity were not exhaustive. Thus, other researchers 
may be able to use hyper-parameter settings that may 
obtain better results than those in this study. However, 
because of the high computational overhead and time 
limits of achieving this possible outcome, these efforts 
are left for future work. For instance, for AdaBoost, the 
number of weak learners or estimators of 100 was experi-
mentally found to be ‘optimal’ for this work but using 
other values with a tweaked learning rate may lead to 
more encouraging results. This may also apply to the bag-
ging model that may be further optimized by varying the 
number of estimators and/or random state to values not 
generated in our experiments.

Conclusion
This paper presents the results of using machine learn-
ing techniques to build models in order to predict 2019-
nCoV deaths based on the patient demographics and 
health conditions. The AdaBoost and bagging machine 
learning models produced the best results in predictions 
‘death’. These models demonstrate high predictive abil-
ity when trained with the disease feature. As additional 
data become available in the future, these models can be 
retrained to evaluate whether the model accuracy can be 
further improved. In addition, other features can be used 
to build new models using these machine learning tech-
niques. This work should provide researchers with pos-
sible directions for developing further machine learning 
predictive models to help fight the 2019-nCoV outbreak. 
This can have a positive effect on predictive patient treat-
ment and help ease the burden on the currently over-
loaded healthcare systems worldwide, especially with the 
increasing prevalence of second and third wave re-infec-
tions in some countries.

Abbreviations
nCoV: Novel coronavirus; RNA: Ribonucleic acid; k-NN: K-nearest neighbor; DT: 
Decision tree; NNC: Nearest neighbor classifier; TP: True positive; TN: True nega-
tive; FN: False negative; FP: False positive; CNN: Convolutional neural network; 
AI: Artificial intelligence; SVM: Support vector machine; RF: Random forest; 
MLPNN: Multilayer perceptron neural networks; UTC​: Coordinated Universal 
Time; KCDC: Korea Centers for Disease Control & Prevention; ICU: Intensive 
care unit; AE: Adverse events; EMR: Electronic medical records; EHR: Electronic 
health records; ROC: Receiver operating characteristic; TPR: True positive rate; 
FPR: False positive rate; AUC​: Area under the curve; AUC-ROC: Area under the 
ROC curve.

Acknowledgements
Not applicable.

Authors’ contributions
KK: conception and design, methodology, software; searches and selection of 
literature; analysis and synthesis of data from the included literature; drafting 
the manuscript. ER: conception and design; analysis and synthesis of data 
from the included literature; revising the first draft of the manuscript. Authors 
declaration: All authors have read and approved the manuscript.

Funding
Not applicable.

Availability of data and materials
Datasets obtained from Kaggle and listed in References section [no. 6 and 7]. 
Place here for reader convenience. SudalaiRajkumar: Novel Corona Virus 2019 
Dataset. data retrieved March 30, 2020 from Kaggle, https://​www.​kaggle.​com/​
sudal​airaj​kumar/​novel-​corona-​virus-​2019-​datas​et (2020). KimHoo: Data Sci-
ence for COVID-19 in South Korea. data retrieved March 30, 2020 from Kaggle, 
https://​www.​kaggle.​com/​kimji​hoo/​coron​aviru​sdata​set (2020).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1 Department of Computing and Information Technology, The University 
of the West Indies, St. Augustine, Trinidad and Tobago. 2 UWI School of Busi-
ness & Applied Studies Ltd (UWI-ROYTEC), 136‑138 Henry Street, 24105 Port of 
Spain, Trinidad and Tobago. 

Received: 7 June 2020   Accepted: 23 May 2021

References
	1.	 World Health Organization. The World Health Organization: Coronavirus 

disease 2019 (COVID-19)Situation Report-76. Data retrieved from World 
Development Indicators. https://​www.​who.​int/​docs/​defau​ltsou​rce/​coron​
aviru​se/​situa​tion-​repor​ts/​20200​405-​sitrep-​76-​covid-​19.​pdf?​sfvrsn=​6ecf0​
9772 (2020).

	2.	 Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, 
et al. Genomic characterisation and epidemiology of 2019 novel coro-
navirus: implications for virus origins and receptor binding. The Lancet. 
2020;395(10224):565–74.

	3.	 Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease prediction by machine 
learning over big data from healthcare communities. IEEE Access. 
2017;5:8869–79.

https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200405-sitrep-76-covid-19.pdf?sfvrsn=6ecf09772
https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200405-sitrep-76-covid-19.pdf?sfvrsn=6ecf09772
https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200405-sitrep-76-covid-19.pdf?sfvrsn=6ecf09772


Page 13 of 13Khan and Ramsahai ﻿BMC Med Inform Decis Mak          (2021) 21:172 	

	4.	 Rodrigues LL, Shetty DK, Naik N, Maddodi CB, Rao A, Shetty AK, Bhat R, 
Hameed Z. Machine learning in coronary heart disease prediction: Struc-
tural equation modelling approach. Cogent Eng. 2020;7(1):1723198.

	5.	 LaPierre N, Ju CJ-T, Zhou G, Wang W. Metapheno: a critical evaluation 
of deep learning and machine learning in metagenome-based disease 
prediction. Methods. 2019;166:74–82.

	6.	 Randhawa GS, Soltysiak MP, El Roz H, de Souza CP, Hill KA, Kari L. Machine 
learning using intrinsic genomic signatures for rapid classification of 
novel pathogens: Covid-19 case study. PLoS ONE. 2020;15(4):0232391.

	7.	 Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Auto-
mated detection of covid-19 cases using deep neural networks with x-ray 
images. Comput Biol Med. 2020;121:103792.

	8.	 Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly repre-
sentative covid-19 biomarkers from x-ray images with deep learning 
approach and image data related to pulmonary diseases. J Med Biol Eng. 
2020;1:462–9.

	9.	 Mei X, Lee H-C, Diao K-Y, Huang M, Lin B, Liu C, Xie Z, Ma Y, Robson PM, 
Chung M, et al. Artificial intelligence-enabled rapid diagnosis of patients 
with covid-19. Nat Med. 2020;26:1–5.

	10.	 Wang Y, Sohn S, Liu S, Shen F, Wang L, Atkinson EJ, Amin S, Liu H. A clinical 
text classification paradigm using weak supervision and deep representa-
tion. BMC Med Inform Decis Mak. 2019;19(1):1.

	11.	 SudalaiRajkumar: Novel Corona Virus 2019 Dataset. Data retrieved March 
30, 2020 from Kaggle https://​www.​kaggle.​com/​sudal​airaj​kumar/​novel-​
corona-​virus-​2019-​datas​et (2020).

	12.	 KimHoo: Data Science for COVID-19 in South Korea. Data retrieved March 
30, 2020 from Kaggle https://​www.​kaggle.​com/​kimji​hoo/​coron​aviru​sdata​
set (2020).

	13.	 Khan K, Sahai A. A glowworm optimization method for the design of web 
services. Int J Intell Syst Appl. 2012;4(10):89.

	14.	 Hosni M, Abnane I, Idri A, de Gea JMC, Alem’an JLF. Reviewing ensemble 
classification methods in breast cancer. Comput Methods Programs 
Biomed. 2019;177:89–112.

	15.	 Wang F, Li Z, He F, Wang R, Yu W, Nie F. Feature learning viewpoint of 
adaboost and a new algorithm. IEEE Access. 2019;7:149890–9.

	16.	 Alsouda Y, Pllana S, Kurti A. Iot-based urban noise identification using 
machine learning: performance of SVM, KNN, bagging, and random 
forest. In: Proceedings of the international conference on omni-layer 
intelligent systems; 2019. p. 62–67.

	17.	 Verma AK, Pal S, Kumar S. Prediction of skin disease using ensemble data 
mining techniques and feature selection method—a comparative study. 
Appl Biochem Biotechnol. 2020;190(2):341–59.

	18.	 Lu Y, Wang S, Wang J, Zhou G, Zhang Q, Zhou X, Niu B, Chen Q, Chou K-C. 
An epidemic avian influenza prediction model based on google trends. 
Lett Org Chem. 2019;16(4):303–10.

	19.	 Li X, Wang L, Sung E. Adaboost with svm-based component classifiers. 
Eng Appl Artif Intell. 2008;21(5):785–95.

	20.	 Potes C, Parvaneh S, Rahman A, Conroy B. Ensemble of feature-based and 
deep learning-based classifiers for detection of abnormal heart sounds. 
In: 2016 computing in cardiology conference (CinC); 2016. p. 621–624. 
IEEE.

	21.	 Hu W, et al. Novel host markers in the 2009 pandemic h1n1 influenza a 
virus. J Biomed Sci Eng. 2010;3(06):584.

	22.	 Lee S-J, Xu Z, Li T, Yang Y. A novel bagging c4.5 algorithm based on 
wrapper feature selection for supporting wise clinical decision making. J 
Biomed Inform. 2018;78:144–55.

	23.	 Leo J, Luhanga E, Michael K. Machine learning model for imbalanced 
cholera dataset in Tanzania. Sci World J. 2019;2019:69.

	24.	 Do T-N, Lenca P, Lallich S, Pham N-K. Classifying very-high-dimensional 
data with random forests of oblique decision trees, vol. 292.

	25.	 Yuan C, Moayedi H. Evaluation and comparison of the advanced 
metaheuristic and conventional machine learning methods for the 
prediction of landslide occurrence. Eng Comput. 2019;11:1–11.

	26.	 Qiang X, Kou Z. Scoring amino acid mutation to predict pandemic risk of 
avian influenza virus. BMC Bioinform. 2019;20(8):288.

	27.	 Balasundaram A, Bhuvaneswari P. Comparative study on decision tree 
based data mining algorithm to assess risk of epidemic (2013).

	28.	 Sandhu R, Gill HK, Sood SK. Smart monitoring and controlling of 
pandemic influenza a (h1n1) using social network analysis and cloud 
computing. J Comput Sci. 2016;12:11–22.

	29.	 Nsoesie EO, Beckman R, Marathe M, Lewis B. Prediction of an epidemic 
curve: a supervised classification approach. Stat Commun Infect Dis. 
2011;3(1):5.

	30.	 Bouadma L, Barbier F, Biard L, Esposito-Farese M, Le Corre B, Macrez 
A, Salomon L, Bonnal C, Zanker C, Najem C, et al. Personal decision-
making criteria related to seasonal and pandemic a (h1n1) influenza-
vaccination acceptance among French healthcare workers. PLoS ONE. 
2012;7(7):e38646.

	31.	 Ozkasap O, Genc Z, Atsan E. Epidemic-based approaches for reliable 
multicast in mobile ad hoc networks. ACM SIGOPS Oper Syst Rev. 
2006;40(3):73–9.

	32.	 Viswanath P, Sarma TH. An improvement to k-nearest neighbor classifier. 
In: 2011 IEEE recent advances in intelligent computational systems; 2011. 
p. 227–231. IEEE.

	33.	 Zhu W, Zeng N, Wang N, et al. Sensitivity, specificity, accuracy, associated 
confidence interval and roc analysis with practical SAS implementations. 
In: NESUG proceedings: health care and life sciences, Baltimore, Maryland 
19, 67 (2010).

	34.	 Ramsahai E, Walkins K, Tripathi V, John M. The use of gene interaction 
networks to improve the identification of cancer driver genes. PeerJ. 
2017;5:2568.

	35.	 Chen AW. Predicting adverse drug reaction outcomes with machine 
learning. Int J Commun Med Public Health. 2018;5(901–904):678.

	36.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine 
learning in python. J Mach Learn Res. 2011;12:2825–30.

	37.	 Veith N, Steele R. Machine learning-based prediction of ICU patient 
mortality at time of admission. In: Proceedings of the 2nd international 
conference on information system and data mining; 2018. p. 34–38.

	38.	 Ehlers AP, Roy SB, Khor S, Mandagani P, Maria M, Alfonso-Cristancho R, 
Flum DR. Improved risk prediction following surgery using machine 
learning algorithms. eGEMs. 2017;5(2):3.

	39.	 Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering 
improves efficiency of federated machine learning to predict mortality 
and hospital stay time using distributed electronic medical records. J 
Biomed Inform. 2019;99:103291.

	40.	 Steele AJ, Denaxas SC, Shah AD, Hemingway H, Luscombe NM. Machine 
learning models in electronic health records can outperform conven-
tional survival models for predicting patient mortality in coronary artery 
disease. PLoS ONE. 2018;13(8):e0202344.

	41.	 Velez-Serrano JF, Velez-Serrano D, Hernandez-Barrera V, Jimenez-Garcia R, 
de Andres AL, Garrido PC, Alvaro-Meca A. Prediction of in-hospital mor-
tality after pancreatic resection in pancreatic cancer patients: a boosting 
approach via a population-based study using health administrative data. 
PLoS ONE. 2017;12(6):e0178757.

	42.	 Anderson GB, Oleson KW, Jones B, Peng RD. Classifying heatwaves: devel-
oping health-based models to predict high-mortality versus moderate 
united states heatwaves. Clim Change. 2018;146(3–4):439–53.

	43.	 Steele R, Hillsgrove T. Predicting all-condition, in-hospital mortality of 
elective patients at time of scheduling. In: 2019 SoutheastCon; 2019. p. 
1–5 (2019).

	44.	 Drummond C, Holte RC. Cost curves: An improved method for visualizing 
classifier performance. Mach Learn. 2006;65(1):95–130.

	45.	 Kumar R, Indrayan A. Receiver operating characteristic (roc) curve for 
medical researchers. Indian Pediatr. 2011;48(4):277–87.

	46.	 Hand DJ, Till RJ. A simple generalisation of the area under the roc curve 
for multiple class classification problems. Mach Learn. 2001;45(2):171–86.

	47.	 Claesen M, Simm J, Popovic D, Moor B. Hyperparameter tuning in python 
using optunity. In: Proceedings of the international workshop on techni-
cal computing for machine learning and mathematical engineering, vol. 
1; 2014. p. 3.

	48.	 Peng Y-H, Chuang C-C, Wu Z-J, Chou C-W, Chen H-S, Chang T-C, Pan Y-L, 
Cheng H-T, Chung C-C, Lin K-Y. Machine learning hyperparameter fine 
tuning service on dynamic cloud resource allocation system-taking heart 
sounds as an example. In: Proceedings of the international symposium 
on big data and artificial intelligence; 2018. p. 22–28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://www.kaggle.com/kimjihoo/coronavirusdataset

	Maintaining proper health records improves machine learning predictions for novel 2019-nCoV
	Abstract 
	Background: 
	Method: 
	Results: 
	Conclusion: 

	Background
	Related work
	Ensemble methods
	AdaBoost classifier
	Bagging classifier
	Extra-trees classifier

	Conventional methods
	Decision tree classifier
	k-nearest neighbor classifier

	Statistical metrics
	Accuracy
	Precision
	Recall
	F1-Score


	Methods
	Results
	Discussion
	Generalizations of the AUC for the multi-class setting
	Binary classification ROC curves
	Hyper-parameter settings

	Conclusion
	Acknowledgements
	References


