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Abstract 

Background:  Early diagnosis for the diabetes complications is clinically demanding with great significancy. Regard-
ing the complexity of diabetes complications, we applied a multi-label classification (MLC) model to predict four 
diabetic complications simultaneously using data in the modern electronic health records (EHRs), and leveraged the 
correlations between the complications to further improve the prediction accuracy.

Methods:  We obtained the demographic characteristics and laboratory data from the EHRs for patients admitted 
to Changzhou No. 2 People’s Hospital, the affiliated hospital of Nanjing Medical University in China from May 2013 to 
June 2020. The data included 93 biochemical indicators and 9,765 patients. We used the Pearson correlation coef-
ficient (PCC) to analyze the correlations between different diabetic complications from a statistical perspective. We 
used an MLC model, based on the Random Forest (RF) technique, to leverage these correlations and predict four 
complications simultaneously. We explored four different MLC models; a Label Power Set (LP), Classifier Chains (CC), 
Ensemble Classifier Chains (ECC), and Calibrated Label Ranking (CLR). We used traditional Binary Relevance (BR) as a 
comparison. We used 11 different performance metrics and the area under the receiver operating characteristic curve 
(AUROC) to evaluate these models. We analyzed the weights of the learned model and illustrated (1) the top 10 key 
indicators of different complications and (2) the correlations between different diabetic complications.

Results:  The MLC models including CC, ECC and CLR outperformed the traditional BR method in most performance 
metrics; the ECC models performed the best in Hamming loss (0.1760), Accuracy (0.7020), F1_Score (0.7855), Precision 
(0.8649), F1_micro (0.8078), F1_macro (0.7773), Recall_micro (0.8631), Recall_macro (0.8009), and AUROC (0.8231). The 
two diabetic complication correlation matrices drawn from the PCC analysis and the MLC models were consistent 
with each other and indicated that the complications correlated to different extents. The top 10 key indicators given 
by the model are valuable in medical application.

Conclusions:  Our MLC model can effectively utilize the potential correlation between different diabetic complica-
tions to further improve the prediction accuracy. This model should be explored further in other complex diseases 
with multiple complications.
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Introduction
Complications of diabetes are the leading cause of 
death in diabetic patients [1], with 76.4% of diabetic 
patients reporting at least one complication [2]. These 
include cardio- or cerebrovascular diseases, neuropathy, 
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nephropathy, retinopathy, and foot disease [3], which 
compromise patient quality of life and bring an economic 
burden to the healthcare system [4]. Therefore, how to 
quickly and accurately diagnose and analyze diabetic 
complications is a topic worthy studying. Modern elec-
tronic health records (EHRs) [5, 6] is a rich resource for 
clinical data from which newer physical indicators can be 
identified as predictors of diabetic complications to assist 
in treatment planning. However, comprehensive analysis 
of such data remains a challenge.

Machine learning has great advantages when dealing 
with massive data with both high dimensional attributes 
and tremendous number of instances, which has been 
widely applied in disease prediction [7]. The binary clas-
sification model is typically adopted by most approaches 
[8–14] and shows promising results for the prediction of 
diabetic complications. However, each diabetic complica-
tion was modeled and predicted independently in these 
studies, making it impossible to leverage the potential 
correlations among diabetes complications.

Multi-label classification (MLC) models have shown 
great promise in text categorization, image classification, 
automatic annotation for multimedia content, bioinfor-
matics, web mining, rule mining, information retrieval, 
tag recommendation, and other diverse fields [15].By 
modeling multiple labels simultaneously, multi-label 
learning can identify correlations among different labels 
more easily. Therefore, we sought to apply an MLC model 
to leverage the correlations among diabetic complica-
tions and further improve their predictive performance.

Related work
Compared to traditional medical studies with a hypoth-
esis-driven perspective, [16–18] data mining based on 
data features is better suited for studying nonlinear inter-
actions in large diabetes data sets and can more-accu-
rately assess and predict disease risk. For predicting the 
outcomes of diabetes-related complications and death, 
the Risk Equations for Complications of Type 2 Diabetes 
equations [19, 20], were derived from the Action to Con-
trol Cardiovascular Risk in Diabetes randomized trial 
[21] and the UK Prospective Diabetes Study Outcomes 
Model 2 [22] that used data of 3,642 patients from the 
United Kingdom Prospective Diabetes Study. These Cox 
proportional hazards models have good discrimination 
and calibration, and they are used widely. However, they 
were developed based on clinical trial data with limited 
case numbers and potential study-specific biases. Con-
versely, machine learning predicts diabetes complications 
by using EHRs, a preferable data set with an abundance 
of valuable information describing a patient’s healthcare 
experience.

While the machine learning models [8–14]are widely 
used in predictions of diabetic complications, a more 
suitable method, multi-label learning, has been used 
rarely. Single-label methods predict diabetes complica-
tions separately based on whether or not one complica-
tion occurs. MLC is a machine learning method used in 
many clinical applications. A chronic disease risk dataset 
containing 110,300 patients, 62 symptoms, and six dis-
ease labels (hypertension, diabetes, fatty liver, cholecys-
titis, heart disease, and obesity) was transformed into a 
multiclass classification, and the MLC classifiers proved 
to have good performance [23]. To explore a diagnostic 
method that classifies and evaluates each psychotic dis-
order simultaneously, Folorunso et al. used an MLC and 
demonstrated that the MLC was more efficient than a 
previous study [24]. In the diabetes field, MLC has been 
applied to label the retinal image of normal/abnormal 
regions, patient age, ethnicity, race, and diabetic type for 
diabetic retinopathy differentiation and can improve reti-
nal image classification [25].

Diabetic complications are highly related. Retinal vas-
cular trait changes have been linked with cardiovascular 
disease [26, 27]and stroke [28] and structural variations 
in retinal vasculature can predict cardiovascular risk [29–
31]. Additionally, Xu et al. found that microalbuminuria 
in type 2 diabetes is associated with both retinal vascular 
caliber and geometry, and that retinal and renal micro-
vasculature share similar pathophysiological changes 
during early diabetes due to abnormal glucose metabo-
lism and other processes [32]. Interactions among dia-
betes complications need to be identified and applied to 
facilitate early diagnoses. Since diabetes patients may suf-
fer from multiple diabetic complications, the diagnosis of 
complications (labels) using indicators (attributes) is an 
MLC problem. These class/label variables usually exhibit 
conditionally dependent relationships among themselves, 
which must be modeled and learned. To frame the dia-
betic complication classification into an MLC problem, 
multi-label methods were first applied to predict diabetes 
complications from EHRs by Bai et  al. The results indi-
cated that random k-label sets and chained classifiers 
performed better than binary relevance, least combina-
tion, and pruned sets [33].We aimed to identify the best 
MLC model to predict diabetic complications and inform 
clinical decisions that could help personalize type 2 dia-
betes management.

Objective
Traditional methods utilized the binary classification 
model to predict each diabetic complication indepen-
dently and failed to leverage the potential correlations 
among diabetic complications. Through statistical analy-
sis of the data in EHRs, we aimed to: (1) find correlations 
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between different diabetic complications and (2) leverage 
these correlations to improve the predictive performance 
via an MLC model.

Material and methods
Data source
The study used demographic characteristics and labora-
tory data obtained from EHRs data, from May 2013 to 
June 2020, for patients admitted to Changzhou No.2 Peo-
ple’s Hospital, the affiliated hospital of Nanjing Medical 
University in China. This study was approved by the eth-
ics committee of Changzhou No.2 People’s Hospital, the 
affiliated hospital of Nanjing Medical University. A total 
of 9765 adult patients with diabetes, were eligible for this 
study. The demographic variables of patients with diabe-
tes are summarized in Table 1. Due to the absence of BMI 
values for some patients, Table 1 only displays BMI char-
acteristics for 8,831 patients.

Data preprocessing
There are total 141 indicators in the raw data of EHRs. 
However, there are 47 indicators that are missing in more 
than 95% patients. These indicators can be seen as use-
less, therefore we deleted them in our study. Besides, we 
combined the height and weight to be BMI, and finally 93 
clinical parameters collected from EHRs are considered 
as possible risk factors (see Additional file 1: Table 1). The 
data assignment methods are shown in Additional file 1: 

Table  2. Besides, for indicators which have few miss-
ing values in some patients, we adopt the mean value 
and mode to fill the continuous and discrete indicators, 
respectively.

Multi‑label classification models
In general, multi-label classification algorithms can be 
divided into two categories: problem transformation 
methods and algorithm adaptation methods [15]. As the 
name suggests, problem transformation methods tackle 
the multi-label classification problem by transforming 
it into other well-established learning problems. Repre-
sentative algorithms include first-order approach Binary 
Relevance (BR) [34] and high-order approach Classifier 
Chains (CC) [35, 36] which transform the task of multi-
label learning into the task of binary classification, sec-
ond-order approach Calibrated Label Ranking (CLR) [37] 
which transforms the task of multi-label learning into the 
task of label ranking, and high-order approaches Ran-
dom k-Label Sets (RAkEL) and Label Power Set (LP) [38] 
which transform the task of multi-label learning into the 
task of multi-class classification. Different from problem 
transformation methods, algorithm adaptation methods 
tackle multi-label learning problem by adapting some 
existing learning algorithms to the multi-label learn-
ing scenario directly. Representative algorithms include 
first-order approach Multi-Label k-Nearest Neighbor 
(ML-kNN) [39] which adapts the k-nearest neighbor 

Table 1  Overview of demographic characteristics

BMI values were unavailable for some patients; hence, BMI values are given for a total of 8831 patients only

Demographic 
characteristics (labels)

Diabetes without 
complications

Retinopathy Nephropathy Neuropathy Peripheral 
vascular 
disease

All

Total patients 288 5129 1851 7872 5519 9765

Age, years (%)

 < 40 33 (11.5) 313 (6.1) 112 (6.1) 343 (4.4) 75 (1.4) 544 (5.6)

40–49 62 (21.5) 703 (13.7) 214 (11.6) 905 (11.5) 473 (8.6) 1247 (12.8)

50–59 103 (35.8) 1438 (28.0) 460 (24.9) 2038 (25.9) 1371 (24.8) 2600 (26.6)

 ≥ 60 90 (31.3) 2675 (52.2) 1065 (57.5) 4586 (58.3) 3600 (65.2) 5374 (55.0)

Gender (%)

Male 141 (49.0) 2803 (54.7) 1075 (58.1) 4352 (55.3) 2348 (42.5) 4438 (45.4)

Female 147 (51.0) 2326 (45.3) 776 (41.9) 3520 (44.7) 3171 (57.5) 5327 (54.6)

BMI

BMI (± SD) (kg/m2) 35.4 (23.62–47.18) 24.4 (19.74–29.06) 24.1 (20.38–27.82) 27.06 (26.63–27.49) 26.7 (24.6–26.8) 35.2 (23.2–47.2)

BMIcategory (kg/m2) (%) n = 252 n = 4789 n = 1633 n = 7133 n = 5037 n = 8831

 < 18.5 2 (0.8) 147 (3.1) 67 (4.1) 247 (3.5) 135 (2.7) 296 (3.4)

18.5–25 104 (41.3) 2565 (53.6) 746 (45.7) 3739 (52.4) 2598 (51.6) 4612 (52.2)

25–30 103 (40.9) 1761 (36.8) 692 (42.4) 2661 (37.3) 1969 (39.1) 3305 (37.4)

30–34.9 30 (11.9) 273 (5.7) 107 (6.6) 411 (5.8) 286 (5.7) 503 (5.7)

 ≥ 35 13 (5.2) 43 (0.9) 21 (1.3) 75 (1.1) 49 (1.0) 115 (1.3)
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learning algorithms, Multi-Label Decision Tree (ML-DT) 
[40] which adapts decision tree techniques, second-order 
approach Ranking Support Vector Machine (Rank-SVM) 
[41] which adapts kernel techniques, and second-order 
approach Collective Multi-Label Classifier (CML) [42] 
which adapts information-theoretic techniques. In this 
paper, we compare some representative methods which 
are detailly introduced in the following sections.

Binary relevance
The basic idea of binary relevance is to decompose the 
multi-label classification problem into multiple inde-
pendent binary classification problems, where each 
binary classification problem corresponds to a possible 
label in the label space [34]. For class j, binary relevance 
method first constructs a binary training set by the fol-
lowing metric:

Then, a binary classifier for class j is built using existing 
binary classification algorithms to justify if the instance 
belongs to class j. Finally, total Q binary classifiers will be 
built where Q is the number of all possible classes. There-
fore, in multi-label classification learning, the instance 
will be classified by Q binary classifiers. The final clas-
sification result for an instance is the combination of all 
binary classifiers.

Label power set
This method takes each unique subset (distinct label 
set) of labels that exists in multi-label dataset as a sin-
gle label. Therefore, label power set introduces new sets 
of labels and transforms the multi-label classification 
into a multi-class classification task [38]. For each test 
instance, the classifier of label power set predicts it into 
one label which is originally a set of multiple labels in the 
multi-label dataset. Label power set is simple but it may 
introduce some even many classes which only have a few 
samples, and further aggravate the class imbalance.

Classifier chains
The basic idea of classifier chains is to transform the 
multi-label learning problem into a chain of binary classi-
fication problems, where subsequent binary classifiers in 
the chain are built upon the predictions of previous ones 
[35, 36]. For example, when building the j-th binary clas-
sifier, the input of the model will be

Dj =
{(

xi,φ
(

Yi, yj
))

|1 ≤ i ≤ m
}

where φ
(

Yi, yj
)

=

{

+1, if yj ∈ Yi
−1, otherwise

.

x∗i = [xi, p1, p2, ..., pj−1]

where xi is the original feature, pk is the prediction of 
the kth binary classifier, and x∗i  is the concatenation of xi 
and p1, p2, ..., pj−1 . Then, the jth binary classifier will be 
built on this concatenated feature and produce the prob-
ability of this sample belonging to the jth class. For test 
instances, the associated label set is predicted by tra-
versing the classifier chain iteratively. It is obvious that, 
for the classifier chain method, its effectiveness will be 
largely affected by the ordering of classes during build-
ing the classifier chains. Besides, classifier chains has the 
advantage of exploiting the label correlations while loses 
the opportunity of parallel implementation due to the 
chaining property [35, 36].

Calibrated label ranking
The basic idea of this algorithm is to transform the multi-
label learning problem into the label ranking problem, 
where ranking among labels is fulfilled by techniques of 
pairwise comparison. For multi-label learning problem 
with Q classes, a total of Q(Q-1)/2 binary classifiers will 
be constructed, one for each label pair [37]. In detail, for 
each pair, we first construct a corresponding binary train-
ing set, where each instance has distinct relevance to the 
two labels in the label pair and only belongs to one label 
in the label pair. Then, some binary learning algorithms 
will be utilized to induce a binary classifier for each label 
pair. For testing, each instance will first be fed into the 
Q(Q−1)/2 learned binary classifiers to obtain the overall 
votes on each possible class label. And then the labels can 
be ranked according to their obtained votes.

Model evaluation metrics
In the literature, there is no generally adopted metrics 
for evaluating multi-label classification models. There-
fore, several measures from multi-class classification and 
information retrieval were usually adopted and adapted 
to measure multi-label classification performance [43]. 
In our experiments, we used various evaluation measures 
that have been suggested by previous studies [43], which 
are defined in Table  2. The evaluation metrics can be 
divided into two types: example-based metrics and label-
based metrics. In Table 2, yi denotes the set of true labels 
of example xi ; h(xi) denotes the set of predicted labels 
for the same sample; � stands for the symmetric differ-
ence between the two sets; N is the number of examples; 
Q is the total number of possible class labels;  tpj is the 
number of true positive for label j ; fpj is the number of 
false positive for label j ; pj and rj are the precision and 
recall for class j . It should be noted that, the accuracy 
and subset accuracy used here for multi-label classifica-
tion are example-based measures and computed on the 
label set, which are different from the general accuracy 
used in binary or multi-class classification. Besides, the 
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macro average metrics compute the metric individually 
for each class and then take an average, and the micro 
average metrics aggregate the contributions of all classes 
to compute the average metric. Following previous stud-
ies [40], we use both macro and micro metrics to evaluate 
the model.

Correlation analysis
The Pearson correlation coefficient (PCC) is a statistic 
that measures the linear correlation between two vari-
ables X and Y, with values between + 1 and − 1. A value 
of + 1 is a 100% positive linear correlation, 0 is no lin-
ear correlation, and − 1 is a 100% negative linear corre-
lation. Pearson correlation coefficients were calculated 
using the EHRs raw data to analyze the statistical rela-
tionships among different diabetic complications, as 
shown in Fig. 1a. This motivated the introduction of an 
MLC model to leverage this correlation toward further 
predictions.

The relationships among diabetic complications could 
also be evaluated using our models. In the CC model, 
the label of the previous class in the chain was used as 

an input to predict the current class. We used the weight 
(importance) of the previous class as the correlation 
coefficient of the two classes. The correlation coefficient 
matrix obtained in the CC model is presented in Fig. 1b.

The relative strength of both correlation coefficient 
matrices was surprisingly consistent (Fig.  1a, b), which 
strongly suggests the validity of our model. Our model 
further indicates that nephropathy, retinopathy, and 
peripheral vascular disease are all correlated with each 
other directly, except for retinopathy with neuropathy.

Results
We compared the binary classification model with 4 
MLC models under 11 different performance evaluation 
metrics. Then, we leveraged the receiver operating char-
acteristic (ROC) curve and area under the curve (AUC) 
to further evaluate the performance of different models. 
Besides, we provided the top 10 key indicators for each 
complication. Finally, we provided a comparison between 
the correlation coefficient matrix derived from our model 
and statistical analysis of the EHRs’ raw data.

Default experimental setup
For all the experiments, we used classes 0, 1, 2, 3, and 4 
to represent five different categories: (0) diabetes with-
out complications, (1) retinopathy, (2) nephropathy, 
(3) neuropathy and (4) peripheral vascular disease. The 
whole dataset was randomly split into two disjoint sub-
sets: training set (75%) and test set (25%). Then, five-fold 
cross validation was employed for all experiments to tune 
the hyperparameters within the training dataset. As for 
the base model, we mainly adopted Random Forest tech-
nique as the base model to conduct the classification 
task, which is usually taken as the base model in previous 
related studies and performed best in compared mod-
els [13], and is easy to implement. Besides, we also con-
ducted experiments using XGBoost as the base model, 
whose results are displayed in Additional materials  (see 
Additional file 1: Table 3 and Fig. 1). In addition, to allevi-
ate the class imbalance problem, we set different weights 
for different categories according to the proportion of 
samples belonging to each category.

Machine learning experiment results
We conducted comparative experiments to evaluate the 
prediction introduced by the MLC models. The predic-
tion results, shown in Table  3, were evaluated using 11 
performance evaluation metrics: hamming loss, accu-
racy, f1 score, precision, recall, f1 micro, f1 macro, pre-
cision micro, precision macro, recall micro, and recall 
macro. As shown in Table 3, apart from the label power 
set (LP), all MLC models outperformed the binary clas-
sification model in most evaluation performance metrics. 

Table 2  Evaluation metrics

Metrics Example-based measures

Hamming Loss
Hamming - loss(h) = 1

N

N
∑

i=1

1
Q
|h(xi)�yi |

Accuracy
Accuracy(h) = 1

N

N
∑

i=1

∣

∣

∣

h(xi )∩yi
h(xi )∪yi

∣

∣

∣

Precision
Precision(h) = 1

N

N
∑

i=1

|h(xi )∩yi |
|yi |

Recall
Recall(h) = 1

N

N
∑

i=1

|h(xi )∩yi |
|h(xi )|

F1-score
F1 =

1
N

N
∑

i=1

2×|h(xi)∩yi |
|h(xi )|+|yi |

Subset Accuracy
Accuracysub(h) =

1
N

N
∑

i=1

I(h(xi) = yi)

Label-based Measures

 Macro-precision
Macro - precision = 1

Q

Q
∑

j=1

tpj
tpj+fpj

 Macro-recall
Macro - recall = 1

Q

Q
∑

j=1

tpj
tpj+fnj

 Macro-F1-score
Macro - F1 = 1

Q

Q
∑

j=1

2×pj×rj
pj+rj

 Micro-precision
Micro - precision =

∑Q
j=1 tpj

∑Q
j=1 tpj+

∑Q
j=1 fpj

 Micro-recall
Micro - recall =

∑Q
j=1 tpj

∑Q
j=1 tpj+

∑Q
j=1 fnj

 Micro-F1-score Micro - F1 =
2∗micro - precision∗micro - recall
micro - precision+micro - recall
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Fig. 1  a Pearson Correlation Coefficient; b Model Correlation Coefficient. Different complications share correlation to different extend. In a, a 
relatively correlation (coefficient > 0.1) is marked in deep orange while a relatively weak correlation (coefficient < 0.1) is marked in light orange. In b 
the coefficient below 0.001 (low correlation) is marked in light orange and the others marked in deep orange

Table 3  Experiment results on 5 different models including 11 performance evaluation metrics

The MLC models included a Label Power Set (LP), Classifier Chains (CC), Ensemble Classifier Chains (ECC), and Calibrated Label Ranking (CLR). The traditional model 
Binary Relevance (BR) is used as a comparison. The best performing method is in bold

Metric Traditional model The MLC models

BR LP CC ECC CLR

Example-based Metrics

 Hamming loss 0.1864 0.2141 0.176 0.176 0.1763

 Accuracy 0.6816 0.6364 0.6948 0.702 0.6875

 F1_score 0.7661 0.721 0.7763 0.7855 0.7711

 Precision 0.8163 0.7706 0.8298 0.8649 0.8156

 Recall 0.78 0.7406 0.7861 0.7727 0.792
Label-based Metrics

 F1_micro 0.789 0.7559 0.8000 0.8078 0.7968

 F1_macro 0.7593 0.708 0.7714 0.7773 0.7631

 Precision_micro 0.7709 0.7396 0.7757 0.7592 0.7863
 Precision_macro 0.7884 0.6822 0.7964 0.7689 0.8073
 Recall_micro 0.806 0.7731 0.8261 0.8631 0.8077

 Recall_macro 0.7476 0.7386 0.764 0.8009 0.7394
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Among the four MLC models, the ensemble classifier 
chains (ECC) yielded the best performance for most met-
rics. The LP method performed the worst, which may be 
because it introduced many classes with only a few sam-
ples, which aggravated the class imbalance.

Analysis of area under the receiver operating characteristic 
curve
We leveraged the AUC and ROC curve to further evalu-
ate the performance of different models for each diabetic 
complication. The ROC curve is a graphical representa-
tion for showing the trade-off between the recall/sen-
sitivity/true positive rate and false-positive rate; the 
precision-recall curve is a graphical representation for 
showing the trade-off between precision and recall. The 
experimental results of four different models, binary 
relevance (BR), LP, classifier chains (CC), and ECC, are 
shown in Fig. 2a–d. It should be noted that the area under 
the receiver operating characteristic curve (AUROC) 
result for calibrated label ranking (CLR) was not avail-
able, as it could not provide the prediction probability. As 

shown in Fig.  2a–d, the ECC model yielded the highest 
AUROC, and all the MLC models, except LR, outper-
formed the BR model. It can be seen that nephropathy 
(class 2) received the highest AUROC among all diabetic 
complications, while retinopathy (class 1) yielded a rela-
tively low AUROC.

Key features analysis
The 10 most correlated indicators given by the learned 
random forest model for the five categories of diabetic 
states are listed in Table  4, in which a higher ranking 
indicates a higher correlation coefficient.

The majority of indicators were consistent with known 
predictive factors, for example; age, levels of glucose, 
serum/urine creatinine (Cr), and lipids (Table  4). Sev-
eral predictors were consistent with the latest medical 
research: fibrinogen, plasma albumin, hematocrit for 
nephropathy [44–47], and adenosine deaminase-2 for 
retinopathy [44–47]. These results suggest validation of 
our models. Since this is the first application of an MLC 
model to the prediction of diabetic complications, new 

Fig. 2  The experimental results of 4 different models, BR, LP, CC, and ECC. In each figure, the ROC curves of different complications are marked by 
different colors accordingly
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indicators not identified in medical research were iden-
tified that suggest future studies for medical verification. 
For example, creatine phosphokinase (CPK), creatine 
kinase-MB, erythrocyte sedimentation rate, total carbon 
dioxide in the blood, international normalized ratio, and 
monocyte percentage for diabetes retinopathy; urinary 
microalbumin, urine Cr, serum Calcium (Ca), urine red 
blood cells, crystalluria, serum phosphorous (P), creatine 
kinase, and hyaline cast cholinesterase for diabetes neu-
ropathy; and urine Cr, urinary microalbumin, serum P, 
serum Ca, urinary squamous epithelial cells, and serum 
Cr for peripheral vascular disease.

Discussion
To our knowledge, this is the first study to characterize 
the risk of developing diabetic complications and assess 
the relationship of these complications in the Chinese 
population.

This is the first application of an MLC model to lever-
age the correlations among diabetic complications for 
better predictive performance. The multi-label model can 
simultaneously predict multiple factors, including neu-
ropathy, nephropathy, retinopathy, and peripheral vascu-
lar disease. This type of multiple-complication screening 
is widely used in real-world diagnosis, since patients 
can have multiple simultaneous complications. Most 
of the MLC models outperformed the BR model, which 
was used in previous studies. With the MLC model, 
high predictive performance was achieved, evaluated 
under multiple evaluation metrics and AUC, as shown in 
Table 3 and Fig. 2a, b. The ECC model yielded the high-
est AUROC of 0.826 and led in most of the evaluation 
metrics. The experimental results further indicate that 

multi-label models are efficient for leveraging correla-
tions among diabetes complications.

On analyzing the correlation between and the pre-
dictive factors of diabetes complications from patho-
logical perspective. The novel factors identified in our 
models are consistent with recent studies. Adenosine 
deaminase-2 was identified as a predictor of diabetic 
retinopathy, consistent with the work of Elsherbiny 
et al. [48]. It is shown that fibrinogen [44] can be used 
as a predictor of end-stage renal disease in type 2 dia-
betes, and plasma albumin [45, 46] can be used as an 
indicator of the prognosis of renal disease. Robles et al. 
used hematocrit, urea, and sex to predict the progres-
sion of diabetic nephropathy [47]. Issar et  al. reported 
that patients with chronic kidney disease had severe 
neuropathy phenotypes and shared nerve dysfunction 
features with CKD [49]. These evidences further proved 
the validity of our model. In addition, our multi-label 
model identified several novel predictors that were not 
found by previous risk assessment methods. For exam-
ple, CPK, and cholinesterase as predictors of diabetic 
neuropathy have not been indicated previously. The 
renal injury-related factors (urinary microalbumin, uri-
nary Cr, Ca, crystallization, and P) identified as diabetes 
neuropathy and peripheral vascular disease predic-
tors were rarely identified in diabetic medical research. 
Thus, our study simultaneously suggests the correla-
tion between nephropathy and neuropathy/ peripheral 
vascular disease. Besides, the predictors of retinopathy 
such as phosphocreatine kinase CPK, creatine kinase-
MB mass, urinary microalbumin, and urinary microal-
bumin creatinine demonstrated a correlation between 
retinal vascular changes and heart [26, 27]renal injury 

Table 4  Top10 key features in prediction

ALT alanine aminotransferase, AST aspartate aminotransferase, GGT​ gamma-glutamyl transferase, Cr creatinine, mAlb microalbumin, CPK creatine phosphokinase, 
ESR erythrocyte sedimentation rate, CK-MB creatine kinase-MB, INR PT international standardized ratio, ACR​ albumin-to-creatinine ratio, BUN blood urea nitrogen, Ca 
calcium, P phosphorus, RBC red blood cell, Apo A1 apolipoprotein A1, ApoB apolipoprotein B, USECs urinary squamous epithelial cells

Diabetes without 
complications

Retinopathy Nephropathy Neuropathy peripheral 
vascular 
disease

Age Urinary mAlb Urinary mAlb Urinary mAlb Age

ALT CPK ACR​ Urine Cr Urine Cr

GGT​ ESR Urinary mAlb /Cr Age Urinary mAlb

Triglyceride Age Urine protein Serum Ca Serum P

Albumin Adenosine deaminase Serum Cr Urine RBC Serum Ca

Glucose CK-MB BUN Crystalluria Apo A1

Cholesterol Total CO2 Urine Cr Serum P Apo B

Serum Cr Urinary mAlb / Cr Uric acid CPK Glucose

Urine Cr INR Albumin Hyaline cast USECs

ALT/AST Monocyte % Fibrinogen Cholinesterase Serum Cr
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[29, 30]. These results show the efficiency of our model 
for disease prevention and medical research assistance.

There are still several limitations to this study. First, 
this model is designed for diagnose diabetes and com-
plications. It is disease nature that limits its application 
in non-diabetic patients. Second, we used large amounts 
of data, and most factors become statistically significant 
but clinically irrelevant. To impact clinical usage, medical 
knowledge and related researches are needed. Finally, as 
we assembled the data only from one hospital, this action 
limits the generalizability of our model to other group 
of people who are distinguished by some other essential 
predictors. Our primary intention was just to demon-
strate the feasibility of the MLC model. Further investiga-
tion on multi-center study is in our horizon.

Conclusion
In this study, we demonstrated the correlations between 
different diabetic complications from two perspectives: 
statistical analysis (PCC) and machine learning (MLC). 
We illustrated that the MLC model is effective to lever-
age these correlations and outperforms the traditional 
binary classification model in predicting diabetic compli-
cations. This study is essential not only because we pro-
vided a better model in predicting diabetic complications 
but also because our model could be adapted and applied 
to leverage correlations among complications and predict 
outcomes in other complex diseases. In the future, we 
intend to extend our method to other diseases.
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